Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,a...Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,and durability of the Cr-containing geopolymers were investigated.The experimental results indicate that the red mud-based geopolymer could effectively solidify/stabilize different types of Cr salts with solidification/stabilization rates of above 99.61%.Geopolymers are environmentally safe when the dosage of CaCr_(2)O_(7)is≤1.0wt%,or the dosage of CrCl_(3),Cr_(2)O_(3),and Na_(2)CrO_(4)is≤1.5wt%,respectively.The effects of Cr salts on the compressive strength varies with the type and content of Cr salts.The freeze-thaw cycle is more destructive to geopolymer properties than sulfate attack or acid rain erosion.The solidification/stabilization of Cr is mainly attributed to the following reasons:a)The chemical binding of Cr is related to the formation of Cr-containing hydrates(eg,magnesiochromite((Mg,Fe)(Cr,Al)_(2)O_(4)))and doping into N-A-S-H gel and C-A-S-H gel framework;b)The physical effect is related to the encapsulation by the hydration products(e g,N-A-S-H gel and C-A-S-H gel).This study provides a reference for the treatment of hazardous Cr-containing wastes by solid waste-based geopolymers.展开更多
The possibilities of MSWI fly ash as a major constituent of novel solidification/stabilization matrices for secure landfill were investigated by mixing MSWI fly ash with rich aluminum components, which was added as ba...The possibilities of MSWI fly ash as a major constituent of novel solidification/stabilization matrices for secure landfill were investigated by mixing MSWI fly ash with rich aluminum components, which was added as bauxite cement or metakaolinite instead, to form Friedel and Ettringite phases with high fixing capacities for heavy metals. The physical properties, heavy metals-fixing capacity, mineral phases and its vibration bands in the novel matrices were characterized by compressive strength, TCLP(toxic characteristic leaching procedure), XRD (x-ray diffraction) , DTG (derivative thermogravimetry), and FTIR (fourier transform infrared spectroscopy), respectively. The Tessier's five-step sequential extraction procedure was used to analyze the fractions of chemical speciation for Pb, Cd and Zn ions. The experimental results indicate that Friedel-Ettringite based novel solidification/stabilization matrices can incorporate Pb, Cd and Zn ions effectively by physical encapsulation and chemical fixation, and it exhibits a great potential in co-landfill treatment of MSWI fly ash with some heavy metals-bearing hazardous wastes.展开更多
An appropriate proportion of alkali activated slag cement, abbreviated as AASC later, was determined based on strength test of paste specimens. Results showed that AASC prepared from 14% low modulus water glass and bl...An appropriate proportion of alkali activated slag cement, abbreviated as AASC later, was determined based on strength test of paste specimens. Results showed that AASC prepared from 14% low modulus water glass and blast furnace slag presented its compressive strength of hardened cement paste of 69.6, 84.0 and 91.8 MPa at 3, 7, and 28 d curing ages respectively. Flowability of the fresh railings-cement pastes and the strength development of hardened tailings-cement paste were also tested both in the cases with addition of AASC and Portland cement. The fresh tailings-cemant paste added with AASC presented much better flowability and the corresponding hardened paste presented higher compressive strength, especially the long term strength, than those added with Portland cement. Therefore, tallings paste added with AASC allowed lager solid content than that of Portland cement in order to keep the similar flowability. SEM observation on the microstructure of the hardened tailings-AASC mixture pastes showed obvious cementation effect. MIP measurements also showed that the total porosity of the hardened tailings-cement pastes decreased, and the portion of larger pore also decreased when the dosage of AASC increased. It is believed that AASC is more suitable to be used as a binder for the stabilization of zinc-lead railings and for its backfilling operation than Portland cement.展开更多
This work experimentally examined the optimal proportioning of sludge curing agent for dewatered sludge curing on solidified sludge,two components sludge curing agent consisted of cement and slag,and three components ...This work experimentally examined the optimal proportioning of sludge curing agent for dewatered sludge curing on solidified sludge,two components sludge curing agent consisted of cement and slag,and three components consisted of cement,slag and inorganic salt. The results showed that,increasing of curing ages could increase unconfined compressive strength and reduce moisture content for solidified sludge. For the test of two components,the biggest unconfined compressive strength of the solidified sludge achieved to 543. 72 kPa and the minimum moisture content achieved to 3. 56% of 21 d. The optimum proportion of the sludge curing agent of two components is sludge: cement: slag = 1 ∶ 0. 05 ∶ 0. 2 which selected by Design-expert. It could rapidly increasing the unconfined compressive strength of solidified sludge when added three components sludge curing agent( sludge: cement: slag: MgSO4= 1 ∶ 0. 05 ∶ 0. 2 ∶ 0. 03) on sludge curing. The results showed that,curing ages of 7 d,the unconfined compressive strength could achieve to 126. 74 kPa,which was more than 11 times comparison with the solidified sludge curing by two components curing agent. Two or three components sludge curing agent all could stabilize the heavy metals on solidified sludge and the leaching of heavy metals was below the government standard,while the stability of the heavy metals was superior for three components sludge curing agent.展开更多
To solve the problems of high moisture content,high viscosity,and poor engineering mechanical properties of soil,this paper using with steel slag(SS)and desulfurization ash(DS)as initial raw materials,realizing the co...To solve the problems of high moisture content,high viscosity,and poor engineering mechanical properties of soil,this paper using with steel slag(SS)and desulfurization ash(DS)as initial raw materials,realizing the coop-erative treatment of solid waste and solidification of silt soil.The synergistic utilization of SS and DS can reduce the production cost of curing agent and promote its own consumption.According to blended cement of various SS contents and inspected compressive strength performances,the most suitable raw materials ratio was selected.The best formula for this curing agent is cement:steel slag=3:7 with 5%DS,and its 28-day compressive strength can reach 30 MPa.The experiment shows that the effect of DS and Na_(2)SO_(4) reagent with the same quality on early compressive strength improvement of cement and SS system is not much different.In this study,the mineral composition and microstructure of different gel system blocks were characterized by XRD,SEM and EDX,and a large number of webbed structures were found in the SEM test,which was not seen in previous studies.Besides,unconfined compressive strength(UCS),water resistance,and toxic characteristic leaching procedure(TCLP)were used to evaluate silt solidified soil properties.The results demonstrated that the solidified silt could meet not only the standard of general subgrade;but also has a partial stabilization effect of heavy metal ions.展开更多
The high moisture content (80%) in the sewage dewatered sludge is the main obstacle to disposal and recycling. A chemical dewatering and stabilization/solidification (S/S) alternative for the sludge was developed,...The high moisture content (80%) in the sewage dewatered sludge is the main obstacle to disposal and recycling. A chemical dewatering and stabilization/solidification (S/S) alternative for the sludge was developed, using calcined aluminum salts (AS) as solidifier, and CaCl 2 , Na 2 SO 4 and CaSO 4 as accelerators, to enhance the mechanical compressibility making the landfill operation possible. The properties of the resultant matrixes were determined in terms of moisture contents, unconfined compressive strength, products of hydration, and toxicity characteristics. The results showed that AS exhibited a moderate pozzolanic activity, and the mortar AS 0 obtained with 5% AS and 10% CaSO 4 of AS by weight presented a moisture contents below 50%–60% and a compressive strength of (51.32 ± 2.9) kPa after 5–7 days of curing time, meeting the minimum requirement for sanitary landfill. The use of CaSO 4 obviously improved the S/S performance, causing higher strength level. X-ray diffraction, scanning electron microscopy and thermogravimetry- differential scanning calorimetry investigations revealed that a large amount of hydrates (viz., gismondine and CaCO 3 ) were present in solidified sludge, leading to the depletion of evaporable water and the enhancement of the strength. In addition, the toxicity characteristic leaching procedure (TCLP) and horizontal vibration (HJ 557-2009) leaching test were conducted to evaluate their environmental compatibility. It was found that the solidified products conformed to the toxicity characteristic criteria in China and could be safely disposed of in a sanitary landfill.展开更多
To more efficiently treat the dredged contaminated sediment(DCS)with a high water content,this study proposes an integrated method(called PHDVPSS)that uses the solidifying/stabilizing(S/S)agents and prefabricated hori...To more efficiently treat the dredged contaminated sediment(DCS)with a high water content,this study proposes an integrated method(called PHDVPSS)that uses the solidifying/stabilizing(S/S)agents and prefabricated horizontal drain(PHD)assisted by vacuum pressure(VP).Using this method,dewatering and solidification/stabilization can be carried out simultaneously such that the treatment time can be significantly shortened and the treatment efficacy can be significantly improved.A series of model tests was conducted to investigate the effectiveness of the proposed method.Experimental results indicated that the proposed PHDVPSS method showed superior performance compared to the conventional S/S method that uses Portland cement(PC)directly without prior dewatering.The 56-day unconfined compressive strength of DCS treated by the proposed method with GGBS-MgO as the binder is 12–17 times higher than that by the conventional S/S method.DCS treated by the PHDVPSS method exhibited continuous decrease in leaching concentration of Zn with increasing curing age.The reduction of Zn leachability is more obvious when using GGBS-MgO as the binder than when using PC,because GGBS-MgO increased the residual fraction and decreased the acid soluble fraction of Zn.The microstructure analysis reveals the formation of hydrotalcite in GGBS-MgO binder,which resulted in higher mechanical strength and higher Zn stabilization efficiency.展开更多
The cement-based solidification/stabilization (S/S) of nitrobenzene (NB) contaminated soils, with cement and lime as binders, sodium silicate solution and powder activated carbon (PAC) as additives, was optimize...The cement-based solidification/stabilization (S/S) of nitrobenzene (NB) contaminated soils, with cement and lime as binders, sodium silicate solution and powder activated carbon (PAC) as additives, was optimized through an orthogonal experiment, and S/S efficiency was estimated by both leaching test and volatilization measurement. The leaching test results showed that the factors affecting S/S efficiency were NB concentration, cement-to-lime ratio and binder-to-soils ratio, in sequence. With increasing curing time, the leaching concentration of NB between different levels of the same factor in the orthogonal experiment decreased, and less than 9% NB leached out from the 28 d cured samples. The volatilization measurement results indicated that 0.5 %0 of NB was volatilized during the mixing and curing processes for the samples without PAC in the 28 d cycle, whereas adding 2 wt% and 5 wt% PAC, with respect to the weight of contaminated soils, could reduce NB volatilization to half of its original values either during the mixing or curing process. The optimizing formula, that is, contaminated soils (dry weight):cement:lime = 100:25:25, with 5 wt% additional sodium silicate and 2 wt% additional PAC, was applied to the engineering application of NB contaminated soils. Both the leaching test results of the product and the ambient air quality monitoring results met related regulations during the treating process.展开更多
One of the challenges faced by sewage sludge treatment and disposal is its higher water content,and how to efficient dewater those hazardous materials properly is welcome in practice. This study stabilized the sewage ...One of the challenges faced by sewage sludge treatment and disposal is its higher water content,and how to efficient dewater those hazardous materials properly is welcome in practice. This study stabilized the sewage sludge via the using of conventional curing agents and calcined aluminum salts,and the corresponding dewatering mechanisms and structural changes of the stabilized sludge were further comparable analyzed.Experimental results showed that wollastonite and kaolin exhibit a relative higher dewatering efficiency as compared to other conventional curing agents; however the releasing rate of heavy metals of Cu,Cr,Ni for kaolin solidification and Zn,Pb for wollastonite solidification is higher than the sludge samples solidified by other curing agents. For comparison,the sludge samples solidified by calcined aluminum salts (AS),calcium ash,Mg-based curing agent,tricalcium aluminate( C_3A) show a lower heavy metals leaching potential and unconfined compressive strength. In addition,the economic characteristics and local availability of AS,calcium ash,C_3A and CaO makes it have a broad prospect in extension and application. These findings are of great significance for stabilization and dewatering of sewage sludge.展开更多
The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related ...The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related literature,this paper discussed the present situation about the treatment of the solid waste using stabilization/solidification technology;meanwhile we have a variety of outlooks on the future of the stabilization/solidification technology.展开更多
The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related ...The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related literature,this paper discussed the present situation about the treatment of the solid waste using stabilization/solidification technology;meanwhile we have a variety of outlooks on the future of the stabilization/solidification technology.展开更多
Peritectic reaction was studied by directional solidification of Cu-Ge alloys.A larger triple junction region of peritectic reaction was used to analyze the interface stability of the triple junction region during per...Peritectic reaction was studied by directional solidification of Cu-Ge alloys.A larger triple junction region of peritectic reaction was used to analyze the interface stability of the triple junction region during peritectic reaction.Under different growth conditions and compositions,different growth morphologies of triple junction region are presented.For the hypoperitectic Cu-13.5%Ge alloy,as the pulling velocity(v) increases from 2 to 5 μm/s,the morphological instability of the peritectic phase occurs during the peritectic reaction and the remelting interface of the primary phase is relatively stable.However,for the hyperperitectic Cu-15.6%Ge alloy wim v=5 μm/s,the nonplanar remelting interface near the trijunction is presented.The morphological stabilities of the solidifying peritectic phase and the remelting primary phase are analyzed in terms of the constitutional undercooling criterion.展开更多
Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in ...Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.展开更多
Scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDAX) were used to study the microstructure,microsegregation, and fluid flow tendency of the superalloy Waspaloy in the mushy zone,which had b...Scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDAX) were used to study the microstructure,microsegregation, and fluid flow tendency of the superalloy Waspaloy in the mushy zone,which had been solidified at different cooling rates. The investigation was accompanied with the calculation of Rayleigh numbers.It is found that Ti is the main segregating element and the content of Ti is the highest in the final liquid at the cooling rates of 3-6℃/min.The eta phase(η) precipitate presented in the residual liquid at the cooling rates higher than 6℃/min is responsible for the fluctuations in the curves of Ti content.The dendrite arm spacing is found to markedly decrease with the increase of cooling rate.The maximum relative Rayleigh number occurs at 10-20℃below the liquidus temperature at a cooling rate of 1℃/min,where the mushy zone is most unstable and fluid flow is most prone to occur.展开更多
Phase field investigation reveals that the stability of the planar interface is related to the anisotropic intensity of surface tension and the misorientation of preferred crystallographic orientation with respect to ...Phase field investigation reveals that the stability of the planar interface is related to the anisotropic intensity of surface tension and the misorientation of preferred crystallographic orientation with respect to the heat flow direction. The large anisotropic intensity may compete to determine the stability of the planar interface. The destabilizing effect or the stabilizing effect depends on the misorientation. Moreover, the interface morphology of initial instability is also affected by the surface tension anisotropy.展开更多
A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL...A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.展开更多
A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevaryin...A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.展开更多
Based on theoretical analyses, the effect of electric current density on stability of solidification interface morphology of QAl 4 alloy was studied experimentally. The results show that the experimental results agree...Based on theoretical analyses, the effect of electric current density on stability of solidification interface morphology of QAl 4 alloy was studied experimentally. The results show that the experimental results agree well with the theoretical analyses, and the following conclusions can be drawn: the increase of electric current density improves the stability of the solidification interface morphology under the condition of no convection of the liquid metal. Otherwise this convection will slow down the trend of solidification interface developing to stability caused by increasing electric current density.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.52074245,52374416 and 52202029)the China Postdoctoral Science Foundation(No.2022M721058)。
文摘Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,and durability of the Cr-containing geopolymers were investigated.The experimental results indicate that the red mud-based geopolymer could effectively solidify/stabilize different types of Cr salts with solidification/stabilization rates of above 99.61%.Geopolymers are environmentally safe when the dosage of CaCr_(2)O_(7)is≤1.0wt%,or the dosage of CrCl_(3),Cr_(2)O_(3),and Na_(2)CrO_(4)is≤1.5wt%,respectively.The effects of Cr salts on the compressive strength varies with the type and content of Cr salts.The freeze-thaw cycle is more destructive to geopolymer properties than sulfate attack or acid rain erosion.The solidification/stabilization of Cr is mainly attributed to the following reasons:a)The chemical binding of Cr is related to the formation of Cr-containing hydrates(eg,magnesiochromite((Mg,Fe)(Cr,Al)_(2)O_(4)))and doping into N-A-S-H gel and C-A-S-H gel framework;b)The physical effect is related to the encapsulation by the hydration products(e g,N-A-S-H gel and C-A-S-H gel).This study provides a reference for the treatment of hazardous Cr-containing wastes by solid waste-based geopolymers.
基金Funded by the National Natural Science Foundation of China(No.20477024)2003 Shanghai Education Research Fund
文摘The possibilities of MSWI fly ash as a major constituent of novel solidification/stabilization matrices for secure landfill were investigated by mixing MSWI fly ash with rich aluminum components, which was added as bauxite cement or metakaolinite instead, to form Friedel and Ettringite phases with high fixing capacities for heavy metals. The physical properties, heavy metals-fixing capacity, mineral phases and its vibration bands in the novel matrices were characterized by compressive strength, TCLP(toxic characteristic leaching procedure), XRD (x-ray diffraction) , DTG (derivative thermogravimetry), and FTIR (fourier transform infrared spectroscopy), respectively. The Tessier's five-step sequential extraction procedure was used to analyze the fractions of chemical speciation for Pb, Cd and Zn ions. The experimental results indicate that Friedel-Ettringite based novel solidification/stabilization matrices can incorporate Pb, Cd and Zn ions effectively by physical encapsulation and chemical fixation, and it exhibits a great potential in co-landfill treatment of MSWI fly ash with some heavy metals-bearing hazardous wastes.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2011CB013800)
文摘An appropriate proportion of alkali activated slag cement, abbreviated as AASC later, was determined based on strength test of paste specimens. Results showed that AASC prepared from 14% low modulus water glass and blast furnace slag presented its compressive strength of hardened cement paste of 69.6, 84.0 and 91.8 MPa at 3, 7, and 28 d curing ages respectively. Flowability of the fresh railings-cement pastes and the strength development of hardened tailings-cement paste were also tested both in the cases with addition of AASC and Portland cement. The fresh tailings-cemant paste added with AASC presented much better flowability and the corresponding hardened paste presented higher compressive strength, especially the long term strength, than those added with Portland cement. Therefore, tallings paste added with AASC allowed lager solid content than that of Portland cement in order to keep the similar flowability. SEM observation on the microstructure of the hardened tailings-AASC mixture pastes showed obvious cementation effect. MIP measurements also showed that the total porosity of the hardened tailings-cement pastes decreased, and the portion of larger pore also decreased when the dosage of AASC increased. It is believed that AASC is more suitable to be used as a binder for the stabilization of zinc-lead railings and for its backfilling operation than Portland cement.
基金Sponsored by the Technology Research Projects of Harbin Science and Technology Bureau(Grant No.2010AA4CS024)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201192)+1 种基金the National Natural Science Key Foundation of China(Grant No.51206036)the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(Grant No.2013DX04)
文摘This work experimentally examined the optimal proportioning of sludge curing agent for dewatered sludge curing on solidified sludge,two components sludge curing agent consisted of cement and slag,and three components consisted of cement,slag and inorganic salt. The results showed that,increasing of curing ages could increase unconfined compressive strength and reduce moisture content for solidified sludge. For the test of two components,the biggest unconfined compressive strength of the solidified sludge achieved to 543. 72 kPa and the minimum moisture content achieved to 3. 56% of 21 d. The optimum proportion of the sludge curing agent of two components is sludge: cement: slag = 1 ∶ 0. 05 ∶ 0. 2 which selected by Design-expert. It could rapidly increasing the unconfined compressive strength of solidified sludge when added three components sludge curing agent( sludge: cement: slag: MgSO4= 1 ∶ 0. 05 ∶ 0. 2 ∶ 0. 03) on sludge curing. The results showed that,curing ages of 7 d,the unconfined compressive strength could achieve to 126. 74 kPa,which was more than 11 times comparison with the solidified sludge curing by two components curing agent. Two or three components sludge curing agent all could stabilize the heavy metals on solidified sludge and the leaching of heavy metals was below the government standard,while the stability of the heavy metals was superior for three components sludge curing agent.
基金Funding from the Jiangsu Provincial Department of Science and Technology Key Research and Development Program(Social Development)(Grant No.BE2018697)the Demonstration Engineering Technology Research Center of Suqian Science and Technology Bureau(Grant No.M201912)+1 种基金the Jiangsu Provincial Science and Technology Department Social Development Project(Grant No.BE2017704)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘To solve the problems of high moisture content,high viscosity,and poor engineering mechanical properties of soil,this paper using with steel slag(SS)and desulfurization ash(DS)as initial raw materials,realizing the coop-erative treatment of solid waste and solidification of silt soil.The synergistic utilization of SS and DS can reduce the production cost of curing agent and promote its own consumption.According to blended cement of various SS contents and inspected compressive strength performances,the most suitable raw materials ratio was selected.The best formula for this curing agent is cement:steel slag=3:7 with 5%DS,and its 28-day compressive strength can reach 30 MPa.The experiment shows that the effect of DS and Na_(2)SO_(4) reagent with the same quality on early compressive strength improvement of cement and SS system is not much different.In this study,the mineral composition and microstructure of different gel system blocks were characterized by XRD,SEM and EDX,and a large number of webbed structures were found in the SEM test,which was not seen in previous studies.Besides,unconfined compressive strength(UCS),water resistance,and toxic characteristic leaching procedure(TCLP)were used to evaluate silt solidified soil properties.The results demonstrated that the solidified silt could meet not only the standard of general subgrade;but also has a partial stabilization effect of heavy metal ions.
基金supported by the Science and Technol- ogy Commission of Shanghai Municipality (No. 08DZ 1202802, 09DZ 1204105)
文摘The high moisture content (80%) in the sewage dewatered sludge is the main obstacle to disposal and recycling. A chemical dewatering and stabilization/solidification (S/S) alternative for the sludge was developed, using calcined aluminum salts (AS) as solidifier, and CaCl 2 , Na 2 SO 4 and CaSO 4 as accelerators, to enhance the mechanical compressibility making the landfill operation possible. The properties of the resultant matrixes were determined in terms of moisture contents, unconfined compressive strength, products of hydration, and toxicity characteristics. The results showed that AS exhibited a moderate pozzolanic activity, and the mortar AS 0 obtained with 5% AS and 10% CaSO 4 of AS by weight presented a moisture contents below 50%–60% and a compressive strength of (51.32 ± 2.9) kPa after 5–7 days of curing time, meeting the minimum requirement for sanitary landfill. The use of CaSO 4 obviously improved the S/S performance, causing higher strength level. X-ray diffraction, scanning electron microscopy and thermogravimetry- differential scanning calorimetry investigations revealed that a large amount of hydrates (viz., gismondine and CaCO 3 ) were present in solidified sludge, leading to the depletion of evaporable water and the enhancement of the strength. In addition, the toxicity characteristic leaching procedure (TCLP) and horizontal vibration (HJ 557-2009) leaching test were conducted to evaluate their environmental compatibility. It was found that the solidified products conformed to the toxicity characteristic criteria in China and could be safely disposed of in a sanitary landfill.
基金Financial support for this investigation was provided by the National Key Research and Development Program of China(Grant No.2019YFC1806000)Changjiang River Scientific Research Institute Open Research Program(Grant No.CKWV2019730/KY)+1 种基金the National Natural Science Foundation of China(Grant Nos.51678268 and 51878312)and the Hubei Province Postdoctoral Advanced Programs(Grant No.0106240048).This support is gratefully acknowledged.
文摘To more efficiently treat the dredged contaminated sediment(DCS)with a high water content,this study proposes an integrated method(called PHDVPSS)that uses the solidifying/stabilizing(S/S)agents and prefabricated horizontal drain(PHD)assisted by vacuum pressure(VP).Using this method,dewatering and solidification/stabilization can be carried out simultaneously such that the treatment time can be significantly shortened and the treatment efficacy can be significantly improved.A series of model tests was conducted to investigate the effectiveness of the proposed method.Experimental results indicated that the proposed PHDVPSS method showed superior performance compared to the conventional S/S method that uses Portland cement(PC)directly without prior dewatering.The 56-day unconfined compressive strength of DCS treated by the proposed method with GGBS-MgO as the binder is 12–17 times higher than that by the conventional S/S method.DCS treated by the PHDVPSS method exhibited continuous decrease in leaching concentration of Zn with increasing curing age.The reduction of Zn leachability is more obvious when using GGBS-MgO as the binder than when using PC,because GGBS-MgO increased the residual fraction and decreased the acid soluble fraction of Zn.The microstructure analysis reveals the formation of hydrotalcite in GGBS-MgO binder,which resulted in higher mechanical strength and higher Zn stabilization efficiency.
文摘The cement-based solidification/stabilization (S/S) of nitrobenzene (NB) contaminated soils, with cement and lime as binders, sodium silicate solution and powder activated carbon (PAC) as additives, was optimized through an orthogonal experiment, and S/S efficiency was estimated by both leaching test and volatilization measurement. The leaching test results showed that the factors affecting S/S efficiency were NB concentration, cement-to-lime ratio and binder-to-soils ratio, in sequence. With increasing curing time, the leaching concentration of NB between different levels of the same factor in the orthogonal experiment decreased, and less than 9% NB leached out from the 28 d cured samples. The volatilization measurement results indicated that 0.5 %0 of NB was volatilized during the mixing and curing processes for the samples without PAC in the 28 d cycle, whereas adding 2 wt% and 5 wt% PAC, with respect to the weight of contaminated soils, could reduce NB volatilization to half of its original values either during the mixing or curing process. The optimizing formula, that is, contaminated soils (dry weight):cement:lime = 100:25:25, with 5 wt% additional sodium silicate and 2 wt% additional PAC, was applied to the engineering application of NB contaminated soils. Both the leaching test results of the product and the ambient air quality monitoring results met related regulations during the treating process.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51408159)the China Postdoctoral Science Foundation of China(Grant No.2013T60375 and 2012M520744)
文摘One of the challenges faced by sewage sludge treatment and disposal is its higher water content,and how to efficient dewater those hazardous materials properly is welcome in practice. This study stabilized the sewage sludge via the using of conventional curing agents and calcined aluminum salts,and the corresponding dewatering mechanisms and structural changes of the stabilized sludge were further comparable analyzed.Experimental results showed that wollastonite and kaolin exhibit a relative higher dewatering efficiency as compared to other conventional curing agents; however the releasing rate of heavy metals of Cu,Cr,Ni for kaolin solidification and Zn,Pb for wollastonite solidification is higher than the sludge samples solidified by other curing agents. For comparison,the sludge samples solidified by calcined aluminum salts (AS),calcium ash,Mg-based curing agent,tricalcium aluminate( C_3A) show a lower heavy metals leaching potential and unconfined compressive strength. In addition,the economic characteristics and local availability of AS,calcium ash,C_3A and CaO makes it have a broad prospect in extension and application. These findings are of great significance for stabilization and dewatering of sewage sludge.
文摘The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related literature,this paper discussed the present situation about the treatment of the solid waste using stabilization/solidification technology;meanwhile we have a variety of outlooks on the future of the stabilization/solidification technology.
文摘The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related literature,this paper discussed the present situation about the treatment of the solid waste using stabilization/solidification technology;meanwhile we have a variety of outlooks on the future of the stabilization/solidification technology.
基金Projects (50901025,50975060,51331005) supported by the National Natural Science Foundation of ChinaProject (2011CB610406) supported by the National Basic Research Program of China+2 种基金Projects (201104420,20090450840) supported by China Postdoctoral Science FoundationProject (JC201209) supported by Outstanding Young Scientist Foundation of Heilongjiang Province,ChinaProject (HIT.BRET1.20100008) supported by the Fundamental Research Funds for Central Universities,China
文摘Peritectic reaction was studied by directional solidification of Cu-Ge alloys.A larger triple junction region of peritectic reaction was used to analyze the interface stability of the triple junction region during peritectic reaction.Under different growth conditions and compositions,different growth morphologies of triple junction region are presented.For the hypoperitectic Cu-13.5%Ge alloy,as the pulling velocity(v) increases from 2 to 5 μm/s,the morphological instability of the peritectic phase occurs during the peritectic reaction and the remelting interface of the primary phase is relatively stable.However,for the hyperperitectic Cu-15.6%Ge alloy wim v=5 μm/s,the nonplanar remelting interface near the trijunction is presented.The morphological stabilities of the solidifying peritectic phase and the remelting primary phase are analyzed in terms of the constitutional undercooling criterion.
基金supported by the National Key Research and Development Program of China(2021YFB3702005)the National Natural Science Foundation of China(52304352)+3 种基金the Central Government Guides Local Science and Technology Development Fund Projects(2023JH6/100100046)2022"Chunhui Program"Collaborative Scientific Research Project(202200042)the Doctoral Start-up Foundation of Liaoning Province(2023-BS-182)the Technology Development Project of State Key Laboratory of Metal Material for Marine Equipment and Application[HGSKL-USTLN(2022)01].
文摘Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.
基金supported by the school fund of Nanjing University of Information Science and Technol ogy
文摘Scanning electron microscopy(SEM) and energy dispersive X-ray analysis(EDAX) were used to study the microstructure,microsegregation, and fluid flow tendency of the superalloy Waspaloy in the mushy zone,which had been solidified at different cooling rates. The investigation was accompanied with the calculation of Rayleigh numbers.It is found that Ti is the main segregating element and the content of Ti is the highest in the final liquid at the cooling rates of 3-6℃/min.The eta phase(η) precipitate presented in the residual liquid at the cooling rates higher than 6℃/min is responsible for the fluctuations in the curves of Ti content.The dendrite arm spacing is found to markedly decrease with the increase of cooling rate.The maximum relative Rayleigh number occurs at 10-20℃below the liquidus temperature at a cooling rate of 1℃/min,where the mushy zone is most unstable and fluid flow is most prone to occur.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50401013)the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University of China (NWPU) (Grant No. KP200903)
文摘Phase field investigation reveals that the stability of the planar interface is related to the anisotropic intensity of surface tension and the misorientation of preferred crystallographic orientation with respect to the heat flow direction. The large anisotropic intensity may compete to determine the stability of the planar interface. The destabilizing effect or the stabilizing effect depends on the misorientation. Moreover, the interface morphology of initial instability is also affected by the surface tension anisotropy.
基金supported by the National Natural Science Foundation of China under Grant 62034002 and 62374026.
文摘A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.
基金supported in part by the Nation Natural Science Foundation of China under Grant No.52175099China Postdoctoral Science Foundation under Grant No.2020M671494Jiangsu Planned Projects for Postdoctoral Research Funds under Grant No.2020Z179。
文摘A tracking stability control problem for the vertical electric stabilization system of moving tank based on adaptive robust servo control is addressed.This paper mainly focuses on two types of possibly fast timevarying but bounded uncertainty within the vertical electric stabilization system:model parameter uncertainty and uncertain nonlinearity.First,the vertical electric stabilization system is constructed as an uncertain nonlinear dynamic system that can reflect the practical mechanics transfer process of the system.Second,the dynamical equation in the form of state space is established by designing the angular tracking error.Third,the comprehensive parameter of system uncertainty is designed to estimate the most conservative effects of uncertainty.Finally,an adaptive robust servo control which can effectively handle the combined effects of complex nonlinearity and uncertainty is proposed.The feasibility of the proposed control strategy under the practical physical condition is validated through the tests on the experimental platform.This paper pioneers the introduction of the internal nonlinearity and uncertainty of the vertical electric stabilization system into the settlement of the tracking stability control problem,and validates the advanced servo control strategy through experiment for the first time.
文摘Based on theoretical analyses, the effect of electric current density on stability of solidification interface morphology of QAl 4 alloy was studied experimentally. The results show that the experimental results agree well with the theoretical analyses, and the following conclusions can be drawn: the increase of electric current density improves the stability of the solidification interface morphology under the condition of no convection of the liquid metal. Otherwise this convection will slow down the trend of solidification interface developing to stability caused by increasing electric current density.