Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as ...Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as their direct target.In addition,the hearing damage caused by aminoglycosides involves damage of spiral ganglion neurons upon exposure.To investigate the mechanisms underlying spiral ganglion neuron degeneration induced by aminoglycosides,we used a C57BL/6J mouse model treated with kanamycin.We found that the mice exhibited auditory deficits following the acute loss of outer hair cells.Spiral ganglion neurons displayed hallmarks of pyroptosis and exhibited progressive degeneration over time.Transcriptomic profiling of these neurons showed significant upregulation of genes associated with inflammation and immune response,particularly those related to the NLRP3 inflammasome.Activation of the canonical pyroptotic pathway in spiral ganglion neurons was observed,accompanied by infiltration of macrophages and the release of proinflammatory cytokines.Pharmacological intervention targeting NLRP3 using Mcc950 and genetic intervention using NLRP3 knockout ameliorated spiral ganglion neuron degeneration in the injury model.These findings suggest that NLRP3 inflammasome-mediated pyroptosis plays a role in aminoglycoside-induced spiral ganglion neuron degeneration.Inhibition of this pathway may offer a potential therapeutic strategy for treating sensorineural hearing loss by reducing spiral ganglion neuron degeneration.展开更多
Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.Th...Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.The dataset is first preprocessed using solo thermal encoding and normalization functions.Then the spiral convolution-Long Short-Term Memory Network model is constructed,which consists of spiral convolution,a two-layer long short-term memory network,and a classifier.It is shown through experiments that the model is characterized by high accuracy,small model computation,and fast convergence speed relative to previous deep learning models.The model uses a new neural network to achieve fast and accurate network traffic intrusion detection.The model in this paper achieves 0.9706 and 0.8432 accuracy rates on the NSL-KDD dataset and the UNSWNB-15 dataset under five classifications and ten classes,respectively.展开更多
With the continuous advancement in medical technology,endoscopy has gained significant attention as a crucial diagnostic tool.The introduction of motorized spiral enteroscopy(MSE)represents a significant advancement i...With the continuous advancement in medical technology,endoscopy has gained significant attention as a crucial diagnostic tool.The introduction of motorized spiral enteroscopy(MSE)represents a significant advancement in the diagnosis and treatment of small bowel diseases.While there are safety concerns and a high reliance on the operator’s skills,MSE should not be disregarded entirely.Instead,it should be considered as a supplementary endoscopic technique,particularly in situations where conventional endoscopy proves ineffective.Through continuous research and technical optimization,MSE has the potential to become an im-portant addition to the endoscopy toolbox in the future.We call on colleagues in the industry to work together to promote the improvement of MSE technology through continuous research and practice,with the aim to bring out its unique value in endoscopy while ensuring patient safety.展开更多
Multistage fracturing of horizontal wells is a critical technology for unconventional oil and gas reservoir stimulation. Ball-throwing temporary plugging fracturing is a new method for realizing uniform fracturing alo...Multistage fracturing of horizontal wells is a critical technology for unconventional oil and gas reservoir stimulation. Ball-throwing temporary plugging fracturing is a new method for realizing uniform fracturing along horizontal wells and plays an important role in increasing oil and gas production. However,the transportation and sealing law of temporary plugging balls(TPBs) in the perforation section of horizontal wells is still unclear. Using COMSOL computational fluid dynamics and a particle tracking module, we simulate the transportation process of TPBs in a horizontal wellbore and analyse the effects of the ball density, ball diameter, ball number, fracturing fluid injection rate, and viscosity on the plugging efficiency of TPB transportation. This study reveals that when the density of TPBs is close to that of the fracturing fluid and a moderate diameter of the TPB is used, the plugging efficiency can be substantially enhanced. The plugging efficiency is greater when the TPB number is close to twice the number of perforations and is lower when the number of TPBs is three times the number of perforations.Adjusting the fracturing fluid injection rate from low to high can control the position of the TPBs,improving plugging efficiency. As the viscosity of the fracturing fluid increases, the plugging efficiency of the perforations decreases near the borehole heel and increases near the borehole toe. In contrast, the plugging efficiency of the central perforation is almost unaffected by the fracturing fluid viscosity. This study can serve as a valuable reference for establishing the parameters for temporary plugging and fracturing.展开更多
Optical vortices generated by the conventional vortex lens are usually disturbed by the undesired higher-order foci,which may lead to additional artifacts and thus degrade the contrast sensitivity. In this work, we pr...Optical vortices generated by the conventional vortex lens are usually disturbed by the undesired higher-order foci,which may lead to additional artifacts and thus degrade the contrast sensitivity. In this work, we propose an efficient methodology to combine the merit of elliptical reflective zone plates(ERZPs) and the advantage of spiral zone plates(SZPs) in establishing a specific single optical element, termed elliptical reflective annulus quadrangle-element coded spiral zone plates(ERAQSZPs) to generate single-focus phase singularity. Differing from the abrupt reflectance of the ERZPs, a series of randomly distributed nanometer apertures are adopted to realize the sinusoidal reflectance. Typically, according to our physical design, the ERAQSZPs are fabricated on a bulk substrate;therefore, the new idea can significantly reduce the difficulty in the fabrication process. Based on the Kirchhoff diffraction theory and convolution theorem, the focusing performance of ERAQSZPs is calculated. The results reveal that apart from the capability of generating optical vortices,ERAQSZPs can also integrate the function of focusing, energy selection, higher-order foci elimination, as well as high spectral resolution together. In addition, the focusing properties can be further improved by appropriately adjusting the parameters, such as zone number and the size of the consisted primitives. These findings are expected to direct a new direction toward improving the performance of optical capture, x-ray fluorescence spectra, and forbidden transition.展开更多
We propose a new method to generate terahertz perfect vortex beam with integer-order and fractional-order. A new optical diffractive element composed of the phase combination of a spherical harmonic axicon and a spira...We propose a new method to generate terahertz perfect vortex beam with integer-order and fractional-order. A new optical diffractive element composed of the phase combination of a spherical harmonic axicon and a spiral phase plate is designed and called spiral spherical harmonic axicon. A terahertz Gaussian beam passes through the spiral spherical harmonic axicon to generate a terahertz vortex beam. When only the topological charge number carried by spiral spherical harmonic axicon increases, the ring radius of terahertz vortex beam increases slightly, so the beam is shaped into a terahertz quasi-perfect vortex beam. Importantly, the terahertz quasi-perfect vortex beam can carry not only integer-order topological charge number but also fractional-order topological charge number. This is the first time that vortex beam and quasi-perfect vortex beam with fractional-order have been successfully realized in terahertz domain and experiment.展开更多
In CNC machining,the tool path planning of the cutter plays an important role.In this paper,we generate a space-filling and continuous tool path for free-form surface represented by the triangular mesh with a confined...In CNC machining,the tool path planning of the cutter plays an important role.In this paper,we generate a space-filling and continuous tool path for free-form surface represented by the triangular mesh with a confined scallop height.The tool path is constructed from connected Fermat spirals(CFS)but with fewer inflection points.Comparing with the newly developed CFS method,only about half of the number of inflection points are involved.Moreover,the kinematic constraints are simultaneously taken into account to increase the feedrates in machining.Finally,we use a micro-line trajectory technique to smooth the tool path.Experimental results and physical cutting tests are provided to illustrate and clarify our method.展开更多
Clinical diagnosis and early intervention employ pedobarometry,which analyzes gait,posture,and foot health.Athletes utilize smart insoles to track step count,distance,and other parameters to improve performance.Curren...Clinical diagnosis and early intervention employ pedobarometry,which analyzes gait,posture,and foot health.Athletes utilize smart insoles to track step count,distance,and other parameters to improve performance.Current sensor platforms are bulky and limited to indoor or clinical environments,despite the trend of developing specialized insoles for recuperation and therapy.Hence,we presented a fully flexible,typically portable,and multi-functional insole monitoring technology powered by Archimedean algorithmic spiral TENG-based power system strictly produced from biopolymers such as bacterial cellulose,conjugate-blend of polydimethylsiloxane(PDMS),poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS),and more.Along with exceptional mechanical and electrical performance[current density(JSC)≈40-50μA/cm2 and power density(PD)≈500-600μW/cm2],the smart insole system exhibited good sensor-human foot interfacial analysis results,proving to be capable of biomechanical analysis of gait,posture,and many other podiatry-related conditions,albeit being soft,portable,and having compatibility potential for IoT integration.展开更多
Motorized spiral enteroscopy(MSE)is the latest advance in device-assisted enteroscopy.Adverse events related to MSE were discussed in a recent large systematic review and meta-analysis and were directly compared with ...Motorized spiral enteroscopy(MSE)is the latest advance in device-assisted enteroscopy.Adverse events related to MSE were discussed in a recent large systematic review and meta-analysis and were directly compared with those of balloon enteroscopy in a case-matched study and a randomized controlled trial.Following the real-life application of MSE,an unexpected safety issue emerged regarding esophageal injury and the technique has been withdrawn from the global market,despite encouraging results in terms of diagnostic and therapeutic yield.We conducted an Italian multicenter real-life prospective study,which was prematurely terminated after the withdrawal of MSE from the market.The primary goals were the evaluation of MSE performance(both diagnostic and therapeutic)and its safety in routine endoscopic practice,particularly in the early phase of introduction in the endoscopic unit.A subanalysis,which involved patients who underwent MSE after unsuccessful balloon enteroscopy,demonstrated,for the first time,the promising performance of MSE as a rescue procedure.Given its remarkable performance in clinical practice and its potential role as a backup technique following a previously failed enteroscopy,it may be more appropriate to refine and enhance MSE in the future rather than completely abandoning it.展开更多
A combined experimental and numerical research study is conducted to investigate the complex relationship between the structure and the aerodynamic performances of an Archimedes spiral wind turbine(ASWT).Two ASWTs are...A combined experimental and numerical research study is conducted to investigate the complex relationship between the structure and the aerodynamic performances of an Archimedes spiral wind turbine(ASWT).Two ASWTs are considered,a prototypical version and an improved version.It is shown that the latter achieves the best aerodynamic performance when the spread angles at the three sets of blades areα_(1)=30°,α_(2)=55°,α3=60°,respectively and the blade thickness is 4 mm.For a velocity V=10 m/s,a tip speed ratio(TSR)=1.58 and 2,the maximum CP values are 0.223 and 0.263 for the prototypical ASWT and improved ASWT,respectively,and the maximum C_(P) enhancement is 17.93%.For V=10 m/s and TSR=2,the CP values of the prototypical ASWT and improved ASWT are 0.225 and 0.263,respectively,with an aerodynamic performance enhancement of 16.88%.Through mutual verification of the test outcomes and numerical results,it is concluded that the proposed approach can effectively lead to aerodynamic performance improvement.展开更多
BACKGROUND Colorectal cancer(CRC)is a prevalent cancer type in clinical settings;its early signs can be difficult to detect,which often results in late-stage diagnoses in many patients.The early detection and diagnosi...BACKGROUND Colorectal cancer(CRC)is a prevalent cancer type in clinical settings;its early signs can be difficult to detect,which often results in late-stage diagnoses in many patients.The early detection and diagnosis of CRC are crucial for improving treatment success and patient survival rates.Recently,imaging techniques have been hypothesized to be essential in managing CRC,with magnetic resonance imaging(MRI)and spiral computed tomography(SCT)playing a significant role in enhancing diagnostic and treatment approaches.AIM To explore the effectiveness of MRI and SCT in the preoperative staging of CRC and the prognosis of laparoscopic treatment.METHODS Ninety-five individuals admitted to Zhongshan Hospital Xiamen University underwent MRI and SCT and were diagnosed with CRC.The precision of MRI and SCT for the presurgical classification of CRC was assessed,and pathological staging was used as a reference.Receiver operating characteristic curves were used to evaluate the diagnostic efficacy of blood volume,blood flow,time to peak,permeability surface,blood reflux constant,volume transfer constant,and extracellular extravascular space volume fraction on the prognosis of patients with CRC.RESULTS Pathological biopsies confirmed the following CRC stages:23,23,32,and 17 at T1,T2,T3,and T4,respectively.There were 39 cases at the N0 stage,22 at N1,34 at N2,44 at M0 stage,and 51 at M1.Using pathological findings as the benchmark,the combined use of MRI and SCT for preoperative TNM staging in patients with CRC demonstrated superior sensitivity,specificity,and accuracy compared with either modality alone,with a statistically significant difference in accuracy(P<0.05).Receiver operating characteristic curve analysis revealed the predictive values for laparoscopic treatment prognosis,as indicated by the areas under the curve for blood volume,blood flow,time to peak,and permeability surface,blood reflux constant,volume transfer constant,and extracellular extravascular space volume fraction were 0.750,0.683,0.772,0.761,0.709,0.719,and 0.910,respectively.The corresponding sensitivity and specificity values were also obtained(P<0.05).CONCLUSION MRI with SCT is effective in the clinical diagnosis of patients with CRC and is worthy of clinical promotion.展开更多
Understanding the dark matter distribution throughout a galaxy can provide insight into its elusive nature. Numerous density profiles, such as the Navarro, Frenk and White model, have been created in an attempt to stu...Understanding the dark matter distribution throughout a galaxy can provide insight into its elusive nature. Numerous density profiles, such as the Navarro, Frenk and White model, have been created in an attempt to study this distribution through analyzing orbital velocities of luminous matter and modeling dark matter distributions to explain these observations. However, we are interested in a simple model to consider the significant fluctuations in rotation curves at larger radii. Therefore, our model is much simpler compared to those previously mentioned. Our model used all the observational data available for four selected galactic rotation curves. These data present a significant variation in the orbital velocity of matter at the same distances. By running real observational data through our model, we show that the density of the dark matter within them shows real complex structure, which is not suggested by other computational models. Our aim of this paper is to model this structure and then speculate as to the cause and implications of these density fluctuations.展开更多
Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. Th...Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. These cores are practically trapped in false vacua, rendering their detection by outside observers impossible. Based on massive parallel computations and theoretical investigations, we show that SMDEOs at the centres of spiral galaxies that are surrounded by massive rotating torii of normal matter may serve as powerful sources for gravitational waves carrying away roughly 1042 erg/s. Due to the extensive cooling by GWs, the SMDEO-Torus systems undergo glitching, through which both rotational and gravitational energies are abruptly ejected into the ambient media, during which the topologies of the embedding spacetimes change from curved into flatter ones, thereby triggering a burst gravitational energy of order 1059 erg. Also, the effects of glitches found to alter the force balance of objects in the Lagrangian-L1 region between the central SMDEO-Torus system and the bulge, enforcing the enclosed objects to develop violent motions, that may explain the origin of the rotational curve irregularities observed in the innermost part of spiral galaxies. Our study shows that the generated GWs at the centres of galaxies, which traverse billions of objects during their outward propagations throughout the entire galaxy, lose energy due to repeatedly squeezing and stretching the objects. Here, we find that these interactions may serve as damping processes that give rise to the formation of collective forces f∝m(r)/r, that point outward, endowing the objects with the observed flat rotation curves. Our approach predicts a correlation between the baryonic mass and the rotation velocities in galaxies, which is in line with the Tully-Fisher relation. The here-presented self-consistent approach explains nicely the observed rotation curves without invoking dark matter or modifying Newtonian gravitation in the low-field approximation.展开更多
Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteris...Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteristics of the gear system,which further increases noise and vibration.This paper aims to calculate the TVMS and establish dynamic model of SBG with spalling defect.In this study,a novel analytical model based on slice method is proposed to calculate the TVMS of SBG considering spalling defect.Subsequently,the influence of spalling defect on the TVMS is studied through a numerical simulation,and the proposed analytical model is verified by a finite element model.Besides,an 8-degrees-of-freedom dynamic model is established for SBG transmission system.Incorporating the spalling defect into TVMS,the dynamic responses of spalled SBG are analyzed.The numerical results indicate that spalling defect would cause periodic impact in time domain.Finally,an experiment is designed to verify the proposed dynamic model.The experimental results show that the spalling defect makes the response characterized by periodic impact with the rotating frequency of spalled pinion.展开更多
This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors. It is based on the satisfaction of contact condition of three given...This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors. It is based on the satisfaction of contact condition of three given control points on the tooth surface. The three meshing points are controlled to be on a predesigned straight contact path that meets the pre-designed parabolic function of transmission errors. Designed separately, the magnitude of transmission errors and the orientation of the contact path are subjected to precise control. In addition, in order to meet the manufacturing requirements, we suggest to modify the values of blank offset, one of the pinion machine tool-settings, and redesign pinion ma- chine tool-settings to ensure that the magnitude and the geometry of transmission errors should not be influenced apart from minor effects on the predesigned straight contact path. The proposed approach together with its ideas has been proven by a numerical example and the manufacturing practice of a pair of spiral bevel gears.展开更多
To increase efficiency and improve performance, reducing cost and emissions, advanced single crystal Ni-based superalloys are required in aerospace propulsion and power generating gas turbines. With the development of...To increase efficiency and improve performance, reducing cost and emissions, advanced single crystal Ni-based superalloys are required in aerospace propulsion and power generating gas turbines. With the development of alloy, significant improvements in casting techniques have been achieved by introducing the directionally solidified (DS) casting process followed by single crystal (SX) technique. The deviation of preferred orientation of single crystal superalloys is one of the most important defects in casting. In directional solidification equipment with high temperature gradient, single crystal specimens of DZ417G alloy were prepared successfully by the modified Bridgeman method with spiral grain selector. The orientation was investigated by means of X-ray diffraction (XRD) and electron backscattered diffraction (EBSD).The results show that the crystal selector with a smaller angle can effectively reduce the deviation of preferred orientation.展开更多
Objective: To evaluate three-dimensional bronchial artery imaging charactersin central lung cancer and applied values with multi-slice spiral CT (MSCT) to provide theoreticalevidence on blood supply and intervention t...Objective: To evaluate three-dimensional bronchial artery imaging charactersin central lung cancer and applied values with multi-slice spiral CT (MSCT) to provide theoreticalevidence on blood supply and intervention therapy. Methods: Eighteen patients with central lungcancer underwent MSCT with real time helical thin-slice CT scanning. Three-dimensional bronchialartery reconstruction was done at the console work-station. The space anatomical characters ofbronchial artery were observed through different rotations. Results: For 6 cases, thethree-dimensional images of bronchial artery (33.33%) could exactly show the origins, the routes(lung inner segment and mediatism segment) and the diameters of bronchial arteries. Vision rate ofbronchial arteries was the highest in pulmonary artery stricture and truncation groups, and thevessels' diameter became larger apparently. These characters demonstrated blood supply of this kindof central lung cancer come from bronchial artery. Volume rendering images were the best ones amongthree-dimensional images. Conclusion: Three-dimensional imaging with MSCT in bronchial artery canreveal the anatomical characters of bronchial artery and provide theoretical evidence on bloodsupply and intervention therapy of central lung cancer.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81800919(to YX),82171140(to PW)the International Cooperation and Exchange of the National Natural Science Foundation of China,Nos.82020108008(to HS),81720108010(to SY).
文摘Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum.However,their use leads to irreversible hearing damage by causing apoptosis of hair cells as their direct target.In addition,the hearing damage caused by aminoglycosides involves damage of spiral ganglion neurons upon exposure.To investigate the mechanisms underlying spiral ganglion neuron degeneration induced by aminoglycosides,we used a C57BL/6J mouse model treated with kanamycin.We found that the mice exhibited auditory deficits following the acute loss of outer hair cells.Spiral ganglion neurons displayed hallmarks of pyroptosis and exhibited progressive degeneration over time.Transcriptomic profiling of these neurons showed significant upregulation of genes associated with inflammation and immune response,particularly those related to the NLRP3 inflammasome.Activation of the canonical pyroptotic pathway in spiral ganglion neurons was observed,accompanied by infiltration of macrophages and the release of proinflammatory cytokines.Pharmacological intervention targeting NLRP3 using Mcc950 and genetic intervention using NLRP3 knockout ameliorated spiral ganglion neuron degeneration in the injury model.These findings suggest that NLRP3 inflammasome-mediated pyroptosis plays a role in aminoglycoside-induced spiral ganglion neuron degeneration.Inhibition of this pathway may offer a potential therapeutic strategy for treating sensorineural hearing loss by reducing spiral ganglion neuron degeneration.
基金the Gansu University of Political Science and Law Key Research Funding Project in 2018(GZF2018XZDLW20)Gansu Provincial Science and Technology Plan Project(Technology Innovation Guidance Plan)(20CX9ZA072).
文摘Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models,SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model.The dataset is first preprocessed using solo thermal encoding and normalization functions.Then the spiral convolution-Long Short-Term Memory Network model is constructed,which consists of spiral convolution,a two-layer long short-term memory network,and a classifier.It is shown through experiments that the model is characterized by high accuracy,small model computation,and fast convergence speed relative to previous deep learning models.The model uses a new neural network to achieve fast and accurate network traffic intrusion detection.The model in this paper achieves 0.9706 and 0.8432 accuracy rates on the NSL-KDD dataset and the UNSWNB-15 dataset under five classifications and ten classes,respectively.
文摘With the continuous advancement in medical technology,endoscopy has gained significant attention as a crucial diagnostic tool.The introduction of motorized spiral enteroscopy(MSE)represents a significant advancement in the diagnosis and treatment of small bowel diseases.While there are safety concerns and a high reliance on the operator’s skills,MSE should not be disregarded entirely.Instead,it should be considered as a supplementary endoscopic technique,particularly in situations where conventional endoscopy proves ineffective.Through continuous research and technical optimization,MSE has the potential to become an im-portant addition to the endoscopy toolbox in the future.We call on colleagues in the industry to work together to promote the improvement of MSE technology through continuous research and practice,with the aim to bring out its unique value in endoscopy while ensuring patient safety.
基金supported by the National Natural Science Foundation of China (No. 52074250)。
文摘Multistage fracturing of horizontal wells is a critical technology for unconventional oil and gas reservoir stimulation. Ball-throwing temporary plugging fracturing is a new method for realizing uniform fracturing along horizontal wells and plays an important role in increasing oil and gas production. However,the transportation and sealing law of temporary plugging balls(TPBs) in the perforation section of horizontal wells is still unclear. Using COMSOL computational fluid dynamics and a particle tracking module, we simulate the transportation process of TPBs in a horizontal wellbore and analyse the effects of the ball density, ball diameter, ball number, fracturing fluid injection rate, and viscosity on the plugging efficiency of TPB transportation. This study reveals that when the density of TPBs is close to that of the fracturing fluid and a moderate diameter of the TPB is used, the plugging efficiency can be substantially enhanced. The plugging efficiency is greater when the TPB number is close to twice the number of perforations and is lower when the number of TPBs is three times the number of perforations.Adjusting the fracturing fluid injection rate from low to high can control the position of the TPBs,improving plugging efficiency. As the viscosity of the fracturing fluid increases, the plugging efficiency of the perforations decreases near the borehole heel and increases near the borehole toe. In contrast, the plugging efficiency of the central perforation is almost unaffected by the fracturing fluid viscosity. This study can serve as a valuable reference for establishing the parameters for temporary plugging and fracturing.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12174350,12275253,and 12275250)the Program of Science and Technology on Plasma Physics Laboratory,China Academy of Engineering Physics (Grant No.6142A04200107)the National Natural Science Foundation,Youth Fund (Grant No.12105268)。
文摘Optical vortices generated by the conventional vortex lens are usually disturbed by the undesired higher-order foci,which may lead to additional artifacts and thus degrade the contrast sensitivity. In this work, we propose an efficient methodology to combine the merit of elliptical reflective zone plates(ERZPs) and the advantage of spiral zone plates(SZPs) in establishing a specific single optical element, termed elliptical reflective annulus quadrangle-element coded spiral zone plates(ERAQSZPs) to generate single-focus phase singularity. Differing from the abrupt reflectance of the ERZPs, a series of randomly distributed nanometer apertures are adopted to realize the sinusoidal reflectance. Typically, according to our physical design, the ERAQSZPs are fabricated on a bulk substrate;therefore, the new idea can significantly reduce the difficulty in the fabrication process. Based on the Kirchhoff diffraction theory and convolution theorem, the focusing performance of ERAQSZPs is calculated. The results reveal that apart from the capability of generating optical vortices,ERAQSZPs can also integrate the function of focusing, energy selection, higher-order foci elimination, as well as high spectral resolution together. In addition, the focusing properties can be further improved by appropriately adjusting the parameters, such as zone number and the size of the consisted primitives. These findings are expected to direct a new direction toward improving the performance of optical capture, x-ray fluorescence spectra, and forbidden transition.
基金Project supported by the Fundamental Research Funds for the Central Universities,China (Grant No.2017KFYXJJ029)。
文摘We propose a new method to generate terahertz perfect vortex beam with integer-order and fractional-order. A new optical diffractive element composed of the phase combination of a spherical harmonic axicon and a spiral phase plate is designed and called spiral spherical harmonic axicon. A terahertz Gaussian beam passes through the spiral spherical harmonic axicon to generate a terahertz vortex beam. When only the topological charge number carried by spiral spherical harmonic axicon increases, the ring radius of terahertz vortex beam increases slightly, so the beam is shaped into a terahertz quasi-perfect vortex beam. Importantly, the terahertz quasi-perfect vortex beam can carry not only integer-order topological charge number but also fractional-order topological charge number. This is the first time that vortex beam and quasi-perfect vortex beam with fractional-order have been successfully realized in terahertz domain and experiment.
基金supported by Beijing Natural Science Foundation under Grant Z190004National Key Research and Development Program of China under Grant 2020YFA0713703,NSFC(Nos.11688101,61872332)and Fundamental Research Funds for the Central Universities.
文摘In CNC machining,the tool path planning of the cutter plays an important role.In this paper,we generate a space-filling and continuous tool path for free-form surface represented by the triangular mesh with a confined scallop height.The tool path is constructed from connected Fermat spirals(CFS)but with fewer inflection points.Comparing with the newly developed CFS method,only about half of the number of inflection points are involved.Moreover,the kinematic constraints are simultaneously taken into account to increase the feedrates in machining.Finally,we use a micro-line trajectory technique to smooth the tool path.Experimental results and physical cutting tests are provided to illustrate and clarify our method.
基金the support received from the National Natural Science Foundation of China(52003191)Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)+3 种基金the Natural Science Foundation of Jiangsu Province(BK20221539)Science and Technology Program of Jiangsu Administration for Market Regulation(KJ2024013)National Key R&D Program(2023YFC3605800)the Program of Introducing Talents of Jiangnan University(1065219032210150).
文摘Clinical diagnosis and early intervention employ pedobarometry,which analyzes gait,posture,and foot health.Athletes utilize smart insoles to track step count,distance,and other parameters to improve performance.Current sensor platforms are bulky and limited to indoor or clinical environments,despite the trend of developing specialized insoles for recuperation and therapy.Hence,we presented a fully flexible,typically portable,and multi-functional insole monitoring technology powered by Archimedean algorithmic spiral TENG-based power system strictly produced from biopolymers such as bacterial cellulose,conjugate-blend of polydimethylsiloxane(PDMS),poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS),and more.Along with exceptional mechanical and electrical performance[current density(JSC)≈40-50μA/cm2 and power density(PD)≈500-600μW/cm2],the smart insole system exhibited good sensor-human foot interfacial analysis results,proving to be capable of biomechanical analysis of gait,posture,and many other podiatry-related conditions,albeit being soft,portable,and having compatibility potential for IoT integration.
文摘Motorized spiral enteroscopy(MSE)is the latest advance in device-assisted enteroscopy.Adverse events related to MSE were discussed in a recent large systematic review and meta-analysis and were directly compared with those of balloon enteroscopy in a case-matched study and a randomized controlled trial.Following the real-life application of MSE,an unexpected safety issue emerged regarding esophageal injury and the technique has been withdrawn from the global market,despite encouraging results in terms of diagnostic and therapeutic yield.We conducted an Italian multicenter real-life prospective study,which was prematurely terminated after the withdrawal of MSE from the market.The primary goals were the evaluation of MSE performance(both diagnostic and therapeutic)and its safety in routine endoscopic practice,particularly in the early phase of introduction in the endoscopic unit.A subanalysis,which involved patients who underwent MSE after unsuccessful balloon enteroscopy,demonstrated,for the first time,the promising performance of MSE as a rescue procedure.Given its remarkable performance in clinical practice and its potential role as a backup technique following a previously failed enteroscopy,it may be more appropriate to refine and enhance MSE in the future rather than completely abandoning it.
基金supported by the National Natural Science Foundation of China.Project under Grant(Nos.51966018 and 51466015).
文摘A combined experimental and numerical research study is conducted to investigate the complex relationship between the structure and the aerodynamic performances of an Archimedes spiral wind turbine(ASWT).Two ASWTs are considered,a prototypical version and an improved version.It is shown that the latter achieves the best aerodynamic performance when the spread angles at the three sets of blades areα_(1)=30°,α_(2)=55°,α3=60°,respectively and the blade thickness is 4 mm.For a velocity V=10 m/s,a tip speed ratio(TSR)=1.58 and 2,the maximum CP values are 0.223 and 0.263 for the prototypical ASWT and improved ASWT,respectively,and the maximum C_(P) enhancement is 17.93%.For V=10 m/s and TSR=2,the CP values of the prototypical ASWT and improved ASWT are 0.225 and 0.263,respectively,with an aerodynamic performance enhancement of 16.88%.Through mutual verification of the test outcomes and numerical results,it is concluded that the proposed approach can effectively lead to aerodynamic performance improvement.
文摘BACKGROUND Colorectal cancer(CRC)is a prevalent cancer type in clinical settings;its early signs can be difficult to detect,which often results in late-stage diagnoses in many patients.The early detection and diagnosis of CRC are crucial for improving treatment success and patient survival rates.Recently,imaging techniques have been hypothesized to be essential in managing CRC,with magnetic resonance imaging(MRI)and spiral computed tomography(SCT)playing a significant role in enhancing diagnostic and treatment approaches.AIM To explore the effectiveness of MRI and SCT in the preoperative staging of CRC and the prognosis of laparoscopic treatment.METHODS Ninety-five individuals admitted to Zhongshan Hospital Xiamen University underwent MRI and SCT and were diagnosed with CRC.The precision of MRI and SCT for the presurgical classification of CRC was assessed,and pathological staging was used as a reference.Receiver operating characteristic curves were used to evaluate the diagnostic efficacy of blood volume,blood flow,time to peak,permeability surface,blood reflux constant,volume transfer constant,and extracellular extravascular space volume fraction on the prognosis of patients with CRC.RESULTS Pathological biopsies confirmed the following CRC stages:23,23,32,and 17 at T1,T2,T3,and T4,respectively.There were 39 cases at the N0 stage,22 at N1,34 at N2,44 at M0 stage,and 51 at M1.Using pathological findings as the benchmark,the combined use of MRI and SCT for preoperative TNM staging in patients with CRC demonstrated superior sensitivity,specificity,and accuracy compared with either modality alone,with a statistically significant difference in accuracy(P<0.05).Receiver operating characteristic curve analysis revealed the predictive values for laparoscopic treatment prognosis,as indicated by the areas under the curve for blood volume,blood flow,time to peak,and permeability surface,blood reflux constant,volume transfer constant,and extracellular extravascular space volume fraction were 0.750,0.683,0.772,0.761,0.709,0.719,and 0.910,respectively.The corresponding sensitivity and specificity values were also obtained(P<0.05).CONCLUSION MRI with SCT is effective in the clinical diagnosis of patients with CRC and is worthy of clinical promotion.
文摘Understanding the dark matter distribution throughout a galaxy can provide insight into its elusive nature. Numerous density profiles, such as the Navarro, Frenk and White model, have been created in an attempt to study this distribution through analyzing orbital velocities of luminous matter and modeling dark matter distributions to explain these observations. However, we are interested in a simple model to consider the significant fluctuations in rotation curves at larger radii. Therefore, our model is much simpler compared to those previously mentioned. Our model used all the observational data available for four selected galactic rotation curves. These data present a significant variation in the orbital velocity of matter at the same distances. By running real observational data through our model, we show that the density of the dark matter within them shows real complex structure, which is not suggested by other computational models. Our aim of this paper is to model this structure and then speculate as to the cause and implications of these density fluctuations.
文摘Supermassive DEOs (SMDEOs) are cosmologically evolved objects made of irreducible incompressible supranuclear dense superfluids: The state we consider to govern the matter inside the cores of massive neutron stars. These cores are practically trapped in false vacua, rendering their detection by outside observers impossible. Based on massive parallel computations and theoretical investigations, we show that SMDEOs at the centres of spiral galaxies that are surrounded by massive rotating torii of normal matter may serve as powerful sources for gravitational waves carrying away roughly 1042 erg/s. Due to the extensive cooling by GWs, the SMDEO-Torus systems undergo glitching, through which both rotational and gravitational energies are abruptly ejected into the ambient media, during which the topologies of the embedding spacetimes change from curved into flatter ones, thereby triggering a burst gravitational energy of order 1059 erg. Also, the effects of glitches found to alter the force balance of objects in the Lagrangian-L1 region between the central SMDEO-Torus system and the bulge, enforcing the enclosed objects to develop violent motions, that may explain the origin of the rotational curve irregularities observed in the innermost part of spiral galaxies. Our study shows that the generated GWs at the centres of galaxies, which traverse billions of objects during their outward propagations throughout the entire galaxy, lose energy due to repeatedly squeezing and stretching the objects. Here, we find that these interactions may serve as damping processes that give rise to the formation of collective forces f∝m(r)/r, that point outward, endowing the objects with the observed flat rotation curves. Our approach predicts a correlation between the baryonic mass and the rotation velocities in galaxies, which is in line with the Tully-Fisher relation. The here-presented self-consistent approach explains nicely the observed rotation curves without invoking dark matter or modifying Newtonian gravitation in the low-field approximation.
基金supported by the National Natural Science Foundation of China(grant no.52075414).
文摘Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteristics of the gear system,which further increases noise and vibration.This paper aims to calculate the TVMS and establish dynamic model of SBG with spalling defect.In this study,a novel analytical model based on slice method is proposed to calculate the TVMS of SBG considering spalling defect.Subsequently,the influence of spalling defect on the TVMS is studied through a numerical simulation,and the proposed analytical model is verified by a finite element model.Besides,an 8-degrees-of-freedom dynamic model is established for SBG transmission system.Incorporating the spalling defect into TVMS,the dynamic responses of spalled SBG are analyzed.The numerical results indicate that spalling defect would cause periodic impact in time domain.Finally,an experiment is designed to verify the proposed dynamic model.The experimental results show that the spalling defect makes the response characterized by periodic impact with the rotating frequency of spalled pinion.
基金National Natural Science Foundation of China (50475148)Aeronautical Science Foundation of China (04C53015)Areonautical Sci-tech Innovation Foundation of China (07B53004)
文摘This paper proposes a new approach to design pinion machine tool-settings for spiral bevel gears by controlling contact path and transmission errors. It is based on the satisfaction of contact condition of three given control points on the tooth surface. The three meshing points are controlled to be on a predesigned straight contact path that meets the pre-designed parabolic function of transmission errors. Designed separately, the magnitude of transmission errors and the orientation of the contact path are subjected to precise control. In addition, in order to meet the manufacturing requirements, we suggest to modify the values of blank offset, one of the pinion machine tool-settings, and redesign pinion ma- chine tool-settings to ensure that the magnitude and the geometry of transmission errors should not be influenced apart from minor effects on the predesigned straight contact path. The proposed approach together with its ideas has been proven by a numerical example and the manufacturing practice of a pair of spiral bevel gears.
基金Project (51074105) supported by the National Natural Science Foundation of ChinaProjects (08DZ1130100, 10520706400) supported by the Science and Technology Commission of Shanghai Municipality, ChinaProject (2007CB613606) supported by the National Basic Research Program of China
文摘To increase efficiency and improve performance, reducing cost and emissions, advanced single crystal Ni-based superalloys are required in aerospace propulsion and power generating gas turbines. With the development of alloy, significant improvements in casting techniques have been achieved by introducing the directionally solidified (DS) casting process followed by single crystal (SX) technique. The deviation of preferred orientation of single crystal superalloys is one of the most important defects in casting. In directional solidification equipment with high temperature gradient, single crystal specimens of DZ417G alloy were prepared successfully by the modified Bridgeman method with spiral grain selector. The orientation was investigated by means of X-ray diffraction (XRD) and electron backscattered diffraction (EBSD).The results show that the crystal selector with a smaller angle can effectively reduce the deviation of preferred orientation.
文摘Objective: To evaluate three-dimensional bronchial artery imaging charactersin central lung cancer and applied values with multi-slice spiral CT (MSCT) to provide theoreticalevidence on blood supply and intervention therapy. Methods: Eighteen patients with central lungcancer underwent MSCT with real time helical thin-slice CT scanning. Three-dimensional bronchialartery reconstruction was done at the console work-station. The space anatomical characters ofbronchial artery were observed through different rotations. Results: For 6 cases, thethree-dimensional images of bronchial artery (33.33%) could exactly show the origins, the routes(lung inner segment and mediatism segment) and the diameters of bronchial arteries. Vision rate ofbronchial arteries was the highest in pulmonary artery stricture and truncation groups, and thevessels' diameter became larger apparently. These characters demonstrated blood supply of this kindof central lung cancer come from bronchial artery. Volume rendering images were the best ones amongthree-dimensional images. Conclusion: Three-dimensional imaging with MSCT in bronchial artery canreveal the anatomical characters of bronchial artery and provide theoretical evidence on bloodsupply and intervention therapy of central lung cancer.