Two independent atlases agree that in the northwest Indian Ocean the sea surface temperatures cool down markedly in the spring and also that they have a significant double seasonal cycle, unlike any other ocean in bot...Two independent atlases agree that in the northwest Indian Ocean the sea surface temperatures cool down markedly in the spring and also that they have a significant double seasonal cycle, unlike any other ocean in both cases. Horizontal advection is proposed to play an important part in causing these unusual features to occur.展开更多
Twenty years of ship-injection temperatures are averaged annually and plotted against longitude in the western tropics of the North Pacific. Centered at 150E at both 20N and 25N is a large-scale longitudinal maximum i...Twenty years of ship-injection temperatures are averaged annually and plotted against longitude in the western tropics of the North Pacific. Centered at 150E at both 20N and 25N is a large-scale longitudinal maximum in sea surface temperature. The simplest in-terpretation of this permanent feature is that a continuous flow of warm surface water out of the south is required to maintain it, since some heat will escape into the atmosphere in transit. It is concluded that the northward flow is the Kuroshio.展开更多
This paper explores and validates the process of customer value creation in self-service technologies(SSTs)in the context of the tourism industry.As the self-technology has been gradually advanced,its adoption in the ...This paper explores and validates the process of customer value creation in self-service technologies(SSTs)in the context of the tourism industry.As the self-technology has been gradually advanced,its adoption in the tourism industry has brought many changes.A new trend of self-service technologies has helped service firms to save the labor costs and customers’waiting time for transactions.The purpose of this study is to confirm an applicability and a design of the original model of SSTs and explore the connection between SSTs and creation of value perception through a confirmatory factor analysis in the context of the tourism industry.Furthermore,the results of the online survey questionnaire from 234 responses in the United States and South Korea are explained in this study.The results of this study concluded that five statistically important factors are related to customers’motivations to use SSTs and enable customers to interact with SSTs as“SST location and capacity planning”,“SST service quality”,“motivations to use SST”,“SST design”,and“SST encounter”.These factors may imply an important meaning to better understand about customer value during the adoption of SSTs in the tourism industry.Tourism firms may use the results of this study to effectively enhance how customers perceive value about their products and services during the usage of SSTs.This will help tourism firms’efficiencies on the adoption of SSTs for their business plans and help them remain profitable in the competitive market.展开更多
In the western tropical South Pacific are found the highest SSTs of the year according to a classical world atlas. These temperatures are essentially no higher in the southern summer than in winter. Consequently an ef...In the western tropical South Pacific are found the highest SSTs of the year according to a classical world atlas. These temperatures are essentially no higher in the southern summer than in winter. Consequently an efficient heat balance mechanism for the surface layer occurs at all times: heat from absorbed solar radiation must be exported out. Between winter and summer, the area of highest SSTs more than doubles as indicated by the 80 F and 82.5 F contours moving south. When the areas decrease again it is proposed that a surge of warm surface layer water has exited the tropics by southward horizontal advection and is heading to mid and higher latitudes. This surge should take place to the west of a permanent wide warm surface current connecting the western tropics to the coast of South America that was proposed earlier based on two winter east/west hydrographic vertical sections at mid-latitudes. More observations are needed to confirm the conjectures.展开更多
Some features associated with Eastern China Precipitation (ECP), in terms of mean climatology, sea-sonal cycle, interannual variability are studied based on monthly rainfall data. The rainfall behavior over Eastern Ch...Some features associated with Eastern China Precipitation (ECP), in terms of mean climatology, sea-sonal cycle, interannual variability are studied based on monthly rainfall data. The rainfall behavior over Eastern China has fine spatial structure in the seasonal variation and interannual variability. The revealed characteristics of ECP motivate us dividing Eastern China into four sub—regions to quantify significant lag—correlations of the rainfalls with global sea surface temperatures (SSTs) and to study the ocean’s pre-dominant role in forcing the eastern China summer monsoon rainfalls. Lagged correlations between the mid—eastern China summer monsoon rainfalls (MECSMRs) and the global SSTs, with SST leading to rain-fall, are investigated. The most important key SST regions and leading times, in which SSTs are highly corre-lated with the MECSMRs, are selected. Part of the results confirms previous studies that show links between the MECSMRs and SSTs in the eastern equatorial Pacific associated with the El Nino — Southern Oscillation (ENSO) phenomenon. Other findings include the high lag correlations between the MECSMRs and the SSTs in the high and middle latitude Pacific Ocean and the Indian Ocean, even the SSTs over the Atlantic Ocean, with SST leading—time up to 4 years. Based on the selected SST regions, regression equa-tions are developed by using the SSTs in these regions in respective leading time. The correlation coefficient between the observed rainfalls and regressed rainfalls is over 0.85. The root mean square error (RMSE) for regressed rainfall is around 65% of the standard deviation and about 15% of the mean rainfall. The regression equation has also been evaluated in a forecasting mode by using independent data. Discussion on the consistence of the SST—rainfall correlation with circulation field is also presented. Key words Summer monsoon - Rainfall - SST - Regression This work was jointed supported by Chinese Academy of Sciences under Grant “Hundred Talents” for “Validation of Coupled Climate models” and by U.S. Department of Energy under Grant DEFG0285ER 60314 to SUNY at Stony Brook. The authors are grateful to Professor R. D. Cess at SUNY, Stony Brook for his supports.展开更多
East Asia has experienced a significant interdecadal climate shift since the late 1970s. This shift was accompanied by a decadal change of global SST. Previous studies have suggested that the decadal shift of global S...East Asia has experienced a significant interdecadal climate shift since the late 1970s. This shift was accompanied by a decadal change of global SST. Previous studies have suggested that the decadal shift of global SST background status played a substantial role in such a climatic shift. However, the individual roles of different regional SSTs remain unclear. In this study, we investigated these roles using ensemble experiments of an atmospheric general circulation model, GFDL (Geophysical Fluid Dynamics Laboratory) AM2. Two kinds of ensembles were performed. The first was a control ensemble in which the model was driven with the observed climatological SSTs. The second was an experimental ensemble in which the model was driven with the observed climatological SSTs plus interdecadal SST background shifts in separate ocean regions. The results suggest that the SST shift in the tropics exerted more important influence than those in the extratropics, although the latter contribute to the shift modestly. The variations of summer monsoonal circulation systems, including the South Asian High, the West Pacific Subtropical High, and the lower-level air flow, were analyzed. The results show that, in comparison with those induced by extratropical SSTs, the shifts induced by tropical SSTs bear more similarity to the observations and to the simulations with global SSTs prescribed. In particular, the observed SST shift in the tropical Pacific Ocean, rather than the Indian Ocean, contributed significantly to the shift of East Asian summer monsoon since the 1970s.展开更多
Low temperature together with snow/freezing rain is disastrous in winter over southern China.Previous studies suggest that this is related to the sea surface temperature(SST)anomalies,especially La Nina conditions,ove...Low temperature together with snow/freezing rain is disastrous in winter over southern China.Previous studies suggest that this is related to the sea surface temperature(SST)anomalies,especially La Nina conditions,over the equatorial central–eastern Pacific Ocean(EP).In reality,however,La Nina episodes are not always accompanied by rainy/snowy/icy(CRSI)days in southern China,such as the case in winter 2020/2021.Is there any other factor that works jointly with the EP SST to affect the winter CRSI weather in southern China?To address this question,CRSI days are defined and calculated based on station observation data,and the related SST anomalies and atmospheric circulations are examined based on the Hadley Centre SST data and the NCEP/NCAR reanalysis data for winters of1978/1979–2017/2018.The results indicate that the CRSI weather with more CRSI days is featured with both decreased temperature and increased winter precipitation over southern China.The SSTs over both the EP and the southeastern Indian Ocean(SIO)are closely related to the CRSI days in southern China with correlation coefficients of-0.29 and 0.39,significant at the 90%and 95%confidence levels,respectively.The SST over EP affects significantly air temperature,as revealed by previous studies,with cooler EP closely related to the deepened East Asian trough,which benefits stronger East Asian winter monsoon(EAWM)and lower air temperature in southern China.Nevertheless,this paper discovers that the SST over SIO affects precipitation of southern China,with a correlation coefficient of 0.42,significant at the 99%confidence level,with warmer SIO correlated with deepened southern branch trough(SBT)and strengthened western North Pacific anomalous anticyclone(WNPAC),favoring more water vapor convergence and enhanced precipitation in southern China.Given presence of La Ni?a in both winters,compared to the winter of 2020/2021,the winter of 2021/2022 witnessed more CRSI days,perhaps due to the warmer SIO.展开更多
Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrare...Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrared SST offers high spatial resolution,it is limited by cloud cover.On the other hand,passive microwave SST provides all-weather observation but suffers from poor spatial resolution and susceptibility to environmental factors such as rainfall,coastal effects,and high wind speeds.To achieve high-precision,comprehensive,and high-resolution SST data,it is essential to fuse infrared and microwave SST measurements.In this study,data from the Fengyun-3D(FY-3D)medium resolution spectral imager II(MERSI-II)SST and microwave imager(MWRI)SST were fused.Firstly,the accuracy of both MERSIII SST and MWRI SST was verified,and the latter was bilinearly interpolated to match the 5km resolution grid of MERSI SST.After pretreatment and quality control of MERSI SST and MWRI SST,a Piece-Wise Regression method was employed to correct biases in MWRI SST.Subsequently,SST data were selected based on spatial resolution and accuracy within a 3-day window of the analysis date.Finally,an optimal interpolation method was applied to fuse the FY-3D MERSI-II SST and MWRI SST.The results demonstrated a significant improvement in spatial coverage compared to MERSI-II SST and MWRI SST.Furthermore,the fusion SST retained true spatial distribution details and exhibited an accuracy of–0.12±0.74℃compared to OSTIA SST.This study has improved the accuracy of FY satellite fusion SST products in China.展开更多
文摘Two independent atlases agree that in the northwest Indian Ocean the sea surface temperatures cool down markedly in the spring and also that they have a significant double seasonal cycle, unlike any other ocean in both cases. Horizontal advection is proposed to play an important part in causing these unusual features to occur.
文摘Twenty years of ship-injection temperatures are averaged annually and plotted against longitude in the western tropics of the North Pacific. Centered at 150E at both 20N and 25N is a large-scale longitudinal maximum in sea surface temperature. The simplest in-terpretation of this permanent feature is that a continuous flow of warm surface water out of the south is required to maintain it, since some heat will escape into the atmosphere in transit. It is concluded that the northward flow is the Kuroshio.
文摘This paper explores and validates the process of customer value creation in self-service technologies(SSTs)in the context of the tourism industry.As the self-technology has been gradually advanced,its adoption in the tourism industry has brought many changes.A new trend of self-service technologies has helped service firms to save the labor costs and customers’waiting time for transactions.The purpose of this study is to confirm an applicability and a design of the original model of SSTs and explore the connection between SSTs and creation of value perception through a confirmatory factor analysis in the context of the tourism industry.Furthermore,the results of the online survey questionnaire from 234 responses in the United States and South Korea are explained in this study.The results of this study concluded that five statistically important factors are related to customers’motivations to use SSTs and enable customers to interact with SSTs as“SST location and capacity planning”,“SST service quality”,“motivations to use SST”,“SST design”,and“SST encounter”.These factors may imply an important meaning to better understand about customer value during the adoption of SSTs in the tourism industry.Tourism firms may use the results of this study to effectively enhance how customers perceive value about their products and services during the usage of SSTs.This will help tourism firms’efficiencies on the adoption of SSTs for their business plans and help them remain profitable in the competitive market.
文摘In the western tropical South Pacific are found the highest SSTs of the year according to a classical world atlas. These temperatures are essentially no higher in the southern summer than in winter. Consequently an efficient heat balance mechanism for the surface layer occurs at all times: heat from absorbed solar radiation must be exported out. Between winter and summer, the area of highest SSTs more than doubles as indicated by the 80 F and 82.5 F contours moving south. When the areas decrease again it is proposed that a surge of warm surface layer water has exited the tropics by southward horizontal advection and is heading to mid and higher latitudes. This surge should take place to the west of a permanent wide warm surface current connecting the western tropics to the coast of South America that was proposed earlier based on two winter east/west hydrographic vertical sections at mid-latitudes. More observations are needed to confirm the conjectures.
文摘Some features associated with Eastern China Precipitation (ECP), in terms of mean climatology, sea-sonal cycle, interannual variability are studied based on monthly rainfall data. The rainfall behavior over Eastern China has fine spatial structure in the seasonal variation and interannual variability. The revealed characteristics of ECP motivate us dividing Eastern China into four sub—regions to quantify significant lag—correlations of the rainfalls with global sea surface temperatures (SSTs) and to study the ocean’s pre-dominant role in forcing the eastern China summer monsoon rainfalls. Lagged correlations between the mid—eastern China summer monsoon rainfalls (MECSMRs) and the global SSTs, with SST leading to rain-fall, are investigated. The most important key SST regions and leading times, in which SSTs are highly corre-lated with the MECSMRs, are selected. Part of the results confirms previous studies that show links between the MECSMRs and SSTs in the eastern equatorial Pacific associated with the El Nino — Southern Oscillation (ENSO) phenomenon. Other findings include the high lag correlations between the MECSMRs and the SSTs in the high and middle latitude Pacific Ocean and the Indian Ocean, even the SSTs over the Atlantic Ocean, with SST leading—time up to 4 years. Based on the selected SST regions, regression equa-tions are developed by using the SSTs in these regions in respective leading time. The correlation coefficient between the observed rainfalls and regressed rainfalls is over 0.85. The root mean square error (RMSE) for regressed rainfall is around 65% of the standard deviation and about 15% of the mean rainfall. The regression equation has also been evaluated in a forecasting mode by using independent data. Discussion on the consistence of the SST—rainfall correlation with circulation field is also presented. Key words Summer monsoon - Rainfall - SST - Regression This work was jointed supported by Chinese Academy of Sciences under Grant “Hundred Talents” for “Validation of Coupled Climate models” and by U.S. Department of Energy under Grant DEFG0285ER 60314 to SUNY at Stony Brook. The authors are grateful to Professor R. D. Cess at SUNY, Stony Brook for his supports.
基金This research was jointly supported by the National Basic Research Program of China,"Structures,Variability and Climatic Impacts of Ocean Circulation and Warm Pool in the Tropical Pacific Ocean",the National Science Foundation of China under grant 41205048 and the special projects of China Meteorological Administration on public interests
文摘East Asia has experienced a significant interdecadal climate shift since the late 1970s. This shift was accompanied by a decadal change of global SST. Previous studies have suggested that the decadal shift of global SST background status played a substantial role in such a climatic shift. However, the individual roles of different regional SSTs remain unclear. In this study, we investigated these roles using ensemble experiments of an atmospheric general circulation model, GFDL (Geophysical Fluid Dynamics Laboratory) AM2. Two kinds of ensembles were performed. The first was a control ensemble in which the model was driven with the observed climatological SSTs. The second was an experimental ensemble in which the model was driven with the observed climatological SSTs plus interdecadal SST background shifts in separate ocean regions. The results suggest that the SST shift in the tropics exerted more important influence than those in the extratropics, although the latter contribute to the shift modestly. The variations of summer monsoonal circulation systems, including the South Asian High, the West Pacific Subtropical High, and the lower-level air flow, were analyzed. The results show that, in comparison with those induced by extratropical SSTs, the shifts induced by tropical SSTs bear more similarity to the observations and to the simulations with global SSTs prescribed. In particular, the observed SST shift in the tropical Pacific Ocean, rather than the Indian Ocean, contributed significantly to the shift of East Asian summer monsoon since the 1970s.
基金Supported by the National Natural Science Foundation of China(42088101)Joint Open Project of KLME&CIC-FEMD,NUIST(KLME202212)。
文摘Low temperature together with snow/freezing rain is disastrous in winter over southern China.Previous studies suggest that this is related to the sea surface temperature(SST)anomalies,especially La Nina conditions,over the equatorial central–eastern Pacific Ocean(EP).In reality,however,La Nina episodes are not always accompanied by rainy/snowy/icy(CRSI)days in southern China,such as the case in winter 2020/2021.Is there any other factor that works jointly with the EP SST to affect the winter CRSI weather in southern China?To address this question,CRSI days are defined and calculated based on station observation data,and the related SST anomalies and atmospheric circulations are examined based on the Hadley Centre SST data and the NCEP/NCAR reanalysis data for winters of1978/1979–2017/2018.The results indicate that the CRSI weather with more CRSI days is featured with both decreased temperature and increased winter precipitation over southern China.The SSTs over both the EP and the southeastern Indian Ocean(SIO)are closely related to the CRSI days in southern China with correlation coefficients of-0.29 and 0.39,significant at the 90%and 95%confidence levels,respectively.The SST over EP affects significantly air temperature,as revealed by previous studies,with cooler EP closely related to the deepened East Asian trough,which benefits stronger East Asian winter monsoon(EAWM)and lower air temperature in southern China.Nevertheless,this paper discovers that the SST over SIO affects precipitation of southern China,with a correlation coefficient of 0.42,significant at the 99%confidence level,with warmer SIO correlated with deepened southern branch trough(SBT)and strengthened western North Pacific anomalous anticyclone(WNPAC),favoring more water vapor convergence and enhanced precipitation in southern China.Given presence of La Ni?a in both winters,compared to the winter of 2020/2021,the winter of 2021/2022 witnessed more CRSI days,perhaps due to the warmer SIO.
文摘Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrared SST offers high spatial resolution,it is limited by cloud cover.On the other hand,passive microwave SST provides all-weather observation but suffers from poor spatial resolution and susceptibility to environmental factors such as rainfall,coastal effects,and high wind speeds.To achieve high-precision,comprehensive,and high-resolution SST data,it is essential to fuse infrared and microwave SST measurements.In this study,data from the Fengyun-3D(FY-3D)medium resolution spectral imager II(MERSI-II)SST and microwave imager(MWRI)SST were fused.Firstly,the accuracy of both MERSIII SST and MWRI SST was verified,and the latter was bilinearly interpolated to match the 5km resolution grid of MERSI SST.After pretreatment and quality control of MERSI SST and MWRI SST,a Piece-Wise Regression method was employed to correct biases in MWRI SST.Subsequently,SST data were selected based on spatial resolution and accuracy within a 3-day window of the analysis date.Finally,an optimal interpolation method was applied to fuse the FY-3D MERSI-II SST and MWRI SST.The results demonstrated a significant improvement in spatial coverage compared to MERSI-II SST and MWRI SST.Furthermore,the fusion SST retained true spatial distribution details and exhibited an accuracy of–0.12±0.74℃compared to OSTIA SST.This study has improved the accuracy of FY satellite fusion SST products in China.