传统的混凝土拱坝位移预测模型主要关注水压、温度、时效等因素与拱坝位移之间的关系,未对拱坝位移数据中所包含的信息进行充分挖掘。为此,采用Seasonal and Trend decomposition using Loess算法(STL)将拱坝位移原始数据分解为趋势序...传统的混凝土拱坝位移预测模型主要关注水压、温度、时效等因素与拱坝位移之间的关系,未对拱坝位移数据中所包含的信息进行充分挖掘。为此,采用Seasonal and Trend decomposition using Loess算法(STL)将拱坝位移原始数据分解为趋势序列、周期序列及残差分量。在此基础上,采用鲸鱼优化算法(WOA)结合随机森林算法(RF)对三个分量进行预测,并使用Holt-Winters算法充分考虑趋势序列中的趋势信息对趋势序列的预测结果进行修正。最后将修正后的趋势序列预测结果和周期序列、残差分量预测结果相加,得出拱坝位移最终预测结果。工程实例表明,基于STL-Holt-WOA-RF的拱坝位移预测模型能够显著提高预测的准确性和稳定性,为拱坝位移预测提供了新的思路和方法。展开更多
针对传统稳态电能质量分级预警中多以数值大小与设定阈值对比、较少考虑指标长期变化趋势的局限性,提出一种基于趋势跨度指数的稳态电能质量趋势识别与预警方法。首先采用STL(seasonal and trend decomposition using locally weighted ...针对传统稳态电能质量分级预警中多以数值大小与设定阈值对比、较少考虑指标长期变化趋势的局限性,提出一种基于趋势跨度指数的稳态电能质量趋势识别与预警方法。首先采用STL(seasonal and trend decomposition using locally weighted regression)分解算法对稳态电能质量指标时间序列进行回归分解,提取趋势分量;其次采用Mann-Kendall检验法识别电能质量指标趋势分量的趋势类型;然后提出趋势跨度指数以量化电能质量指标趋势变化程度,并根据趋势跨度指数的分布特征划分预警等级;最后采用理想解排序法对监测点电能质量恶化风险进行综合评价。将该方法应用于某市稳态电能质量实际监测数据,对监测点各项电能质量指标以及整体电能质量水平进行趋势预警。展开更多
文摘传统的混凝土拱坝位移预测模型主要关注水压、温度、时效等因素与拱坝位移之间的关系,未对拱坝位移数据中所包含的信息进行充分挖掘。为此,采用Seasonal and Trend decomposition using Loess算法(STL)将拱坝位移原始数据分解为趋势序列、周期序列及残差分量。在此基础上,采用鲸鱼优化算法(WOA)结合随机森林算法(RF)对三个分量进行预测,并使用Holt-Winters算法充分考虑趋势序列中的趋势信息对趋势序列的预测结果进行修正。最后将修正后的趋势序列预测结果和周期序列、残差分量预测结果相加,得出拱坝位移最终预测结果。工程实例表明,基于STL-Holt-WOA-RF的拱坝位移预测模型能够显著提高预测的准确性和稳定性,为拱坝位移预测提供了新的思路和方法。
文摘针对传统稳态电能质量分级预警中多以数值大小与设定阈值对比、较少考虑指标长期变化趋势的局限性,提出一种基于趋势跨度指数的稳态电能质量趋势识别与预警方法。首先采用STL(seasonal and trend decomposition using locally weighted regression)分解算法对稳态电能质量指标时间序列进行回归分解,提取趋势分量;其次采用Mann-Kendall检验法识别电能质量指标趋势分量的趋势类型;然后提出趋势跨度指数以量化电能质量指标趋势变化程度,并根据趋势跨度指数的分布特征划分预警等级;最后采用理想解排序法对监测点电能质量恶化风险进行综合评价。将该方法应用于某市稳态电能质量实际监测数据,对监测点各项电能质量指标以及整体电能质量水平进行趋势预警。