Under the environment of an artificial climate chamber, supercooling point (SCP) and freezing point (FP) in flower and young fruit at different development stages and freezing injuries of floral organs were studie...Under the environment of an artificial climate chamber, supercooling point (SCP) and freezing point (FP) in flower and young fruit at different development stages and freezing injuries of floral organs were studied. The apricot cultivars tested were Kety, Golden Sun and Honghebao. With the development of flower buds, SCP and FP increased, which indicated that their cold resistance decreased. SCP and FP varied with different floral organs. For different apricot cultivars, it was found that, the lower SCP or FP in floral organs was, the more resistant capacity the cultivar had, and the larger the temperature interval from SCP to FP was. SCP was not a constant value, but a range. Frequency distribution of SCP in petals was more dispersing than that in stamens and pistils. Floral organs could maintain a supercooling state to avoid ice formation, but they were sensitive to freezing. Once floral organs froze, thev turned brown after thawing.展开更多
Supercooling of the microencapsulated phase change materials(PCMs) during cooling usually happens. This phenomenon can interfere with heat transfer and is necessary to further overcome. In this study, mela- mine-for...Supercooling of the microencapsulated phase change materials(PCMs) during cooling usually happens. This phenomenon can interfere with heat transfer and is necessary to further overcome. In this study, mela- mine-formaldehyde microcapsules containing two n-alkane PCMs, namely, n-dodecane(Cl2) or n-tetradecane(C14) were prepared by in situ polymerization. A small amount of n-hexatriacontane(C36) was introduced as an organic ge- lator into the core of microcapsules to cope with the supercooling problem. Analyses demonstrate that supercooling of the microencapsulated C12 or C14 was significantly suppressed by adding 3%(mass fraction) C36, without changing the spherical morphology and dispersibility. It could be also found that the enthalpy of microencapsulated CI2 or C14 containing C36 was similar to that of microencapsulated n-alkanes without C36, whereas the difference between onsets of crystallization and melting(degree of supercooling) is similar to that of those of pure n-alkanes, suggesting the re- markable suppression ability of the organic gelator on supercooling.展开更多
This study aims to develop a paraffin-based phase change material(PCM) emulsion with a low extent of supercooling for thermal energy storage(TES) systems to improve the cooling efficiency.Hexadecane-water emulsions we...This study aims to develop a paraffin-based phase change material(PCM) emulsion with a low extent of supercooling for thermal energy storage(TES) systems to improve the cooling efficiency.Hexadecane-water emulsions were prepared and characterized. Multi-wall carbon nanotubes(MWCNTs) were dispersed in the emulsion as a nucleating agent to reduce the supercooling. The MWCNTs were chemically modified with carboxyl groups to improve the dispersion of the tubular particles in the organic liquid. Thermal analyses of the emulsions by differential scanning calorimeter(DSC) indicated that the extent of supercooling was significantly reduced. The concentration of the nucleating agent for an effective supercooling suppression as found to be very low, in agreement with previous findings, and there appeared to be a minimum concentration for the supercooling reduction.展开更多
Comparing the solidification characteristics of supercooling directional solidification(SDS) with constrained directional solidification(D. S. ) and considering the inheritance of supercooled melt, the supercooling di...Comparing the solidification characteristics of supercooling directional solidification(SDS) with constrained directional solidification(D. S. ) and considering the inheritance of supercooled melt, the supercooling directional solidification technique with the combination of melt supercooing and traditional directional solidification was proposed. An exploring study on SDS techniques was also conducted by using appropriate selfmade facilities and the deep supercooling of Cu-5. O % Ni alloy and its directional solidification were implemented. The experimental results show that: 1 ) the solidification microstructure produced by SDS are nearly the same as that by LMC technique, its primary arm spacing is around 30 Um in average and the secondary sidebranch is considerably degenerated; 2) the primary arm trunk of microstructure appears straight and fine, and the average deviation of crystal growth orientation from the axial line is about 5. 8; 3) a mathematical model describing the relationship between melt supercooling by SDS and the solidification rate, namely T-T model,was established, by which the microstructure evolution in SDS can be explained.展开更多
The objective of this paper is to investigate water supercooling. Supercooling occurs when a liquid does not freeze although its temperature is below its freezing point. In general, supercooling is an unstable conditi...The objective of this paper is to investigate water supercooling. Supercooling occurs when a liquid does not freeze although its temperature is below its freezing point. In general, supercooling is an unstable condition and occurs under special conditions. The parameters that influence supercooling stability and probability of occurrence include freezer temperature and water’s initial temperature. In this paper, it is shown that with a freezer temperature range of -3℃ to -8℃, supercooling is most likely to happen and is independent of the water’s initial temperature. Furthermore, as the freezer temperature decreases, the probability of nucleation increases, causing instant freezing. Finally, it is concluded that the Mpemba effect, in which initially hot water freezes faster than initially cold water, is due to the supercooling instability in initially hot water in which nucleation agents are more active.展开更多
It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nu...It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nucleation of laboratory samples of supercooled water and perhaps more importantly on the interpretation of ice nucleation involved in cloud physics. For example, if some fraction of the cloud nucleation previously attributed to dust, soot, or aerosols has been caused by cosmogenic neutrons, fresh consideration is required in the context of climate models. Moreover, as cosmogenic neutrons, most being muon-induced, have much greater flux at high latitudes, estimates of ice nucleates in these regions may be larger than required to accurately model cloud and condensation properties. This discrepancy has been pointed out in IPCC reports. Our paper discusses the connection between the new concept of neutrons nucleating supercooled water and the need for a new source of nucleation in high latitude clouds, ideally causing others to review current data, or to analyse future data with this idea in mind. .展开更多
We supercooled fresh-cut onion at−5℃ for 12 h.After supercooling,the electric impedance properties of the samples were evaluated by electrical impedance spectroscopy over the frequency range of 42 Hz−5 MHz.The time-t...We supercooled fresh-cut onion at−5℃ for 12 h.After supercooling,the electric impedance properties of the samples were evaluated by electrical impedance spectroscopy over the frequency range of 42 Hz−5 MHz.The time-temperature profiles of samples indicated that the freezing point and supercooling point were−2.3℃±0.7℃ and−6.9℃±1.0℃,respectively.The results indicated that 34 of the 36 supercooled samples exhibited a definite circular arc in the Cole-Cole plot,which suggested that the cell membrane remained intact during supercooling.In the other two samples which did not exhibit a definite circular arc,the cell membrane had sustained serious damage during supercooling.Furthermore,there was large difference in drip loss percentage between supercooled samples exhibited a definite circular arc in the Cole-Cole plot and samples not exhibiting a definite circular arc.Our results suggest that fresh-cut onions can be supercooled at−5℃.展开更多
This paper studied a snow event over North China on 21 February 2017,using aircraft in-situ data,a Lagrangian analysis tool,and WRF simulations with different microphysical schemes to investigate the supercooled layer...This paper studied a snow event over North China on 21 February 2017,using aircraft in-situ data,a Lagrangian analysis tool,and WRF simulations with different microphysical schemes to investigate the supercooled layer of warm conveyor belts(WCBs).Based on the aircraft data,we found a fine vertical structure within clouds in the WCB and highlighted a 1-2 km thin supercooled liquid water layer with a maximum Liquid Water Content(LWC) exceeding0.5 g kg^(-1) during the vertical aircraft observation.Although the main features of thermodynamic profiles were essentially captured by both modeling schemes,the microphysical quantities exhibited large diversity with different microphysics schemes.The conventional Morrison two-moment scheme showed remarkable agreement with in-situ observations,both in terms of the thermodynamic structure and the supercooled liquid water layer.However,the microphysical structure of the WCB clouds,in terms of LWC and IWC,was not apparent in HUJI fast bin scheme.To reduce such uncertainty,future work may focus on improving the representation of microphysics in bin schemes with in-situ data and using similar assumptions for all schemes to isolate the impact of physics.展开更多
1 Introduction Since differential thermal analysis(DTA) was used to detect a specific exothermic event associated with cold injury, organic supercooling has been reported in over 240 species of 33 angiospermous famili...1 Introduction Since differential thermal analysis(DTA) was used to detect a specific exothermic event associated with cold injury, organic supercooling has been reported in over 240 species of 33 angiospermous families and one gymnospermous family. Several hypotheses about the mechanism of the supercooling of flower buds have been proposed, e.g. lower water potential, tissue compactness, ice nucleation factors and the tissue barrier against展开更多
It is the first time for MRI to be used in the research of flower buds supercooling. Directobservation on freezing course of living flower buds of Camellia yuhsienensis by MRI and tissue browning test showed that free...It is the first time for MRI to be used in the research of flower buds supercooling. Directobservation on freezing course of living flower buds of Camellia yuhsienensis by MRI and tissue browning test showed that freezing order of the flower organs is bud axis, scale, petal, pistil and stamen. It is coincident with the direction of ice development from bud axes to flower organs upwards. The corresponding results from MRI and freezing-fixation showed that the water translocation from flower organs to axes and scales is carried on in the course of bud freezing. ’H spectral measurement of NMR was used to follow the decrease of unfrozen water in the buds during the cooling.展开更多
The effects of mixing temperature,i.e.,the temperatures of two precursor melts(pure Al and Al-12Si),on the temperature and solute fields of resultant mixture,the nucleation and growth,and the size and morphology of pr...The effects of mixing temperature,i.e.,the temperatures of two precursor melts(pure Al and Al-12Si),on the temperature and solute fields of resultant mixture,the nucleation and growth,and the size and morphology of primary grains during controlled diffusion solidification(CDS) of Al-8Si alloy were investigated by using simulation and calculation.The results indicate that a lower mixing temperature is helpful for achieving more supercooled microscale Al-rich pockets in the mixture,and increasing the width and supercooling degree of supercooling zone in the Al-rich pockets,and thus,the nucleation rate.The nuclei grow up in nondendritic mode,resulting in spheroidal,at least,nondendritic grains.In a successful CDS,the superheat degrees of the two precursor melts should be limited within several degrees,and it is not necessary to extra stipulate the superheat degree of target alloy melt(Al-8Si) when the requirement about Gibbs energies of the three melts is matched.Subsequent observation on casting microstructures shows that the employed simulation and calculation processes are reasonable and the achieved results are reliable.展开更多
A water-TiO2nanofluid with a weight fraction of 5% and an average particle size of 75 nm is used to investigate the effect of TiO2 nanoparticles on the crystallization and melting behaviors of deionized water by using...A water-TiO2nanofluid with a weight fraction of 5% and an average particle size of 75 nm is used to investigate the effect of TiO2 nanoparticles on the crystallization and melting behaviors of deionized water by using differential scanning calorimetry(DSC)at four different cooling rates,3,5,7,9 ℃/min.The DSC experimental results show that the water-TiO2 nanofluid has a lower supercooling degree and a faster crystallization rate than the deionized water.With the increase in the cooling rate,the influence of the TiO2 nanoparticles on the supercooling degree of the deionized water becomes greater,but on the crystallization rate it turns lower.During the melting process,compared with the deionized water,the water-TiO2 nanofluid has a lower melting temperature,a less latent heat and a higher melting rate.展开更多
The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index met...The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index method (CTIM). It is found that during the relaxation process, the formation and evolution of bcc phase are closely dependent on the initial temperature and structure. During the simulation time scale, when the initial temperature is in the range of supercooled liquid region, the bcc phase can be formed and kept a long time; while it is in the range of glassy region, the bcc phase can be formed at first and then partially transformed into hcp phase; when it decreases to the lower one, the hcp and fcc phases can be directly transformed from the glassy structure without undergoing the metastable bcc phase. The Ostwald's "step rule" is impactful during the isothermal relaxation process of the supercooled and glassy Pb, and the metastable bcc phase plays an important role in the precursor of crystallization.展开更多
It is clarified by experimental examination and theoretical analysis that the transformation of crystal moorphology of the eutectic Al-Cu alloy composite-in-situ seems to be judged by not only the constitutional super...It is clarified by experimental examination and theoretical analysis that the transformation of crystal moorphology of the eutectic Al-Cu alloy composite-in-situ seems to be judged by not only the constitutional supercooling proposed in previous literatures but also the supercooling due to the effect of curved surfaces at the solidifying from.The greater entropy of fusion and the tendency to faceted face are important features of the non-metallic phase,which may con- tribute to the leading,role of the phase during solidification.It might be the change of leading phase that changes the morphology of crystals.展开更多
The effects of rapid cold hardening (RCH) on the cold tolerance of the last instar larvae of Chilo suppressalis (Walker) were evaluated for the first time. The discriminating temperature, induction, detection, dur...The effects of rapid cold hardening (RCH) on the cold tolerance of the last instar larvae of Chilo suppressalis (Walker) were evaluated for the first time. The discriminating temperature, induction, detection, duration and extent of RCH of the larvae in the laboratory were tested, and the supercooling points (SCPs) and the contents of water and lipid of the larvae after RCH treatment were determined, respectively. The results showed that the discriminating temperature of the larvae was about -21℃. Mean survival rates of the larvae which exposed to either 0 or 5℃ for 2 and 4 h before exposure to the discriminating temperature for 2 h were significantly higher than those of the control groups (P 〈 0.05). Moreover, the highest survival rate appeared in the larvae after 0℃ for 4 h treatment. The protection against low temperature gained by RCH at 0℃ for 4 h was rapidly lost on return to 28℃. Mean survival rates of RCH larvae were significantly higher than those of non-acclimated (NACC) larvae and acclimation (ACC) larvae when they were exposed to the discriminating temperature for 2 or 4 h (P〈 0.05). Moreover, the rates of NACC, ACC, RCH and ACC + RCH larvae from 2 to 6 h to the discriminating temperature resulted in a significant decline. The values of SCPs and the contents of lipid of the larvae which exposed to either 0 or 5℃ for 2 and 4 h showed no significant difference at 0.05 level compared to those of the control groups. But the contents of water in the larvae were obviously decreased. Therefore, it could be concluded that RCH could enhance cold tolerance and affect partly physiological and biochemical components of the larvae of C. suppressalis, but the underlying mechanisms needs to be further explored.展开更多
Polycrystalline Fe83Ga17 alloy rods with various amounts of yttrium were prepared by high vacuum induction melting. It is found that yttrium addition has a significant effect on the structure and magnetostriction of F...Polycrystalline Fe83Ga17 alloy rods with various amounts of yttrium were prepared by high vacuum induction melting. It is found that yttrium addition has a significant effect on the structure and magnetostriction of Fes3Ga17 alloy. The small addition of yttrium alters the solidification character and the grain shape of Fe83Ga17 alloy, and as a result, columnar grains with the 〈100〉 preferential direction are pro- duced. Yttrium addition improves the magnetostrictive performance of the as-cast Fes3Ga17 alloy. The magnetostriction values of the as-cast alloy with 0.32at% and 0.64at% yttrium addition go up to 119×10^-6 and 137×10^-6 under 15 MPa compressive stress, respectively. The energy dispersive spectroscopy (EDS) result shows that almost all of the yttrium atoms exist in the Y2Fe17-xGax phase. A small amount of this kind of secondary phase cannot obviously increase the saturate magnetic field.展开更多
Fall armyworm,Spodoptera frugiperda(J.E.Smith,1797),a crop pest native to tropical and subtropical regions of America,has invaded and spread into most regions in China,posing a severe threat to China’s agriculture.Th...Fall armyworm,Spodoptera frugiperda(J.E.Smith,1797),a crop pest native to tropical and subtropical regions of America,has invaded and spread into most regions in China,posing a severe threat to China’s agriculture.The cold hardiness directly determines its geographic distribution through adapting to winter temperatures of different regions.Here,we measured supercooling points and lethal time(LT)at low temperatures of S.frugiperda.The supercooling points for developmental stages in increasing order were:adults(-15.05℃)<pupae(-13.25℃)<prepupae(-10.50℃)<larvae(-9.03℃).Among eggs and 1st to 4th in star larvae,the 99%lethal time(LT_(99))was the highest for 4th in star larvae,with 99%of larvae dying after 18.59 d at 2℃,58.72 d at 7℃,and 66.28 d at 13℃.LT_(99) was the lowest for eggs with LTgg of 5.33 d at 2℃,9.28 d at 7℃,and 12.97 d at 13℃.This study provides mn understanding of overwintering regions of S.frugiperda in China which will be helpful for population forecasting and management.展开更多
Freeze drying or lyophilization of aqueous solutions is widely used in pharmaceutical industry. The in-creased importance Of the process is gaining a worldwide interest of research. A growing body of literature has de...Freeze drying or lyophilization of aqueous solutions is widely used in pharmaceutical industry. The in-creased importance Of the process is gaining a worldwide interest of research. A growing body of literature has demonstrated that the scientific approach can result in improved product quality with minimum trial and error em-piricism. Formulation and process development need a systematical understanding of the physical chemistry of freezing and freeze drying, material science and mechanisms of heat and mass transfer. This paper presents an overview on freeze ding of aqueous solutions based on publications in the past few decades. The important issuesof the process are analyzed.展开更多
The effects of Ni addition on the liquid phase separation and giant magnetoresi stance (GMR) of Cu Co alloys were discussed. The results reveal that Ni additio n can partially restrain the liquid phase separation of C...The effects of Ni addition on the liquid phase separation and giant magnetoresi stance (GMR) of Cu Co alloys were discussed. The results reveal that Ni additio n can partially restrain the liquid phase separation of Cu Co alloys, resultin g in a decrease of volume fraction for the Co rich particles separated from the liquid phase and in refined microstructures. The composition analyses indicate t hat Ni is dissolved in both the Co rich and the Cu rich phases, but Ni content in the Co rich phase is much higher than that in the Cu matrix. At the same ti me, Ni addition enhance the solubility between Cu and Co, especially Cu in Co s olid solution. Ni alloying into Cu Co alloys can fully prevent the liquid phase separation during melt spinning, which is very beneficial to improve GMR of Cu Co alloys.展开更多
文摘Under the environment of an artificial climate chamber, supercooling point (SCP) and freezing point (FP) in flower and young fruit at different development stages and freezing injuries of floral organs were studied. The apricot cultivars tested were Kety, Golden Sun and Honghebao. With the development of flower buds, SCP and FP increased, which indicated that their cold resistance decreased. SCP and FP varied with different floral organs. For different apricot cultivars, it was found that, the lower SCP or FP in floral organs was, the more resistant capacity the cultivar had, and the larger the temperature interval from SCP to FP was. SCP was not a constant value, but a range. Frequency distribution of SCP in petals was more dispersing than that in stamens and pistils. Floral organs could maintain a supercooling state to avoid ice formation, but they were sensitive to freezing. Once floral organs froze, thev turned brown after thawing.
文摘Supercooling of the microencapsulated phase change materials(PCMs) during cooling usually happens. This phenomenon can interfere with heat transfer and is necessary to further overcome. In this study, mela- mine-formaldehyde microcapsules containing two n-alkane PCMs, namely, n-dodecane(Cl2) or n-tetradecane(C14) were prepared by in situ polymerization. A small amount of n-hexatriacontane(C36) was introduced as an organic ge- lator into the core of microcapsules to cope with the supercooling problem. Analyses demonstrate that supercooling of the microencapsulated C12 or C14 was significantly suppressed by adding 3%(mass fraction) C36, without changing the spherical morphology and dispersibility. It could be also found that the enthalpy of microencapsulated CI2 or C14 containing C36 was similar to that of microencapsulated n-alkanes without C36, whereas the difference between onsets of crystallization and melting(degree of supercooling) is similar to that of those of pure n-alkanes, suggesting the re- markable suppression ability of the organic gelator on supercooling.
基金Supported by the Research Grant Council of the Hong Kong SAR government(GRF PolyU 5241/11E)
文摘This study aims to develop a paraffin-based phase change material(PCM) emulsion with a low extent of supercooling for thermal energy storage(TES) systems to improve the cooling efficiency.Hexadecane-water emulsions were prepared and characterized. Multi-wall carbon nanotubes(MWCNTs) were dispersed in the emulsion as a nucleating agent to reduce the supercooling. The MWCNTs were chemically modified with carboxyl groups to improve the dispersion of the tubular particles in the organic liquid. Thermal analyses of the emulsions by differential scanning calorimeter(DSC) indicated that the extent of supercooling was significantly reduced. The concentration of the nucleating agent for an effective supercooling suppression as found to be very low, in agreement with previous findings, and there appeared to be a minimum concentration for the supercooling reduction.
文摘Comparing the solidification characteristics of supercooling directional solidification(SDS) with constrained directional solidification(D. S. ) and considering the inheritance of supercooled melt, the supercooling directional solidification technique with the combination of melt supercooing and traditional directional solidification was proposed. An exploring study on SDS techniques was also conducted by using appropriate selfmade facilities and the deep supercooling of Cu-5. O % Ni alloy and its directional solidification were implemented. The experimental results show that: 1 ) the solidification microstructure produced by SDS are nearly the same as that by LMC technique, its primary arm spacing is around 30 Um in average and the secondary sidebranch is considerably degenerated; 2) the primary arm trunk of microstructure appears straight and fine, and the average deviation of crystal growth orientation from the axial line is about 5. 8; 3) a mathematical model describing the relationship between melt supercooling by SDS and the solidification rate, namely T-T model,was established, by which the microstructure evolution in SDS can be explained.
文摘The objective of this paper is to investigate water supercooling. Supercooling occurs when a liquid does not freeze although its temperature is below its freezing point. In general, supercooling is an unstable condition and occurs under special conditions. The parameters that influence supercooling stability and probability of occurrence include freezer temperature and water’s initial temperature. In this paper, it is shown that with a freezer temperature range of -3℃ to -8℃, supercooling is most likely to happen and is independent of the water’s initial temperature. Furthermore, as the freezer temperature decreases, the probability of nucleation increases, causing instant freezing. Finally, it is concluded that the Mpemba effect, in which initially hot water freezes faster than initially cold water, is due to the supercooling instability in initially hot water in which nucleation agents are more active.
文摘It has recently been shown that incident particles, neutrons, can initiate the freezing in a supercooled water volume. This new finding may have ramifications for the interpretation of both experimental data on the nucleation of laboratory samples of supercooled water and perhaps more importantly on the interpretation of ice nucleation involved in cloud physics. For example, if some fraction of the cloud nucleation previously attributed to dust, soot, or aerosols has been caused by cosmogenic neutrons, fresh consideration is required in the context of climate models. Moreover, as cosmogenic neutrons, most being muon-induced, have much greater flux at high latitudes, estimates of ice nucleates in these regions may be larger than required to accurately model cloud and condensation properties. This discrepancy has been pointed out in IPCC reports. Our paper discusses the connection between the new concept of neutrons nucleating supercooled water and the need for a new source of nucleation in high latitude clouds, ideally causing others to review current data, or to analyse future data with this idea in mind. .
基金This work was supported by JSPS KAKENHI,grant number JP16H05001[Grant-in-Aid for Scientific Research(B)]JP16K15010[Grant-in-Aid for Exploratory Research].
文摘We supercooled fresh-cut onion at−5℃ for 12 h.After supercooling,the electric impedance properties of the samples were evaluated by electrical impedance spectroscopy over the frequency range of 42 Hz−5 MHz.The time-temperature profiles of samples indicated that the freezing point and supercooling point were−2.3℃±0.7℃ and−6.9℃±1.0℃,respectively.The results indicated that 34 of the 36 supercooled samples exhibited a definite circular arc in the Cole-Cole plot,which suggested that the cell membrane remained intact during supercooling.In the other two samples which did not exhibit a definite circular arc,the cell membrane had sustained serious damage during supercooling.Furthermore,there was large difference in drip loss percentage between supercooled samples exhibited a definite circular arc in the Cole-Cole plot and samples not exhibiting a definite circular arc.Our results suggest that fresh-cut onions can be supercooled at−5℃.
基金jointly supported by the China National Science Foundation under Grant Nos.41875172 and 42075192。
文摘This paper studied a snow event over North China on 21 February 2017,using aircraft in-situ data,a Lagrangian analysis tool,and WRF simulations with different microphysical schemes to investigate the supercooled layer of warm conveyor belts(WCBs).Based on the aircraft data,we found a fine vertical structure within clouds in the WCB and highlighted a 1-2 km thin supercooled liquid water layer with a maximum Liquid Water Content(LWC) exceeding0.5 g kg^(-1) during the vertical aircraft observation.Although the main features of thermodynamic profiles were essentially captured by both modeling schemes,the microphysical quantities exhibited large diversity with different microphysics schemes.The conventional Morrison two-moment scheme showed remarkable agreement with in-situ observations,both in terms of the thermodynamic structure and the supercooled liquid water layer.However,the microphysical structure of the WCB clouds,in terms of LWC and IWC,was not apparent in HUJI fast bin scheme.To reduce such uncertainty,future work may focus on improving the representation of microphysics in bin schemes with in-situ data and using similar assumptions for all schemes to isolate the impact of physics.
文摘1 Introduction Since differential thermal analysis(DTA) was used to detect a specific exothermic event associated with cold injury, organic supercooling has been reported in over 240 species of 33 angiospermous families and one gymnospermous family. Several hypotheses about the mechanism of the supercooling of flower buds have been proposed, e.g. lower water potential, tissue compactness, ice nucleation factors and the tissue barrier against
基金Project supported by the National Natural Science Foundaion of China.
文摘It is the first time for MRI to be used in the research of flower buds supercooling. Directobservation on freezing course of living flower buds of Camellia yuhsienensis by MRI and tissue browning test showed that freezing order of the flower organs is bud axis, scale, petal, pistil and stamen. It is coincident with the direction of ice development from bud axes to flower organs upwards. The corresponding results from MRI and freezing-fixation showed that the water translocation from flower organs to axes and scales is carried on in the course of bud freezing. ’H spectral measurement of NMR was used to follow the decrease of unfrozen water in the buds during the cooling.
基金supported by the National Key Research and Development Program of China (Grant No.2018YFB2001800)。
文摘The effects of mixing temperature,i.e.,the temperatures of two precursor melts(pure Al and Al-12Si),on the temperature and solute fields of resultant mixture,the nucleation and growth,and the size and morphology of primary grains during controlled diffusion solidification(CDS) of Al-8Si alloy were investigated by using simulation and calculation.The results indicate that a lower mixing temperature is helpful for achieving more supercooled microscale Al-rich pockets in the mixture,and increasing the width and supercooling degree of supercooling zone in the Al-rich pockets,and thus,the nucleation rate.The nuclei grow up in nondendritic mode,resulting in spheroidal,at least,nondendritic grains.In a successful CDS,the superheat degrees of the two precursor melts should be limited within several degrees,and it is not necessary to extra stipulate the superheat degree of target alloy melt(Al-8Si) when the requirement about Gibbs energies of the three melts is matched.Subsequent observation on casting microstructures shows that the employed simulation and calculation processes are reasonable and the achieved results are reliable.
基金The National Natural Science Foundation of China(No.50876022)
文摘A water-TiO2nanofluid with a weight fraction of 5% and an average particle size of 75 nm is used to investigate the effect of TiO2 nanoparticles on the crystallization and melting behaviors of deionized water by using differential scanning calorimetry(DSC)at four different cooling rates,3,5,7,9 ℃/min.The DSC experimental results show that the water-TiO2 nanofluid has a lower supercooling degree and a faster crystallization rate than the deionized water.With the increase in the cooling rate,the influence of the TiO2 nanoparticles on the supercooling degree of the deionized water becomes greater,but on the crystallization rate it turns lower.During the melting process,compared with the deionized water,the water-TiO2 nanofluid has a lower melting temperature,a less latent heat and a higher melting rate.
基金Projects (50831003, 50571037) supported by the National Natural Science Foundation of China
文摘The formation and evolution characteristics of bcc phase during the isothermal relaxation processes for supercooled-liquid and amorphous Pb were investigated by molecular dynamics simulation and cluster-type index method (CTIM). It is found that during the relaxation process, the formation and evolution of bcc phase are closely dependent on the initial temperature and structure. During the simulation time scale, when the initial temperature is in the range of supercooled liquid region, the bcc phase can be formed and kept a long time; while it is in the range of glassy region, the bcc phase can be formed at first and then partially transformed into hcp phase; when it decreases to the lower one, the hcp and fcc phases can be directly transformed from the glassy structure without undergoing the metastable bcc phase. The Ostwald's "step rule" is impactful during the isothermal relaxation process of the supercooled and glassy Pb, and the metastable bcc phase plays an important role in the precursor of crystallization.
文摘It is clarified by experimental examination and theoretical analysis that the transformation of crystal moorphology of the eutectic Al-Cu alloy composite-in-situ seems to be judged by not only the constitutional supercooling proposed in previous literatures but also the supercooling due to the effect of curved surfaces at the solidifying from.The greater entropy of fusion and the tendency to faceted face are important features of the non-metallic phase,which may con- tribute to the leading,role of the phase during solidification.It might be the change of leading phase that changes the morphology of crystals.
文摘The effects of rapid cold hardening (RCH) on the cold tolerance of the last instar larvae of Chilo suppressalis (Walker) were evaluated for the first time. The discriminating temperature, induction, detection, duration and extent of RCH of the larvae in the laboratory were tested, and the supercooling points (SCPs) and the contents of water and lipid of the larvae after RCH treatment were determined, respectively. The results showed that the discriminating temperature of the larvae was about -21℃. Mean survival rates of the larvae which exposed to either 0 or 5℃ for 2 and 4 h before exposure to the discriminating temperature for 2 h were significantly higher than those of the control groups (P 〈 0.05). Moreover, the highest survival rate appeared in the larvae after 0℃ for 4 h treatment. The protection against low temperature gained by RCH at 0℃ for 4 h was rapidly lost on return to 28℃. Mean survival rates of RCH larvae were significantly higher than those of non-acclimated (NACC) larvae and acclimation (ACC) larvae when they were exposed to the discriminating temperature for 2 or 4 h (P〈 0.05). Moreover, the rates of NACC, ACC, RCH and ACC + RCH larvae from 2 to 6 h to the discriminating temperature resulted in a significant decline. The values of SCPs and the contents of lipid of the larvae which exposed to either 0 or 5℃ for 2 and 4 h showed no significant difference at 0.05 level compared to those of the control groups. But the contents of water in the larvae were obviously decreased. Therefore, it could be concluded that RCH could enhance cold tolerance and affect partly physiological and biochemical components of the larvae of C. suppressalis, but the underlying mechanisms needs to be further explored.
基金supported by the National Basic Research Priorities Program of China (No.2011CB606304)the Program for New Century Excellent Talents in Chinese Universities (No.09-0212)the China Postdoctoral Science Foundation Funded Project (No.2011M500229)
文摘Polycrystalline Fe83Ga17 alloy rods with various amounts of yttrium were prepared by high vacuum induction melting. It is found that yttrium addition has a significant effect on the structure and magnetostriction of Fes3Ga17 alloy. The small addition of yttrium alters the solidification character and the grain shape of Fe83Ga17 alloy, and as a result, columnar grains with the 〈100〉 preferential direction are pro- duced. Yttrium addition improves the magnetostrictive performance of the as-cast Fes3Ga17 alloy. The magnetostriction values of the as-cast alloy with 0.32at% and 0.64at% yttrium addition go up to 119×10^-6 and 137×10^-6 under 15 MPa compressive stress, respectively. The energy dispersive spectroscopy (EDS) result shows that almost all of the yttrium atoms exist in the Y2Fe17-xGax phase. A small amount of this kind of secondary phase cannot obviously increase the saturate magnetic field.
基金supported by the National Natural Science Foundation of China(31727901 and 31901873)the National Key Research and Development Program of China(2019YFD0300101)。
文摘Fall armyworm,Spodoptera frugiperda(J.E.Smith,1797),a crop pest native to tropical and subtropical regions of America,has invaded and spread into most regions in China,posing a severe threat to China’s agriculture.The cold hardiness directly determines its geographic distribution through adapting to winter temperatures of different regions.Here,we measured supercooling points and lethal time(LT)at low temperatures of S.frugiperda.The supercooling points for developmental stages in increasing order were:adults(-15.05℃)<pupae(-13.25℃)<prepupae(-10.50℃)<larvae(-9.03℃).Among eggs and 1st to 4th in star larvae,the 99%lethal time(LT_(99))was the highest for 4th in star larvae,with 99%of larvae dying after 18.59 d at 2℃,58.72 d at 7℃,and 66.28 d at 13℃.LT_(99) was the lowest for eggs with LTgg of 5.33 d at 2℃,9.28 d at 7℃,and 12.97 d at 13℃.This study provides mn understanding of overwintering regions of S.frugiperda in China which will be helpful for population forecasting and management.
基金Supported by the National Natural Science Foundation of China(21076042)Research Grants Council of Hong Kong SAR (RGC 600704)
文摘Freeze drying or lyophilization of aqueous solutions is widely used in pharmaceutical industry. The in-creased importance Of the process is gaining a worldwide interest of research. A growing body of literature has demonstrated that the scientific approach can result in improved product quality with minimum trial and error em-piricism. Formulation and process development need a systematical understanding of the physical chemistry of freezing and freeze drying, material science and mechanisms of heat and mass transfer. This paper presents an overview on freeze ding of aqueous solutions based on publications in the past few decades. The important issuesof the process are analyzed.
文摘The effects of Ni addition on the liquid phase separation and giant magnetoresi stance (GMR) of Cu Co alloys were discussed. The results reveal that Ni additio n can partially restrain the liquid phase separation of Cu Co alloys, resultin g in a decrease of volume fraction for the Co rich particles separated from the liquid phase and in refined microstructures. The composition analyses indicate t hat Ni is dissolved in both the Co rich and the Cu rich phases, but Ni content in the Co rich phase is much higher than that in the Cu matrix. At the same ti me, Ni addition enhance the solubility between Cu and Co, especially Cu in Co s olid solution. Ni alloying into Cu Co alloys can fully prevent the liquid phase separation during melt spinning, which is very beneficial to improve GMR of Cu Co alloys.