In this paper, we study the global dynamics of a SVEIS epidemic model with distinct incidence for exposed and infectives. The model is analyzed for stability and bifurcation behavior. To account for the realistic phen...In this paper, we study the global dynamics of a SVEIS epidemic model with distinct incidence for exposed and infectives. The model is analyzed for stability and bifurcation behavior. To account for the realistic phenomenon of non-homogeneous mixing, the effect of diffusion on different population subclasses is considered. The diffusive model is analyzed using matrix stability theory and conditions for Turing bifurcation are derived. Numerical simulations support our analytical results on the dynamic behavior of tile model.展开更多
文摘In this paper, we study the global dynamics of a SVEIS epidemic model with distinct incidence for exposed and infectives. The model is analyzed for stability and bifurcation behavior. To account for the realistic phenomenon of non-homogeneous mixing, the effect of diffusion on different population subclasses is considered. The diffusive model is analyzed using matrix stability theory and conditions for Turing bifurcation are derived. Numerical simulations support our analytical results on the dynamic behavior of tile model.