期刊文献+
共找到15,163篇文章
< 1 2 250 >
每页显示 20 50 100
基于KNN-SVM的混合气体检测方法研究
1
作者 孙超 胡润泽 +2 位作者 吴中旭 刘年松 丁建军 《光谱学与光谱分析》 SCIE EI CAS 北大核心 2025年第1期117-124,共8页
当今混合气体检测的研究中,针对多组分气体数据进行分类预测的数学算法百花齐放,如何快速且准确的检测出气体的成分和浓度逐渐成为当今研究的热门。然而在一些研究中,气体数据特征难以捕捉和判断,泛化能力不足,对气体数据进行分类预测... 当今混合气体检测的研究中,针对多组分气体数据进行分类预测的数学算法百花齐放,如何快速且准确的检测出气体的成分和浓度逐渐成为当今研究的热门。然而在一些研究中,气体数据特征难以捕捉和判断,泛化能力不足,对气体数据进行分类预测的精度和效率表现较差。为此,针对一些数据偏差和泛化误差无界的问题,提出了一种K最近邻-支持向量机(KNN-SVM)算法,对一些难以作出分类的模糊气体数据进行二次分类,采用KNN和SVM两种算法共同抉择,更加全面的捕捉数据特征,根据实验确定各自算法的权重比从而提高判别气体类别的准确率,两种算法的集成也能提高算法的效率,对于不同种类的气体也能有良好的适应性的稳定性。该实验气体组分由12 mg·L^(-1)的C_(2)H_(2)、NO_(2)、SF_(6),10 mg·L^(-1)的NO_(2)、SF_(6)和5 mg·L^(-1)的C_(2)H_(2)(背景气体皆为N_(2))以及两瓶纯N_(2)的气瓶组成;通过互相混合和与N_(2)配比制备出实验设定的气体浓度。实验过程通过单一气体的检测可分别对三种气体获得60组训练集,并通过这60组数据可进行线性拟合得到每种气体的拟合线,得到气体浓度与气体吸收峰值的关系,通过实验检测得到的三种气体拟合线,其中C_(2)H_(2)拟合线的调整后R^(2)为0.991,NO_(2)拟合线的调整后R^(2)为0.981,SF_(6)拟合线的调整后R^(2)为0.987,可得气体检测的准确性。再通过互相混合进行检测可分别获得40组训练集,采用KNN-SVM算法对混合气体进行分类和预测,后通过拟合线即可反演出混合气体中每种气体的浓度。将该算法与传统SVM算法进行各种分类指标对比均可显示出该算法的有效性和优越性。实验结果表明,KNN-SVM算法在气体分类预测方面表现出卓越的性能,准确率高达99.167%,AUC(area under curve)值达99.375%。这一算法不仅提高了气体检测的准确性,还增强了泛化能力可适应多样化的气体组分,为实时气体检测系统提供了有力支持。 展开更多
关键词 光声光谱 气体检测 KNN-svm 分类预测
下载PDF
基于特征融合的GA-SVM配电网单相接地故障选线方法
2
作者 张晓鹏 白洁 +3 位作者 孙乃君 李捷 郑帅 万庆祝 《电测与仪表》 北大核心 2025年第1期140-148,共9页
针对配电网单相接地故障数据量较少时,选线方法精度不高,提出一种基于特征融合的遗传算法优化支持向量机(genetic algorithm-support vector machine,GA-SVM)配电网单相接地故障选线方法,采用傅里叶变换、有功功率法以及小波包变换对不... 针对配电网单相接地故障数据量较少时,选线方法精度不高,提出一种基于特征融合的遗传算法优化支持向量机(genetic algorithm-support vector machine,GA-SVM)配电网单相接地故障选线方法,采用傅里叶变换、有功功率法以及小波包变换对不同故障工况下每一条线路的暂态零序电流进行分解,提取基波幅值、五次谐波幅值、平均有功功率分量及小波能量值四种特征,经主成分分析法对这四种特征进行融合,提取主成分分量,建立特征数据库,将特征数据库的80%作为训练集,20%作为测试集,通过GA-SVM对特征数据库中的样本进行训练,实现故障选线。通过MATLAB/Simulink搭建包含5条馈线的配电网仿真模型进行验证,结果表明,提出的算法可以通过小样本数据实现故障选线,选线精度较高,适用性强。 展开更多
关键词 单相接地故障 特征融合 GA-svm 暂态零序电流 小样本数据
下载PDF
基于SVM的字符验证码图像识别方法研究
3
作者 周钢 刘才铭 《电脑编程技巧与维护》 2025年第1期140-142,168,共4页
验证码(CAPTCHA)是一种区分机器和人的操作的自动程序,可以防止批量注册、刷票、爬虫抓取等恶意访问行为。随着验证码技术的发展,验证码类型越来越多,安全隐患也越来越多,以传统字符型验证码作为研究对象,对验证码图像进行灰度化、二值... 验证码(CAPTCHA)是一种区分机器和人的操作的自动程序,可以防止批量注册、刷票、爬虫抓取等恶意访问行为。随着验证码技术的发展,验证码类型越来越多,安全隐患也越来越多,以传统字符型验证码作为研究对象,对验证码图像进行灰度化、二值化、去噪、分割等预处理,采用支持向量机(SVM)对数字字符验证码进行识别。实验结果表明,当训练数据达到一定数量时,机器对传统字符验证码的识别有较高的准确率。 展开更多
关键词 字符验证码识别 svm支持向量机 PYTHON语言
下载PDF
基于SARIMA-SVM模型的季节性PM_(2.5)浓度预测
4
作者 宋英华 徐亚安 张远进 《计算机工程》 北大核心 2025年第1期51-59,共9页
空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARI... 空气污染是城市环境治理的主要问题之一,而PM_(2.5)是影响空气质量的重要因素。针对传统时间序列预测模型对PM_(2.5)浓度预测缺少季节性因素分析,预测精度不够高的问题,提出一种基于机器学习的季节性差分自回归滑动平均-支持向量机(SARIMA-SVM)融合模型。该融合模型为串联型融合模型,将数据拆分为线性部分与非线性部分。SARIMA模型在差分自回归滑动平均(ARIMA)模型的基础上增加了季节性因素提取参数,能有效分析PM_(2.5)浓度数据的季节性规律变化趋势,较好地预测数据未来的线性变化趋势。结合SVM模型对预测数据的残差序列进行优化,利用滑动步长预测法确定残差序列的最优预测步长,通过网格搜索确定最优模型参数,实现对PM_(2.5)浓度数据的长期预测,同时提高整体预测精度。通过对武汉市近5年的PM_(2.5)浓度监测数据进行分析,结果表明该融合模型的预测准确率相较于单一模型有很大提升,在相同的实验环境下比单一的ARIMA、Auto ARIMA、SARIMA模型分别提升了99%、99%、98%,稳定性也更好,为PM_(2.5)浓度预测研究提供了新的思路。 展开更多
关键词 季节性差分自回归滑动平均 支持向量机 融合模型 PM_(2.5)浓度 季节性预测
下载PDF
基于改进CNN-SVM的光伏组件红外图像故障诊断方法 被引量:2
5
作者 王艳 申宗旺 +1 位作者 赵洪山 李伟 《华北电力大学学报(自然科学版)》 CAS 北大核心 2024年第3期110-117,共8页
为识别光伏组件故障类型,提高光伏系统发电效率,提出了一种基于改进CNN-SVM模型的光伏组件红外图像故障诊断方法。首先以光伏组件红外图像为输入样本构建改进CNN模型,采用全局平均池化层代替传统CNN模型的全连接层,在进行图像特征提取... 为识别光伏组件故障类型,提高光伏系统发电效率,提出了一种基于改进CNN-SVM模型的光伏组件红外图像故障诊断方法。首先以光伏组件红外图像为输入样本构建改进CNN模型,采用全局平均池化层代替传统CNN模型的全连接层,在进行图像特征提取的同时降低模型参数量;利用数据增强和批归一化技术提高模型泛化能力,降低模型过拟合。其次采用非线性支持向量机SVM代替传统CNN模型中的Softmax分类器,以提高光伏组件红外图像故障识别准确率。最后采用Infrared Solar Modules数据集对所提模型进行了实例验证。结果表明:与传统CNN模型相比,改进CNN-SVM模型故障诊断准确率高,对各故障类型的识别能力强。 展开更多
关键词 光伏组件 红外图像 故障诊断 CNN svm
下载PDF
基于全矢CEEMDAN能量矩和AMHSSA-SVM的滚动轴承故障诊断 被引量:1
6
作者 朱伏平 张又才 杨方燕 《机械设计》 CSCD 北大核心 2024年第2期81-87,共7页
为充分利用滚动轴承的故障特征信息,提高故障诊断的准确性和可靠性,文中提出了一种基于全矢自适应噪声完全集成经验模态分解(Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)能量矩和自适应多种群... 为充分利用滚动轴承的故障特征信息,提高故障诊断的准确性和可靠性,文中提出了一种基于全矢自适应噪声完全集成经验模态分解(Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise,CEEMDAN)能量矩和自适应多种群混合麻雀搜索算法(Adaptive Multi-population Hybrid Sparrow Search Algorithm,AMHSSA)优化支持向量机(Support Vector Machine,SVM)的故障诊断方法。首先,采用全矢谱技术融合同源双通道信号;其次,采用CEEMDAN算法处理融合信号,选择相关系数较大的前5阶IMF分量,并计算其能量矩作为支持向量机模型的特征输入;最后,提出AMHSSA算法并优化支持向量机模型的参数,建立AMHSSA-SVM故障诊断模型。对该模型进行测试,结果表明:此模型有效提高了识别准确性,与类似模型对比,进一步证明了其在分类精度和优化时间方面的优越性。 展开更多
关键词 滚动轴承 故障诊断 全矢谱 CEEMDAN AMHSSA svm
下载PDF
基于SVM的TBM盾构施工滚刀更换周期预测
7
作者 王华桢 《施工技术(中英文)》 2025年第1期9-14,共6页
滚刀作为TBM的重要部件,其磨损严重影响掘进效率和安全性,准确预测更换周期至关重要,然而传统方法主要依赖经验判断和简单数学模型,在复杂地质条件下效果欠佳。为此提出利用支持向量机(SVM)智能算法,结合实际工程数据,包括地质条件、推... 滚刀作为TBM的重要部件,其磨损严重影响掘进效率和安全性,准确预测更换周期至关重要,然而传统方法主要依赖经验判断和简单数学模型,在复杂地质条件下效果欠佳。为此提出利用支持向量机(SVM)智能算法,结合实际工程数据,包括地质条件、推力、扭矩、转速等,建立滚刀更换周期的预测模型。重点分析了影响滚刀磨损的主要因素,并选择了线性、多项式和径向基函数(RBF)3种SVM核函数进行模型优化。研究数据来源包含13 080个样本,按80%用于训练,20%用于测试。结果显示,径向基函数SVM核函数模型在不同地层条件下预测准确率均超过80%,优于其他核函数。模型的准确率、精度和误分类率进一步验证了其在不同地质条件下的可靠性。基于SVM的预测模型能捕捉掘进过程中复杂非线性关系,具有较强的泛化能力。 展开更多
关键词 隧道 盾构 支持向量机 机器学习 换刀 预测
下载PDF
结合SVM与XGBoost的链式多路径覆盖测试用例生成 被引量:1
8
作者 钱忠胜 俞情媛 +3 位作者 张丁 姚昌森 秦朗悦 成轶伟 《软件学报》 EI CSCD 北大核心 2024年第6期2795-2820,共26页
机器学习方法可很好地与软件测试相结合,增强测试效果,但少有学者将其运用于测试数据生成方面.为进一步提高测试数据生成效率,提出一种结合SVM(support vector machine)和XGBoost(extreme gradient boosting)的链式模型,并基于此模型借... 机器学习方法可很好地与软件测试相结合,增强测试效果,但少有学者将其运用于测试数据生成方面.为进一步提高测试数据生成效率,提出一种结合SVM(support vector machine)和XGBoost(extreme gradient boosting)的链式模型,并基于此模型借助遗传算法实现多路径测试数据生成.首先,利用一定样本训练若干个用于预测路径节点状态的子模型(SVM和XGBoost),通过子模型的预测精度值筛选最优子模型,并根据路径节点顺序将其依次链接,形成一个链式模型C-SVMXGBoost(chained SVM and XGBoost).在利用遗传算法生成测试用例时,使用训练好的链式模型代替插桩法获取测试数据覆盖路径(预测路径),寻找预测路径与目标路径相似的路径集,对存在相似路径集的预测路径进行插桩验证,获取精确路径,计算适应度值.在交叉变异过程中引入样本集中路径层级深度较大的优秀测试用例进行重用,生成覆盖目标路径的测试数据.最后,保留进化生成中产生的适应度较高的个体,更新链式模型C-SVMXGBoost,进一步提高测试效率.实验表明,C-SVMXGBoost较其他各对比链式模型更适合解决路径预测问题,可提高测试效率.并且通过与已有经典方法相比,所提方法在覆盖率上提高可达15%,平均进化代数也有所降低,在较大规模程序上其降低百分比可达65%. 展开更多
关键词 测试用例 svm XGBoost 链式模型 多路径覆盖
下载PDF
基于SVM的富水岩溶区双线盾构隧道下穿既有线临界安全距离研究
9
作者 侯艳娟 赵继 +5 位作者 娄在明 章哲滔 孙振宇 杨阳 茹振华 李念祖 《铁道标准设计》 北大核心 2024年第9期121-131,139,共12页
双线盾构隧道在极复杂的岩溶地质中下穿既有线施工时,会对地层造成较大扰动,从而增加既有地表沉降过大或坍塌的风险,严重威胁既有线的运营安全。同时,隧道穿越富水岩溶区域时,需要保持一定距离以避免与溶洞相交,确保双线盾构隧道围岩的... 双线盾构隧道在极复杂的岩溶地质中下穿既有线施工时,会对地层造成较大扰动,从而增加既有地表沉降过大或坍塌的风险,严重威胁既有线的运营安全。同时,隧道穿越富水岩溶区域时,需要保持一定距离以避免与溶洞相交,确保双线盾构隧道围岩的稳定性。利用FlAC^(3D)软件建立不同工况组合下双线盾构隧道与左侧溶洞的临界安全距离数值模型,分析不同地下水位对既有线沉降和围岩塑性区范围的影响,并采用正交试验和多元线性回归方法建立双线盾构隧道在不同围岩等级、地下水埋深、开挖隧道埋深和溶洞孔径组合下与溶洞的临界安全距离计算公式。此外,还基于SVM模型对正交试验结果进行机器学习,得到可以预测岩溶地区双线盾构隧道临界安全距离的智能预测系统,实现双线盾构隧道下穿既有线临界安全距离的非线性智能预测。结果表明:当地下水位位于既有线以上时,其水位越高,既有线的沉降量越大、围岩塑性区范围越大,地下水对盾构隧道与溶洞的临界安全距离有很大影响,应用SVM模型和多元线性回归方法确定双线盾构隧道与溶洞之间的临界安全距离是行之有效的。 展开更多
关键词 富水岩溶区 双线盾构隧道 正交试验 多元线性回归 svm模型 临界安全距离
下载PDF
基于RS-PCA-SVM的建筑项目安全预测模型
10
作者 李永清 马亚冰 凤亚红 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第9期1243-1247,1261,共6页
为了减少建筑项目安全事故的发生,文章提出一种基于RS-PCA-SVM建筑项目安全组合预测模型,采用粗糙集理论(rough set,RS)对数据进行属性约简,剔除交叉和冗余信息,降低输入变量维数和计算复杂度,减少训练时间;利用主成分分析(principal co... 为了减少建筑项目安全事故的发生,文章提出一种基于RS-PCA-SVM建筑项目安全组合预测模型,采用粗糙集理论(rough set,RS)对数据进行属性约简,剔除交叉和冗余信息,降低输入变量维数和计算复杂度,减少训练时间;利用主成分分析(principal component analysis,PCA)法进行降维处理,除去贡献率较低的主成分,将剩余主成分作为支持向量机(support vector machine,SVM)的输入变量,并选择自适应权重粒子群优化算法(particle swarm optimization,PSO)优化SVM的参数,避免参数选择的盲目性。结果表明:该模型的平均预测准确率为93.78%,相比传统方法预测精度高、计算速度快。 展开更多
关键词 属性约简 主成分分析(PCA)法 支持向量机(svm) 预测模型
下载PDF
基于SVM的干线输气管道泄漏压降速率信号识别
11
作者 吴瑕 陈红环 +2 位作者 贾文龙 孙溢彬 任思波 《中国安全科学学报》 CAS CSCD 北大核心 2024年第6期119-126,共8页
为解决压缩机抽吸或截断阀截断形成的压降信号导致截断阀发生误关断,以及小孔泄漏因管道压降不显著导致截断阀不动作的问题,以某输气干线为对象建立仿真模型,获取压缩机抽吸、截断阀紧急截断及管道泄漏3类不同工况下的300组压降信号,根... 为解决压缩机抽吸或截断阀截断形成的压降信号导致截断阀发生误关断,以及小孔泄漏因管道压降不显著导致截断阀不动作的问题,以某输气干线为对象建立仿真模型,获取压缩机抽吸、截断阀紧急截断及管道泄漏3类不同工况下的300组压降信号,根据对点检测法计算出压降信号的压降速率值;以奇异值分解(SVD)法和极差归一化方法提取压降速率信号特征,采用支持向量机(SVM)法识别不同压降速率特征值信号,获取所对应的工况类型;针对SVM模型中的核函数参数与惩罚因子设置不合理,影响算法识别准确性的问题,采用教与学优化算法(TLBO)优化核函数参数与惩罚因子,建立干线输气管道泄漏信号智能识别的TLBO-SVM模型;应用该模型,分类识别该管道在3类工况下的300组模拟压降速率信号。结果表明:该模型对3类不同工况下压降速率信号的识别准确率为92.22%;对泄漏口径为50~125 mm,压降速率范围为0.01~0.07 MPa/min的小孔泄漏,识别准确率为96.67%。针对某干线管道的实际泄漏压降速率信号,TLBO-SVM识别到的准确率为100%。 展开更多
关键词 支持向量机(svm) 干线输气管道 压降速率信号 泄漏压力信号 截断阀
下载PDF
基于SVM-RFE与Transformer-TBAM的高校邮件分析研究
12
作者 李振 李智超 陈琳 《通信学报》 CSCD 北大核心 2024年第S2期97-101,共5页
通过挖掘高校电子邮件文本数据并进行分析,可以帮助教职工更好地了解学生的意见和建议,提高管理效率。目前,深度学习方法是文本情感分析的主要方法,然而现有的方法没有充分利用中文文本中的特征。为解决此问题,提出基于SVM-RFE与Transfo... 通过挖掘高校电子邮件文本数据并进行分析,可以帮助教职工更好地了解学生的意见和建议,提高管理效率。目前,深度学习方法是文本情感分析的主要方法,然而现有的方法没有充分利用中文文本中的特征。为解决此问题,提出基于SVM-RFE与Transformer-TBAM架构模型处理高校邮件,该架构重构了双通道注意力模型及特征筛选机制以深度提取有效特征信息。实验表明,该算法在高校邮件数据集分类效果达到了94.67%的准确率,比传统算法高出1.2%。 展开更多
关键词 svm 高校邮件 TRANSFORMER 注意力机制
下载PDF
基于SVM模型的农村金融机构农户信用风险评价体系研究——以黑龙江省为例 被引量:1
13
作者 刘香 《市场周刊》 2024年第7期19-24,共6页
目前,对农户信贷风险的评估方法很多,但大多采用专家主观判断法、统计判别分析法,主观性强,受样本数量限制。随着引入人工智能技术,出现了遗传算法、神经网络模型、支持向量机、随机森林等方法。在诸方法中,SVM是一种适用于少量样本的... 目前,对农户信贷风险的评估方法很多,但大多采用专家主观判断法、统计判别分析法,主观性强,受样本数量限制。随着引入人工智能技术,出现了遗传算法、神经网络模型、支持向量机、随机森林等方法。在诸方法中,SVM是一种适用于少量样本的学习方法,可用于处理线性和非线性分类问题,尤其适用于农户信贷信息获取少而难的评估。文章运用农户信贷理论,以黑龙江省某农商行为主要研究对象,分析了农户贷款信用风险管理和评价体系现状,运用SVM模型和主成分分析构建了农户信用风险评价指标体系,并运用某农商行的数据进行了实证分析研究。得出结论:SVM模型在所有数据集上表现最好,其提取规则的准确性超越了传统的分类方法,可用作特征选择法的基础来确定违约风险重要的特征。 展开更多
关键词 农户信用风险 评价指标体系 主成分分析 svm模型 农村金融机构
下载PDF
基于GADF与2D CNN-改进SVM的道岔故障诊断方法研究
14
作者 王彦快 孟佳东 +2 位作者 张玉 杨建刚 王贵强 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第7期2944-2956,共13页
针对道岔故障特征不易提取以及道岔故障诊断准确率较低的问题,提出一种格拉姆角差场(Gramian Angular Difference Fields, GADF)与二维卷积神经网络(Two Dimensional Convolutional Neural Network, 2D CNN)-改进支持向量机(Support Vec... 针对道岔故障特征不易提取以及道岔故障诊断准确率较低的问题,提出一种格拉姆角差场(Gramian Angular Difference Fields, GADF)与二维卷积神经网络(Two Dimensional Convolutional Neural Network, 2D CNN)-改进支持向量机(Support Vector Machine, SVM)的道岔故障诊断组合方法。首先,结合现场实际应用情况,选取道岔设备正常转换与典型故障的转辙机功率曲线,建立转辙机功率曲线样本数据库;采用GADF编码将一维转辙机功率曲线信号转换为具有时间相关性的二维特征图,分别选择16×16、32×32以及64×64大小的特征图并提取图像数据。其次,在LeNet-5模型的基础上设计2D CNN网络结构,并将图像数据输入至基于2D CNN的道岔故障特征提取模型中,经多层的卷积层、池化层以及全连接层提取特征指标,建立道岔故障诊断样本数据库。最后,通过北方苍鹰优化(Northern Goshawk Optimization, NGO)算法优化SVM算法的惩罚因子与核函数方差,构建基于NGO-SVM的道岔故障诊断模型。实验结果分析表明,将转辙机功率曲线数据经GADF编码为64×64大小的特征图,并通过2D CNN模型提取道岔典型特征数据,较其他数据处理方法具有较高的故障诊断准确率,同时提高了故障诊断实时性;将建立的道岔故障诊断样本数据库输入至NGO-SVM道岔故障诊断模型,其故障诊断准确率高达97.5%,较其他故障诊断模型具有更好的故障诊断性能,为道岔故障诊断提供了一种新方法,对现场道岔设备的日常维修具有一定的指导意义。 展开更多
关键词 道岔设备 故障诊断 GADF 2D CNN NGO-svm
下载PDF
基于ARIMA模型和ARIMA-SVM组合模型的流行性感冒的发病预测研究
15
作者 刘洋 高燕琳 +6 位作者 史芸萍 王超 李伟 周滢 虎霄 李佳泽 李刚 《首都公共卫生》 2024年第4期195-200,共6页
目的探讨ARIMA-SVM组合模型在流感发病预测中的应用,并与单纯ARIMA模型的预测效果比较。方法利用2017—2022年北京市流感发病数据拟合建立ARIMA模型和ARIMA-SVM组合模型,对2023年流感发病进行预测,并与实际流感数据进行验证比较,评价模... 目的探讨ARIMA-SVM组合模型在流感发病预测中的应用,并与单纯ARIMA模型的预测效果比较。方法利用2017—2022年北京市流感发病数据拟合建立ARIMA模型和ARIMA-SVM组合模型,对2023年流感发病进行预测,并与实际流感数据进行验证比较,评价模型的预测效果。结果北京市2017年1月—2023年12月共报告流感病例报告数1250797例,月均发病14890例。构建最佳的ARIMA模型的为ARIMA(6,0,6)(0,1,2)365,模型预测相对误差范围在0.01%~165.62%之间,RMSE=570.07,MAPE=157.36%。ARIMA-SVM模型预测相对误差在0.00%~18.87%之间,RMSE=0.26,MAPE=1.90%。组合模型预测结果较单一ARIMA模型精度高。结论ARIMA与SVM联合模型对流感发病的拟合精度优于单一ARIMA模型,可用于流感发病的短期预测,组合模型不仅考虑了传染病发病数据的周期性特点,又克服了小样本、非线性的缺点,亦可推广到其他的传染病的发病预测,为传染病的预测、疾病控制以及资源的配置利用提供政策支持。 展开更多
关键词 ARIMA模型 ARIMA-svm模型 流感 发病数 预测模型
下载PDF
基于PCA-SVM结合共聚焦拉曼光谱的特级初榨橄榄油掺伪压榨菜籽油定量分析
16
作者 彭楠 方俊 毛潭 《中国油脂》 CAS CSCD 北大核心 2024年第2期70-74,共5页
为了促进国内橄榄油市场的健康发展,对掺伪同样存在天然类胡萝卜素的低温压榨菜籽油的特级初榨橄榄油进行了定量鉴别研究。采用共聚焦拉曼光谱技术对不同掺伪浓度油样进行测试,基于密度泛函理论对油样的拉曼光谱峰的归属进行了理论分析... 为了促进国内橄榄油市场的健康发展,对掺伪同样存在天然类胡萝卜素的低温压榨菜籽油的特级初榨橄榄油进行了定量鉴别研究。采用共聚焦拉曼光谱技术对不同掺伪浓度油样进行测试,基于密度泛函理论对油样的拉曼光谱峰的归属进行了理论分析,并对拉曼光谱数据进行主成分分析(PCA),然后利用支持向量机(SVM)构建PCA-SVM模型。另外,对PCA-SVM模型的检出限进行了研究。结果表明:特级初榨橄榄油与低温压榨菜籽油的拉曼光谱存在一定差异,最明显的光谱差异主要集中在谱峰1008、1161、1528 cm^(-1)和谱段2800~3000 cm^(-1)内,与密度泛函理论对不同油样拉曼光谱峰的分析一致;不考虑类胡萝卜素特征信号建立的PCA-SVM模型决定系数大于0.989,均方根误差小于2.990%,检出限为2%(低温压榨菜籽油体积分数);在特级初榨橄榄油掺伪定量分析中,考虑类胡萝卜素的特征信号有助于提高模型预测精度,但仅限于掺伪低价植物油中无类胡萝卜素存在的情况;PCA-SVM模型在不考虑类胡萝卜素特征信号的情况下依然具有良好的定量预测效果。综上,所建立的PCA-SVM模型可以用于掺伪2%以上低温压榨菜籽油的特级初榨橄榄油的定量鉴别。 展开更多
关键词 特级初榨橄榄油 低温压榨菜籽油 PCA-svm 拉曼光谱 密度泛函理论
下载PDF
基于RF-SFLA-SVM的装配式建筑高空作业工人不安全行为预警
17
作者 王军武 何娟娟 +3 位作者 宋盈辉 刘一鹏 陈兆 郭婧怡 《中国安全科学学报》 CAS CSCD 北大核心 2024年第3期1-8,共8页
为有效预警装配式建筑高空作业工人不安全行为的发生趋势或状态,增强对装配式建筑工人不安全行为(PBWUBs)的管控,采用随机森林(RF)-混合蛙跳算法(SFLA)-支持向量机(SVM)模型,开展工人不安全行为预警研究。首先,采用SHEL模型分析处于高... 为有效预警装配式建筑高空作业工人不安全行为的发生趋势或状态,增强对装配式建筑工人不安全行为(PBWUBs)的管控,采用随机森林(RF)-混合蛙跳算法(SFLA)-支持向量机(SVM)模型,开展工人不安全行为预警研究。首先,采用SHEL模型分析处于高空作业危险中的PBWUBs的影响因素,并通过RF确定关键预警指标;然后,采用SFLA对SVM的参数进行寻优改进;最后,利用RF-SFLA-SVM预警高空作业PBWUBs,提出应对措施,并与其他预警模型对比。研究结果表明:基于RF-SFLA-SVM预警高空作业PBWUBs,准确率最高,为91.67%,与其他模型的预警性能相比,最高提升14%。研究结果可为高空作业PBWUBs的防控提供参考。 展开更多
关键词 随机森林(RF) 蛙跳算法(SFLA) 支持向量机(svm) 装配式建筑 高空作业 不安全行为
下载PDF
基于SVM的液压机械驱动齿轮组故障诊断研究
18
作者 王宽田 姚江云 +1 位作者 唐永忠 梁世华 《电子测量技术》 北大核心 2024年第13期10-17,共8页
针对液压机械驱动齿轮组故障诊断结果精准度不佳、可靠性差等问题,本文提出基于SVM的液压机械驱动齿轮组故障诊断研究。采集了液压机械驱动齿轮组振动信号,构建液压机械驱动齿轮组故障信号分离模型;运用低秩算法分离液压机械驱动齿轮箱... 针对液压机械驱动齿轮组故障诊断结果精准度不佳、可靠性差等问题,本文提出基于SVM的液压机械驱动齿轮组故障诊断研究。采集了液压机械驱动齿轮组振动信号,构建液压机械驱动齿轮组故障信号分离模型;运用低秩算法分离液压机械驱动齿轮箱振源信号,设计齿轮组故障信号约束条件,完成液压机械驱动齿轮组分类;根据分类结果,采用SDAE模型提取液压机械驱动齿轮组故障特征,并将提取结果输入到支持向量机内训练,其最终输出结果就是最佳诊断结果,实现基于SVM的液压机械驱动齿轮组故障诊断研究。实验结果表明,通过对该方法开展故障检测及故障诊断测试,本文方法下分类错误率不超过3.5%,验证了该方法的可行性高。 展开更多
关键词 svm 液压机械驱动齿轮组 故障分类 SDAE模型 信号分离
下载PDF
基于PSO-SVM的Φ-OTDR系统模式识别研究
19
作者 朱宗玖 王宁 《科学技术与工程》 北大核心 2024年第12期5023-5029,共7页
针对相位敏感光时域反射仪(phase sensitive optical time domain reflectometer,Φ-OTDR)系统中误报率高的问题,提出一种多域特征提取与粒子群算法优化支持向量机(particle swarm optimization-support vector machine,PSO-SVM)相结合... 针对相位敏感光时域反射仪(phase sensitive optical time domain reflectometer,Φ-OTDR)系统中误报率高的问题,提出一种多域特征提取与粒子群算法优化支持向量机(particle swarm optimization-support vector machine,PSO-SVM)相结合的模式识别算法。首先,对原始信号进行差分处理后提取时域特征,并利用小波包分解方法,通过验证不同分解层数下的事件分类准确率,设定最优分解层数为6层,提取差分信号的能量特征。然后以SVM分类器为基础,利用PSO算法优化SVM分类器参数,提高光纤振动信号识别准确率。最后利用Φ-OTDR事件数据集进行验证,实验结果表明,该模式识别算法达到了95.6%的振动事件分类准确率。 展开更多
关键词 相位敏感光时域反射仪(Φ-OTDR) 小波包分解 粒子群算法(PSO) 支持向量机(svm) 模式识别
下载PDF
基于SVM的海洋内波图像预选方法
20
作者 陈捷 于振涛 +1 位作者 李婷婷 余路 《计算机科学与应用》 2024年第1期1-6,共6页
针对海量海洋卫星SAR数据处理和海洋内波应用急需,研究SAR海洋图像内波预选方法。根据SAR图像内波明暗条纹的周期性、延展性、独立性等特点,提取内波特征向量,通过支持向量机对这些特征向量进行训练,根据训练集开展SAR海洋图像自动内波... 针对海量海洋卫星SAR数据处理和海洋内波应用急需,研究SAR海洋图像内波预选方法。根据SAR图像内波明暗条纹的周期性、延展性、独立性等特点,提取内波特征向量,通过支持向量机对这些特征向量进行训练,根据训练集开展SAR海洋图像自动内波预选。通过对典型含内波SAR图像的测试可知,本文提出的SVM与内波多特征结合的方法可有效预选含内波的海洋SAR图像区域,预选结果与人工目视结果高度一致,可极大减轻人工处理工作量,为后续内波深入处理和应用奠定基础。 展开更多
关键词 支持向量机(svm) 海洋内波 功率谱特征 条纹延展性特征
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部