Geomagnetic storms are rapid disturbances of the Earth’s magnetosphere.They are related to many geophysical phenomena and have large influences on human activities.Observing and studying geomagnetic storms is thus of...Geomagnetic storms are rapid disturbances of the Earth’s magnetosphere.They are related to many geophysical phenomena and have large influences on human activities.Observing and studying geomagnetic storms is thus of great significance to both scientific research and geomagnetic hazards prevention.The Macao Science Satellite-1(MSS-1)project includes two high-precision Chinese geomagnetic satellites successfully launched on May 21,2023.The main purpose of MSS-1 is to accurately measure the Earth’s magnetic field.Here,we analyze early MSS-1 geomagnetic field measurements and report observations of two recent geomagnetic storms that occurred on March 24,2024 and May 11,2024.We also calculate the related geoelectric fields as an initial step towards a quantitative assessment of geomagnetic hazards.展开更多
The origin and spatial-temporal variation of the Earth’s magnetic field(EMF)is one of the important scientific problems that has long been unsolved.The Macao Science Satellite-1(MSS-1)under construction is China’s f...The origin and spatial-temporal variation of the Earth’s magnetic field(EMF)is one of the important scientific problems that has long been unsolved.The Macao Science Satellite-1(MSS-1)under construction is China’s first high-precision EMF measurement satellite.To satisfy the highly precise requirements of the MSS-1 orbit measurement,a light,high-precision,four-prism laser retroreflector array was designed.It weighs approximately 285 g,its effective reflection area is greater than 1.77 cm^(2),and its size is 100×100×41 mm.The laser retro-reflector array has excellent performance,and it can achieve a ranging precision at the subcentimeter level for satellite laser ranging.It will be developed and installed on the MSS-1 as a power-free load for high-precision orbit measurement and accurate orbit calibration.The MSS-1 is planned to be brought into the International Laser Ranging Service observations.More than 31satellite laser ranging stations in the International Laser Ranging Service around the world will be able to measure the MSS-1 with long arcs,which will support the scientific mission of high-precision EMF exploration.展开更多
The Euler angle estimation is a calibration method for vector data measured by the magnetometer on a satellite.It is used to find the relative rotation between the coordinate system of the magnetometer and the satelli...The Euler angle estimation is a calibration method for vector data measured by the magnetometer on a satellite.It is used to find the relative rotation between the coordinate system of the magnetometer and the satellite(usually determined by Star Imagers).Before launch of the low-orbit,low-inclination Macao Science Satellite-1(known as MSS-1),we simulated the estimation of Euler angles by using the magnetic measurements of the in-orbit Swarm and China Seismo-Electromagnetic Satellite(noted as CSES),with various data combinations.In this study,11 data sets were designed to analyze the estimation results for the MSS-1 orbit by using a joint estimation method of the geomagnetic field model parameters and Euler angles.For the model results,we found that all the spatial power spectral lines showed behavior consistent with that of the CHAOS-7.8 model at low degrees(corresponding to large-scale magnetic signals).The spectra of models without global data coverage deviated much more(by a maximum of~10^(4) nT^(2))from those of the CHAOS-7.8 model at higher degrees.For models with global data coverage and with various data combinations,the spectral lines were distributed similarly.Moreover,the models with accordant power spectral distributions demonstrated different Euler angle estimations.As more vector data at higher latitudes were included,the estimated Euler angles varied monotonically in all three directions.The models with vector data in the same latitude range showed similar Euler angle results,regardless of whether the poleward scalar data were included.The largest value difference was found between the models using vector data within±40°latitudes and those using vector data within±60°latitudes,which reached to~28″.Therefore,we concluded that the inversion of the spherical harmonic Gauss coefficients in our tests was mainly affected by the spatial coverage range of the data,whereas the estimation of Euler angles largely depended on the latitude range where the vector data could be obtained.These results can be used for future in-flight data testing.We expect the estimation of Euler angles to improve as other methods are adopted.展开更多
The solar X-ray detector(SXD)onboard the Macao Science Satellite-1B was designed to monitor solar flare bursts and to study the solar activity in the 25th solar cycle.The SXD includes two parts:a soft X-ray detection ...The solar X-ray detector(SXD)onboard the Macao Science Satellite-1B was designed to monitor solar flare bursts and to study the solar activity in the 25th solar cycle.The SXD includes two parts:a soft X-ray detection unit and a hard X-ray detection unit.Both the soft X-ray detection unit and the hard X-ray detection unit include two collimators,two X-ray detectors(a silicon drift detector and a cadmium-zinc-telluride detector),and a processing circuit.Compared with similar instruments,the energy range of the SXD is wider(1–600 ke V)and the energy resolution is better(150 e V at 5.9 ke V,12%at 59.5 ke V,and 3%at 662 keV).展开更多
The Macao Science Satellite-1(MSS-1)mission(https://mss.must.edu.mo/)is marked by a new high-precision constellation of satellites that will survey the Earth’s geomagnetic and space environment.MSS-1 consists of two ...The Macao Science Satellite-1(MSS-1)mission(https://mss.must.edu.mo/)is marked by a new high-precision constellation of satellites that will survey the Earth’s geomagnetic and space environment.MSS-1 consists of two satellites that are to be launched in the near future.Since these two low Earth orbit(LEO)satellites will operate in circular orbits,with an inclination of about 41°,they are expected to provide essential measurements covering the Earth’s lower-latitude regions—including,especially,the South Atlantic Anomaly(SAA).This special issue presents 18 articles to provide the international scientific community with details regarding the mission’s goals,relevant scientific research,on-board payloads,and international collaborations.Contributors are members of the scientific and engineering groups involved in the mission.In this preface,we categorize the articles and give some brief comments or editor’s recommendations.展开更多
This paper reports, for the first time, observation results of the Coherent Beacon System(CBS) onboard the China SeismoElectromagnetic Satellite-1(CSES-1). We describe the CBS, and the Computerized Ionospheric Tomogra...This paper reports, for the first time, observation results of the Coherent Beacon System(CBS) onboard the China SeismoElectromagnetic Satellite-1(CSES-1). We describe the CBS, and the Computerized Ionospheric Tomography(CIT) algorithm program is validated by numerical experiment. Two examples are shown, for daytime and nighttime respectively. The Equatorial Ionization Anomaly(EIA) can be seen, and the northern crest core is located at ~20°N in the reconstruction image at 07:28 UTC on 20 July 2018(daytime).Disturbances are shown in the reconstruction image at 18:40 UTC on 13 July 2018(nighttime). We find that beacon measurements are more consistent with ionosonde measurements than model results, by comparing Nm F2 at three sites at Lanzhou, Chongqing, and Kunming; consistency with ionosonde measurements validates beacon measurements. Finally, we have studied Vertical Total Electron Content(VTEC) variations from ground to ~500 km(the height of CSES-1 orbit) and ratios of VTEC between beacon measurements and CODE(Center for Orbit Determination in Europe) data. VTEC variation from ground to ~500 km has a range of 7.2–16.5 TECU for the daytime case and a range of 1.1–1.7 TECU for the nighttime case. The Beacon/CODE ratio of VTEC varies with latitude and time. The mean Beacon/CODE ratio is 0.69 for the daytime case and 0.26 for the nighttime case. The fact that the nighttime case yields lower ratios indicates the higher altitude of the ionosphere during nighttime when the ionosphere is assumed to be a thin layer.展开更多
On May 21,2023,the Macao Science Satellite-1B(MSS-1B),a low-inclination,low-latitude,and high-precision scientific exploration satellite for geomagnetic fields and space environments,was successfully launched.The sola...On May 21,2023,the Macao Science Satellite-1B(MSS-1B),a low-inclination,low-latitude,and high-precision scientific exploration satellite for geomagnetic fields and space environments,was successfully launched.The solar X-ray detector(SXD),one of the two major scientific payloads onboard the MSS-1B,has obtained a large amount of solar X-ray radiation data,which reveals the distribution law of the magnetic field in the low Earth orbit,as well as the coupling law of the Earth's magnetic field and the solar radiation and energy particle distributions.First,the overall design of the multi-detection-unit,broad-energy-range,small-volume,and low-power SXD was implemented to achieve the scientific objectives of the mission.Second,the technical indicators of the instrument were decomposed into various components,and the key technologies,such as collimator,processing circuit,thermal,and payload dataset designs,were reviewed.Third,the backgrounds,including electronic noise,cosmic diffuse X-ray background,and high-energy background in the Earth's radiation belts in and out of the field of view,were analyzed for the instrument.Then,the ground calibrations of the energy response,detection efficiency,and temperature-dependent peak drift of the SXD flight model were conducted.Finally,the in-orbit temperature,energy spectrum data,background,and solar flare process observation of the instrument in the in-orbit test stage are presented,verifying the instrument design,analysis,and ground calibration,providing a foundation for obtaining accurate solar X-ray radiation data,and achieving the scientific objectives of the satellite.展开更多
The Macao Science Satellite-1 is a two-satellite constellation specifically designed to study the geomagnetic field and particle radiation environment in low Earth orbit,particularly in the South Atlantic Anomaly regi...The Macao Science Satellite-1 is a two-satellite constellation specifically designed to study the geomagnetic field and particle radiation environment in low Earth orbit,particularly in the South Atlantic Anomaly region,with a low inclination orbit.Each of the two MSS-1 satellites carries a medium-energy electron spectrometer(MES).The MES sensor heads are based on pinhole imaging technology,which can simultaneously measure 50-600 keV electrons incident from nine directions with a field of view(FOV)of 180°×30°.The two MESs can realize the pitch angle coverage of medium energy electrons at most positions in the orbit.The MSS-1 A/B MESs can realize direct observation of precipitating electrons and electrons near their loss cones.It can help to study the electron generation mechanism in the inner radiation belt and quantify the precipitation of magnetospheric energetic electrons.Combined with the geomagnetic index,solar wind parameters,interplanetary magnetic field conditions,etc.,it can also help to build a dynamic evolution model of energetic electrons in the near-Earth space,to realize the early warning and prediction of space weather based on the observation data,which can provide safety for spacecraft and astronauts in the nearEarth space.展开更多
基金supported financially by the National Natural Science Foundation of China(42250101)the Macao Foundation and Macao Science and Technology Development Fund(0001/2019/A1).
文摘Geomagnetic storms are rapid disturbances of the Earth’s magnetosphere.They are related to many geophysical phenomena and have large influences on human activities.Observing and studying geomagnetic storms is thus of great significance to both scientific research and geomagnetic hazards prevention.The Macao Science Satellite-1(MSS-1)project includes two high-precision Chinese geomagnetic satellites successfully launched on May 21,2023.The main purpose of MSS-1 is to accurately measure the Earth’s magnetic field.Here,we analyze early MSS-1 geomagnetic field measurements and report observations of two recent geomagnetic storms that occurred on March 24,2024 and May 11,2024.We also calculate the related geoelectric fields as an initial step towards a quantitative assessment of geomagnetic hazards.
文摘The origin and spatial-temporal variation of the Earth’s magnetic field(EMF)is one of the important scientific problems that has long been unsolved.The Macao Science Satellite-1(MSS-1)under construction is China’s first high-precision EMF measurement satellite.To satisfy the highly precise requirements of the MSS-1 orbit measurement,a light,high-precision,four-prism laser retroreflector array was designed.It weighs approximately 285 g,its effective reflection area is greater than 1.77 cm^(2),and its size is 100×100×41 mm.The laser retro-reflector array has excellent performance,and it can achieve a ranging precision at the subcentimeter level for satellite laser ranging.It will be developed and installed on the MSS-1 as a power-free load for high-precision orbit measurement and accurate orbit calibration.The MSS-1 is planned to be brought into the International Laser Ranging Service observations.More than 31satellite laser ranging stations in the International Laser Ranging Service around the world will be able to measure the MSS-1 with long arcs,which will support the scientific mission of high-precision EMF exploration.
基金funded by the Macao Foundation,the pre-research project of Civil Aerospace Technologies(Nos.D020308 and D020303)funded by the China National Space Administration,Macao Science and Technology Development Fund(FDCT+1 种基金No.0001/2019/A1)the opening fund of the State Key Laboratory of Lunar and Planetary Sciences(Macao University of Science and Technology,Macao FDCT No.119/2017/A3)。
文摘The Euler angle estimation is a calibration method for vector data measured by the magnetometer on a satellite.It is used to find the relative rotation between the coordinate system of the magnetometer and the satellite(usually determined by Star Imagers).Before launch of the low-orbit,low-inclination Macao Science Satellite-1(known as MSS-1),we simulated the estimation of Euler angles by using the magnetic measurements of the in-orbit Swarm and China Seismo-Electromagnetic Satellite(noted as CSES),with various data combinations.In this study,11 data sets were designed to analyze the estimation results for the MSS-1 orbit by using a joint estimation method of the geomagnetic field model parameters and Euler angles.For the model results,we found that all the spatial power spectral lines showed behavior consistent with that of the CHAOS-7.8 model at low degrees(corresponding to large-scale magnetic signals).The spectra of models without global data coverage deviated much more(by a maximum of~10^(4) nT^(2))from those of the CHAOS-7.8 model at higher degrees.For models with global data coverage and with various data combinations,the spectral lines were distributed similarly.Moreover,the models with accordant power spectral distributions demonstrated different Euler angle estimations.As more vector data at higher latitudes were included,the estimated Euler angles varied monotonically in all three directions.The models with vector data in the same latitude range showed similar Euler angle results,regardless of whether the poleward scalar data were included.The largest value difference was found between the models using vector data within±40°latitudes and those using vector data within±60°latitudes,which reached to~28″.Therefore,we concluded that the inversion of the spherical harmonic Gauss coefficients in our tests was mainly affected by the spatial coverage range of the data,whereas the estimation of Euler angles largely depended on the latitude range where the vector data could be obtained.These results can be used for future in-flight data testing.We expect the estimation of Euler angles to improve as other methods are adopted.
基金the China National Space Administration(CNSA)the Macao University of Science and Technology Foundation for their support of this paper。
文摘The solar X-ray detector(SXD)onboard the Macao Science Satellite-1B was designed to monitor solar flare bursts and to study the solar activity in the 25th solar cycle.The SXD includes two parts:a soft X-ray detection unit and a hard X-ray detection unit.Both the soft X-ray detection unit and the hard X-ray detection unit include two collimators,two X-ray detectors(a silicon drift detector and a cadmium-zinc-telluride detector),and a processing circuit.Compared with similar instruments,the energy range of the SXD is wider(1–600 ke V)and the energy resolution is better(150 e V at 5.9 ke V,12%at 59.5 ke V,and 3%at 662 keV).
基金The support from National Natural Science Foundation of China(grant No.12250013)。
文摘The Macao Science Satellite-1(MSS-1)mission(https://mss.must.edu.mo/)is marked by a new high-precision constellation of satellites that will survey the Earth’s geomagnetic and space environment.MSS-1 consists of two satellites that are to be launched in the near future.Since these two low Earth orbit(LEO)satellites will operate in circular orbits,with an inclination of about 41°,they are expected to provide essential measurements covering the Earth’s lower-latitude regions—including,especially,the South Atlantic Anomaly(SAA).This special issue presents 18 articles to provide the international scientific community with details regarding the mission’s goals,relevant scientific research,on-board payloads,and international collaborations.Contributors are members of the scientific and engineering groups involved in the mission.In this preface,we categorize the articles and give some brief comments or editor’s recommendations.
基金supported by the “China Seismo-Electromagnetic Satellite (CSES)” projectthe 13th Five-Year Technology Program (Grant No. 315030409)
文摘This paper reports, for the first time, observation results of the Coherent Beacon System(CBS) onboard the China SeismoElectromagnetic Satellite-1(CSES-1). We describe the CBS, and the Computerized Ionospheric Tomography(CIT) algorithm program is validated by numerical experiment. Two examples are shown, for daytime and nighttime respectively. The Equatorial Ionization Anomaly(EIA) can be seen, and the northern crest core is located at ~20°N in the reconstruction image at 07:28 UTC on 20 July 2018(daytime).Disturbances are shown in the reconstruction image at 18:40 UTC on 13 July 2018(nighttime). We find that beacon measurements are more consistent with ionosonde measurements than model results, by comparing Nm F2 at three sites at Lanzhou, Chongqing, and Kunming; consistency with ionosonde measurements validates beacon measurements. Finally, we have studied Vertical Total Electron Content(VTEC) variations from ground to ~500 km(the height of CSES-1 orbit) and ratios of VTEC between beacon measurements and CODE(Center for Orbit Determination in Europe) data. VTEC variation from ground to ~500 km has a range of 7.2–16.5 TECU for the daytime case and a range of 1.1–1.7 TECU for the nighttime case. The Beacon/CODE ratio of VTEC varies with latitude and time. The mean Beacon/CODE ratio is 0.69 for the daytime case and 0.26 for the nighttime case. The fact that the nighttime case yields lower ratios indicates the higher altitude of the ionosphere during nighttime when the ionosphere is assumed to be a thin layer.
基金supported by the National Natural Science Foundation of China(Grant No.42327802)the National Key R&D Program of China(Grant No.2022YFF0708100)。
文摘On May 21,2023,the Macao Science Satellite-1B(MSS-1B),a low-inclination,low-latitude,and high-precision scientific exploration satellite for geomagnetic fields and space environments,was successfully launched.The solar X-ray detector(SXD),one of the two major scientific payloads onboard the MSS-1B,has obtained a large amount of solar X-ray radiation data,which reveals the distribution law of the magnetic field in the low Earth orbit,as well as the coupling law of the Earth's magnetic field and the solar radiation and energy particle distributions.First,the overall design of the multi-detection-unit,broad-energy-range,small-volume,and low-power SXD was implemented to achieve the scientific objectives of the mission.Second,the technical indicators of the instrument were decomposed into various components,and the key technologies,such as collimator,processing circuit,thermal,and payload dataset designs,were reviewed.Third,the backgrounds,including electronic noise,cosmic diffuse X-ray background,and high-energy background in the Earth's radiation belts in and out of the field of view,were analyzed for the instrument.Then,the ground calibrations of the energy response,detection efficiency,and temperature-dependent peak drift of the SXD flight model were conducted.Finally,the in-orbit temperature,energy spectrum data,background,and solar flare process observation of the instrument in the in-orbit test stage are presented,verifying the instrument design,analysis,and ground calibration,providing a foundation for obtaining accurate solar X-ray radiation data,and achieving the scientific objectives of the satellite.
基金supported by the National Natural Science Foundation of China(Grant No.42274225)the Science and Technology Development Fund,Macao SAR(Grant No.SKL-LPS(MUST)-2024-2026)。
文摘The Macao Science Satellite-1 is a two-satellite constellation specifically designed to study the geomagnetic field and particle radiation environment in low Earth orbit,particularly in the South Atlantic Anomaly region,with a low inclination orbit.Each of the two MSS-1 satellites carries a medium-energy electron spectrometer(MES).The MES sensor heads are based on pinhole imaging technology,which can simultaneously measure 50-600 keV electrons incident from nine directions with a field of view(FOV)of 180°×30°.The two MESs can realize the pitch angle coverage of medium energy electrons at most positions in the orbit.The MSS-1 A/B MESs can realize direct observation of precipitating electrons and electrons near their loss cones.It can help to study the electron generation mechanism in the inner radiation belt and quantify the precipitation of magnetospheric energetic electrons.Combined with the geomagnetic index,solar wind parameters,interplanetary magnetic field conditions,etc.,it can also help to build a dynamic evolution model of energetic electrons in the near-Earth space,to realize the early warning and prediction of space weather based on the observation data,which can provide safety for spacecraft and astronauts in the nearEarth space.