In this paper,the spatio-temporal variation and propagation direction of coal fire were studied in the Jharia Coalfield(JCF),India during 2006–2015 through satellite-based night-time land surface temperature(LST)imag...In this paper,the spatio-temporal variation and propagation direction of coal fire were studied in the Jharia Coalfield(JCF),India during 2006–2015 through satellite-based night-time land surface temperature(LST)imaging.The LST was retrieved from Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER)night-time thermal-infrared data by a robust split-window algorithm based on scene-specific regression coefficients,band-specific hybrid emissivity,and night-time atmospheric transmittance.The LST-profile-based coal fire detection algorithm was formulated through statistical analysis of the LST values along multiple transects across diverse coal fire locations in the JCF in order to compute date-specific threshold temperatures for separating thermally-anomalous and background pixels.This algorithm efficiently separates surface fire,subsurface fire,and thermally-anomalous transitional pixels.During the observation period,it was noticed that the coal fire area increased significantly,which resulted from new coal fire at many places owing to extensive opencast-mining operations.It was observed that the fire propagation occurred primarily along the dip direction of the coal seams.At places,lateral-propagation of limited spatial extent was also observed along the strike direction possibly due to spatial continuity of the coal seams along strike.Moreover,the opencast-mining activities carried out during 2009–2015 and the structurally weak planes facilitated the fire propagation.展开更多
Some missions have been carried out to measure wave directional spectrum by synthetic aperture radar (SAR) and airborne real aperture radar (RAR) at a low incidence.Both them have their own advantages and limitati...Some missions have been carried out to measure wave directional spectrum by synthetic aperture radar (SAR) and airborne real aperture radar (RAR) at a low incidence.Both them have their own advantages and limitations.Scientists hope that SAR and satellite-based RAR can complement each other for the research on wave properties in the future.For this study,the authors aim to simulate the satellite-based RAR system to validate performance for measuring the directional wave spectrum.The principal measurements are introduced and the simulation methods based on the one developed by Hauser are adopted and slightly modified.To enhance the authenticity of input spectrum and the wave spectrum measuring consistency for SAR and satellite-based RAR,the wave height spectrum inversed from Envisat ASAR data by cross spectrum technology is used as the input spectrum of the simulation system.In the process of simulation,the sea surface,backscattering signal,modulation spectrum and the estimated wave height spectrum are simulated in each look direction.Directional wave spectrum are measured based on the simulated observations from 0 ? to 360 ? .From the estimated wave spectrum,it has an 180 ? ambiguity like SAR,but it has no special high wave number cut off in all the direction.Finally,the estimated spectrum is compared with the input one in terms of the dominant wave wavelength,direction and SWH and the results are promising.The simulation shows that satellite-based RAR should be capable of measuring the directional wave properties.Moreover,it indicates satellite-based RAR basically can measure waves that SAR can measure.展开更多
Accurate sea surface flux measurements are crucial for understanding the global water and energy cycles. The oceanic evaporation, which is a major component of the global oceanic fresh water flux, is useful for predic...Accurate sea surface flux measurements are crucial for understanding the global water and energy cycles. The oceanic evaporation, which is a major component of the global oceanic fresh water flux, is useful for predicting oceanic circulation and transport. The global Goddard Satellite-based Surface Turbulent Fluxes Version-2 (GSSTF2; July 1987–December 2000) dateset that was o?cially released in 2001 has been widely used by scientific community for global energy and water cycle research, and regional and short period data analyses. We have recently been funded by NASA to resume processing the GSSTF dataset with an objective of continually producing a uniform dataset of sea surface turbulent fluxes, derived from remote sensing data. The dataset is to be reprocessed and brought up-to-date (GSSTF2b) using improved input datasets such as a recently upgraded NCEP/DOE sea surface temperature reanalysis, and an upgraded surface wind and microwave brightness temperature V6 dataset (Version 6) from the Special Sensor Microwave Imager (SSM/I) produced by Remote Sensing Systems (RSS). A second new product (GSSTF3) is further proposed with a finer temporal (12-h) and spatial (0.25° × 0.25°) resolution. GSSTF2b (July 1987–December 2008) and GSSTF3 (July 1999–December 2009) will be released for the research community to use by late 2009 and early 2011, respectively.展开更多
In this article,the effect of the finite conductive surface area of a satellite on the use of satellite-based Langmuir probes is reviewed in light of the basic theory of asymmetric double Langmuir probes(ADLPs).Recent...In this article,the effect of the finite conductive surface area of a satellite on the use of satellite-based Langmuir probes is reviewed in light of the basic theory of asymmetric double Langmuir probes(ADLPs).Recent theoretical and experimental studies have discussed electron sheath/presheath formation and the electron Bohm criterion along with their implications for satellite-based Langmuir probes.The effects predicted by the latest theory of the electron Bohm criterion were not experimentally observed and the experimental results remain supportive of a critical area ratio(A_(L)/A_(S))_(crit)=(m_(i)/(2.3m_(e)))^(1/2)between the probe area A_(S)and the satellite area A_L as conventionally believed.A satellite-based Langmuir probe must satisfy this criterion to physically act as a single Langmuir probe.However,experimental investigations also found that high-energy electrons adversely affect(A_(L)/A_(S))_(crit)and a Langmuir probe's signal quality by giving additional electron current to A_(L).Based on these results,a number of limitations of the maximum probe area are derived when designing satellite-based Langmuir probes,with consideration of both the aim of the satellite and the plasma where the satellite-based probe works.These proposed measures are expected to only partially alleviate the effect of the inadequate satellite surface area on the application of satellite-based Langmuir probes.Using a larger satellite to carry a Langmuir probe remains the most viable means to obtain precise space plasma parameters.展开更多
A new handover strategy named minimal-hops handover(MHH) strategy for the lowearth orbit(LEO) satellite constellations networks equipped with inter-satellite links(ISLs) is proposed.MHH strategy,which is based on the ...A new handover strategy named minimal-hops handover(MHH) strategy for the lowearth orbit(LEO) satellite constellations networks equipped with inter-satellite links(ISLs) is proposed.MHH strategy,which is based on the hops of the end-to-end connection paths and makes good use of theregularity of the constellation network topology,can appropriately combine the handover procedure withrouting and efficiently solve the inter-satellite handover issue.Moreover,MHH strategy can providequality of services(QoS) guarantees to some extent.The system performances of the MHH strategy,suchas time propagation delay and handover frequency,are evaluated and compared with that of otherprevious strategies.The simulation results show that MHH strategy performs better than other previoushandover strategies.展开更多
Land surface albedo is a critical variable in determining surface energy balance,and regulating climate and ecosystem processes through feedback mechanisms.Therefore,climatic modelers and radiative monitoring require ...Land surface albedo is a critical variable in determining surface energy balance,and regulating climate and ecosystem processes through feedback mechanisms.Therefore,climatic modelers and radiative monitoring require accurate estimates of land surface albedo.With the instrument development,algorithm upgrade,spectral-band-adjustment in wavelength center or band width,and the increasing distinct requirement from diversified communities,various albedo terms have been generated in related satellite-based products.The lack of understanding on the divergence of these terminologies can introduce potential considerable errors in the subsequent applications,or an elevated probability to invert the deduced conclusion.We surveyed the basic concepts of reflectance quantities,retrieval strategies,and models developed since the 1970s,and discuss both strength and opportunity for improvements on land surface albedo extraction,and product generation.In addition,we exemplified the difference of albedo terms using the daily MODIS product(MCD43A)to emphasize the potential risk of the ambiguous usage,over typical IGBP land covers in Northern Kazakhstan.Our investigation shows that relative differences among various albedo terms can reach up to 181%and 50%,while 0.266 and 0.118 of absolute variance respectively in the narrow and broad-band surface albedo,which illuminated cautions against the ambiguous understanding of albedo terminologies or erroneous usage of albedo products.展开更多
Assimilation of snow cover is an important method to improve the accuracy of snow simulation. However, the effects of snow assimilation are poor because satellite observed snow cover data contain erroneous information...Assimilation of snow cover is an important method to improve the accuracy of snow simulation. However, the effects of snow assimilation are poor because satellite observed snow cover data contain erroneous information, such as cloud contamination. In this paper, an improved approach is proposed to reduce the effects of observational errors during assimilation of snow cover fraction acquired by the Fengyun-3(FY-3) satellite in northeastern China. A snow depth constraint was imposed on quality control of a snow depth product from a microwave radiation imager. The assimilation experiments were carried out before and after quality control(denoted as SCFDA and SCFDA_WSD, respectively). The snow cover fraction results were evaluated against the Moderate Resolution Imaging Spectroradiometer(MODIS) snow cover products. When assimilating the snow cover fraction with the snow depth constraint(i.e., SCFDA_WSD), substantially larger improvement was obtained than that without such a constraint/quality control(SCFDA), and the deviation and root mean square error of the snow cover fraction were significantly reduced.The assimilation performance was also evaluated against in-situ snow depth observations. The SCFDA_WSD also showed greater improvements during the snow accumulation and snowmelt periods than the SCFDA. The SCFDA_WSD improvements in woodland and shrubland were the most obvious. At different altitudes, the effects of the SCFDA_WSD were basically equivalent, and the deeper the snow depth was, the better the effect. In addition, the SCFDA_WSD method was found in close agreement with the observations during a sudden snowfall event.展开更多
Satellite integrity monitoring is vital to satellite-based augmentation systems,and can provide the confdence of the diferential corrections for each monitored satellite satisfying the stringent safety-of-life require...Satellite integrity monitoring is vital to satellite-based augmentation systems,and can provide the confdence of the diferential corrections for each monitored satellite satisfying the stringent safety-of-life requirements.Satellite integrity information includes the user diferential range error and the clock-ephemeris covariance which are used to deduce integrity probability.However,the existing direct statistic methods sufer from a low integrity bounding percentage.To address this problem,we develop an improved covariance-based method to determine satellite integrity information and evaluate its performance in the range domain and position domain.Compared with the direct statistic method,the integrity bounding percentage is improved by 24.91%and the availability by 5.63%.Compared with the covariance-based method,the convergence rate for the user diferential range error is improved by 8.04%.The proposed method is useful for the satellite integrity monitoring of a satellite-based augmentation system.展开更多
Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating a...Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating and integrating precipitation datasets from different sources to accurately characterize precipitation patterns has become a challenge to provide more accurate and alternative precipitation information for the region,which can even improve the performance of hydrological modelling.This study evaluated the applicability of widely used five satellite-based precipitation products(Climate Hazards Group InfraRed Precipitation with Station(CHIRPS),China Meteorological Forcing Dataset(CMFD),Climate Prediction Center morphing method(CMORPH),Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record(PERSIANN-CDR),and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis(TMPA))and a reanalysis precipitation dataset(ECMWF Reanalysis v5-Land Dataset(ERA5-Land))in Xinjiang using ground-based observational precipitation data from a limited number of meteorological stations.Based on this assessment,we proposed a framework that integrated different precipitation datasets with varying spatial resolutions using a dynamic Bayesian model averaging(DBMA)approach,the expectation-maximization method,and the ordinary Kriging interpolation method.The daily precipitation data merged using the DBMA approach exhibited distinct spatiotemporal variability,with an outstanding performance,as indicated by low root mean square error(RMSE=1.40 mm/d)and high Person's correlation coefficient(CC=0.67).Compared with the traditional simple model averaging(SMA)and individual product data,although the DBMA-fused precipitation data were slightly lower than the best precipitation product(CMFD),the overall performance of DBMA was more robust.The error analysis between DBMA-fused precipitation dataset and the more advanced Integrated Multi-satellite Retrievals for Global Precipitation Measurement Final(IMERG-F)precipitation product,as well as hydrological simulations in the Ebinur Lake Basin,further demonstrated the superior performance of DBMA-fused precipitation dataset in the entire Xinjiang region.The proposed framework for solving the fusion problem of multi-source precipitation data with different spatial resolutions is feasible for application in inland arid areas,and aids in obtaining more accurate regional hydrological information and improving regional water resources management capabilities and meteorological research in these regions.展开更多
Satellite-based products with high spatial and temporal resolution provide useful precipitation information for data-sparse or ungauged large-scale watersheds. In the Lower Lancang-Mekong River Basin, rainfall station...Satellite-based products with high spatial and temporal resolution provide useful precipitation information for data-sparse or ungauged large-scale watersheds. In the Lower Lancang-Mekong River Basin, rainfall stations are sparse and unevenly distributed, and the transboundary characteristic makes the collection of precipitation data more difficult, which has restricted hydrological processes simulation. In this study, daily precipitation data from four datasets(gauge observations, inverse distance weighted(IDW) data, Tropical Rainfall Measuring Mission(TRMM) estimates, and Climate Hazards Group InfraRed Precipitation with Stations(CHIRPS) estimates), were applied to drive the Soil and Water Assessment Tool(SWAT) model, and then their capability for hydrological simulation in the Lower Lancang-Mekong River Basin were examined. TRMM and CHIRPS data showed good performances on precipitation estimation in the Lower Lancang-Mekong River Basin, with the better performance for TRMM product. The Nash-Sutcliffe efficiency(NSE) values of gauge, IDW, TRMM, and CHIRPS simulations during the calibration period were 0.87, 0.86, 0.95, and 0.93 for monthly flow, respectively, and those for daily flow were 0.75, 0.77, 0.86, and 0.84, respectively. TRMM and CHIRPS data were superior to rain gauge and IDW data for driving the hydrological model, and TRMM data produced the best simulation performance. Satellite-based precipitation estimates could be suitable data sources when simulating hydrological processes for large data-poor or ungauged watersheds, especially in international river basins for which precipitation observations are difficult to collect. CHIRPS data provide long precipitation time series from 1981 to near present and thus could be used as an alternative precipitation input for hydrological simulation, especially for the period without TRMM data. For satellite-based precipitation products, the differences in the occurrence frequencies and amounts of precipitation with different intensities would affect simulation results of water balance components, which should be comprehensively considered in water resources estimation and planning.展开更多
The pro and con of whitecap parameterizations and a statistical wave breaking model are discussed. An improved model is derived by combining satellite-based parameterization and the wave breaking model. The appropriat...The pro and con of whitecap parameterizations and a statistical wave breaking model are discussed. An improved model is derived by combining satellite-based parameterization and the wave breaking model. The appropriate constants for the general wave state are obtained by considering the breaking condition of the wave slope and fitting with the satellite-based parameterization. The result is close to the constants based on the whitecap data from Monahan. Comparing with satellite-based data and the original model's results, the improved model's results are consistent with satellite-based data and previous studies. The global seasonal distributions of the whitecap coverage averaged from 1998 to 2008 are presented. Spatial and seasonal features of the whitecap coverage are analyzed.展开更多
The ionosphere is the ionized part of the upper atmosphere of the Earth,which plays an important role in atmospheric electricity and forms the inner edge of the magnetosphere.It influences radio propagation significan...The ionosphere is the ionized part of the upper atmosphere of the Earth,which plays an important role in atmospheric electricity and forms the inner edge of the magnetosphere.It influences radio propagation significantly,such as the Global Navigation Satellite System(GNSS).Meanwhile,the GNSS is also an essential technique for sensing the variation of ionosphere.During the years of 2019—2023,a large number of Chinese geodesy scientists devoted much efforts to the geodesy related ionosphere.Due to the very limited length,the achievements are carried out from the following six aspects,including:①The ionospheric correction models for BDS and BDSBAS;②Real-time global ionospheric monitoring and modeling;③The ionospheric 2D and 3D modeling based on GNSS and LEO satellites;④The ionospheric prediction based on artificial intelligence;⑤The monitoring and mitigation of ionospheric disturbances for GNSS users;⑥The ionospheric related data products and classical applications.展开更多
<span style="font-family:Verdana;">This study aimed at investigating the characteristics of the wind power resource in the Far North Region of Cameroon (FNR), based on modelling of daily long-term sate...<span style="font-family:Verdana;">This study aimed at investigating the characteristics of the wind power resource in the Far North Region of Cameroon (FNR), based on modelling of daily long-term satellite-derived data (2005-2020) and </span><i><span style="font-family:Verdana;">in-situ</span></i><span style="font-family:Verdana;"> wind measurements data (1987-2020). Five</span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">different reliable statistical indicators assessed the accuracy level for the goodness-of-fit tests of satellite-derived data. The two-parameter Weibull distribution function using the energy factor method described the statistical distribution of wind speed</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">and investigated the characteristics of the wind power resource. Six 10-kW pitch-controlled wind turbines (WT) evaluated the power output, energy and water produced. A 50 m pumping head was considered to estimate seasonal variations of volumetric flow rates and costs of water produced. The results revealed that the wind resource in FNR is suitable only</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">for wind pumping applications. Based on the hydraulic requirements for wind pumps, mechanical wind pumping system can be the most cost-effective option of wind pumping technologies in FNR. However, based on the estimated capacity factors of selected WT, wind electric pumping system can be acceptable for only four out of twenty-one sites in FNR.</span></span></span></span></span>展开更多
Within the framework of diferential augmentation,this paper introduces the basic technical framework and performance of the BeiDou Global Navigation Satellite System(BDS-3)Satellite-Based Augmentation System(BDSBAS),i...Within the framework of diferential augmentation,this paper introduces the basic technical framework and performance of the BeiDou Global Navigation Satellite System(BDS-3)Satellite-Based Augmentation System(BDSBAS),including orbit products,satellite clock ofset products,ionosphere and its integrity performance.The basic principle of BDS-3 Precise Point Positioning(PPP-B2b)is expounded,the similarities and diferences between the PPP service provided by BDS-3 and International Global Navigation Satellite System(GNSS)Service(IGS)are discussed,and the limitations of PPP-B2b are analyzed.Since both the BDSBAS and PPP-B2b utilize a ground monitoring station network to determine the satellite orbits and clock ofset corrections,and broadcast diferential corrections through the three Geostationary Orbit(GEO)satellites of BDS-3,the feasibility of the co-construction of BDSBAS and PPP-B2b is analyzed,strategies for the infrastructure sharing and correction broadcasting are presented,and the infuences of BDSBAS correction broadcasting strategy adjustment are evaluated.In addition,it assesses the possibility of broadcasting diferential corrections through the Inclined Geosynchronous Orbit(IGSO)satellites of BDS-3,and the feasibility of augmenting satellite navigation with Low Earth Orbit(LEO)satellites.展开更多
This paper summarizes the results and findings from the first International Workshop on Satellite Analyses of Tropical Cyclones(IWSATC).Estimating tropical cyclone intensity in the absence of penetrating reconnaissanc...This paper summarizes the results and findings from the first International Workshop on Satellite Analyses of Tropical Cyclones(IWSATC).Estimating tropical cyclone intensity in the absence of penetrating reconnaissance aircraft is mainly left to satellite-based remote sensing methods.The primary method used globally since the latter part of the last century is the Dvorak Technique.While this method has withstood the test of time,it is not without limitations,and has been subject to regional modifications by various national tropical cyclone analysis centers.Differences between agencies in both the application of the Dvorak Technique and in general operational procedures to derive final intensity estimates can lead to real-time warning conflicts,as well as issues with final best track values for climatological analyses.As coastal populations increase,the WMO recognizes these issues as potentially serious problems,and organized a workshop in 2011 to bring together tropical cyclone experts to 1) discuss current operational analysis practices,2) learn about developing satellite techniques,and 3) come up with a set of recommendations to start down a path towards a global congruence on intensity estimation procedures.展开更多
Satellite observations of atmospheric carbon dioxide (CO2) provide a useful way to improve the understanding of global carbon cycling. In this paper, we present a comparison between simulated CO2 concentrations from...Satellite observations of atmospheric carbon dioxide (CO2) provide a useful way to improve the understanding of global carbon cycling. In this paper, we present a comparison between simulated CO2 concentrations from an inversion model of the CarbonTracker Data Assimilation System (CTDAS) and satellite-based CO2 measurements of column-averaged dry air mole fraction (denoted XCO2) derived from version 3.3 Atmospheric CO2 Observations from Space retrievals of the Greenhouse Gases Observing SATellite (ACOS-GOSAT) L2 data products. We examine the differences of CTDAS and GOSAT to provide important guidance for the further investigation of CTDAS in order to quantify the corre- sponding flux estimates with satellite-based CO2 observations. We find that the mean point-by-point difference (CTDAS-GOSAT) between CTDAS and GOSAT XCO2 is -0.11 4-1.81 ppm, with a high agreement (correlation r = 0.77, P 〈 0.05) over the studied period. The latitudinal zonal variations of CTDAS and GOSAT are in general agreement with clear seasonal fluctuations. The major exception occurs in the zonal band of 0°-15°N where the difference is approximately 4 ppm, indicating that large uncertainty may exist in the assimilated CO2 for the low- latitude region of the Northem Hemisphere (NH). Additionally, we find that the hemispherical/continental differences between CTDAS and GOSAT are typically less than 1 ppm, but obvious discrepancies occur in different hemispheres/continents, with high consistency (point-by-point correlation r = 0.79, P 〈 0.05) in the NH and a weak correlation (point-by-point correlation r = 0.65, P 〈 0.05) in the Southern Hemisphere. Overall, the difference of CTDAS and GOSAT is small, and the comparison of CTDAS and GOSAT will further instruct the inverse modeling of CO2 fluxes using GOSAT.展开更多
The development of a dual-frequency multi-constellation satellite-based augmentation system(DFMC SBAS)is in progress worldwide.The broadcasted dual-frequency range error(DFRE)integrity parameter reflects the effects o...The development of a dual-frequency multi-constellation satellite-based augmentation system(DFMC SBAS)is in progress worldwide.The broadcasted dual-frequency range error(DFRE)integrity parameter reflects the effects of satellite ephemeris and clock corrections.A user uses the DFRE to calculate the protection level and then determines whether the DFMC SBAS service satisfies the requirements of the current flight phase.However,the calculation of the DFRE has not been reported.Herein,a DFRE estimation method is proposed based on the projection method.Using the ephemeris-clock covariance matrix of each satellite,the maximal projection direction was solved,and the projection of the covariance matrix on this direction was used as the DFRE to form an envelope for the maximal corrected error.Results show that the DFRE can form an envelope of the maximal corrected error with a set probability,and the integrity performance in the user segment satisfies the Category I precision approach requirement.展开更多
Being constructed in southwestern China, the Sichuan–Tibet Railway(STR) travels across the eastern Tibetan Plateau where there is the most complex terrain and changeable weather in the world. Due to sparse ground-bas...Being constructed in southwestern China, the Sichuan–Tibet Railway(STR) travels across the eastern Tibetan Plateau where there is the most complex terrain and changeable weather in the world. Due to sparse ground-based observations over the Tibetan Plateau, precipitation products retrieved by remote sensing are more widely used;however,satellite-based precipitation products(SPPs) have not yet been strictly and systematically evaluated along the STR.This study aims to evaluate the performance of six SPPs by a series of metrics with available ground observations along the STR during 1998–2020. The six SPPs include the datasets derived from the Tropical Rainfall Measuring Mission(TRMM), Climate Prediction Center morphing technique(CMORPH), Global Precipitation Measurement(GPM), Global Satellite Mapping of Precipitation(GSMaP), Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks(PERSIANN), and Fengyun-2 satellites precipitation estimate(FY2PRE). The results indicate that most of the SPPs can capture the precipitation characteristics on multiple timescales(monthly,daily, hourly, and diurnal cycle) as shown by the evaluated metrics. The probability density functions of the daily and hourly precipitation are also well represented by the SPPs, and 30 mm day^(-1) and 16 mm h^(-1) are identified as the daily and hourly thresholds of extreme precipitation events along the STR. The best SPP varies at different timescales:GPM and GSMaP are suitable for the monthly and daily scale, and FY2PRE and GPM are suited to the hourly scale.In general, GPM is relatively optimum on multiple timescales, and PERSIANN gives the worst performance. In addition, the SPPs perform worse at higher altitudes and for more intense precipitation. Overall, the results from this study are expected to provide essential reference for using the SPPs in meteorological services and disaster prevention in the STR construction and its future operation.展开更多
The old city centers of many major cities represent a great challenge from a constructive point of view since the foundations of the buildings consist of an aggregation of previous constructions.This endorses thorough...The old city centers of many major cities represent a great challenge from a constructive point of view since the foundations of the buildings consist of an aggregation of previous constructions.This endorses thorough monitoring activities during any underground construction.The capabilities of the persistent scatterer interferometry(PSI)can be exploited to cope with these monitoring needs.However,the old city centers represent a very challenging urban scenario since the rooftops are usually filled with air conditioning systems and due to the fact that the streets are usually crowded.This work assesses the applicability of the PSI technique under this challenging scenario.Moreover,it proposes a set of novel classification indexes that allow an objective assessment of the building’s health and the impact derived from any activity.They can be applied in deformation monitoring and risk evaluation in urban areas.The applicability of the technique and the proposed indexes is validated in the monitoring of underground construction works in the old city center of Madrid comparing the results against on-ground measurements and identifying the potential and the limitation of the technique.展开更多
文摘In this paper,the spatio-temporal variation and propagation direction of coal fire were studied in the Jharia Coalfield(JCF),India during 2006–2015 through satellite-based night-time land surface temperature(LST)imaging.The LST was retrieved from Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER)night-time thermal-infrared data by a robust split-window algorithm based on scene-specific regression coefficients,band-specific hybrid emissivity,and night-time atmospheric transmittance.The LST-profile-based coal fire detection algorithm was formulated through statistical analysis of the LST values along multiple transects across diverse coal fire locations in the JCF in order to compute date-specific threshold temperatures for separating thermally-anomalous and background pixels.This algorithm efficiently separates surface fire,subsurface fire,and thermally-anomalous transitional pixels.During the observation period,it was noticed that the coal fire area increased significantly,which resulted from new coal fire at many places owing to extensive opencast-mining operations.It was observed that the fire propagation occurred primarily along the dip direction of the coal seams.At places,lateral-propagation of limited spatial extent was also observed along the strike direction possibly due to spatial continuity of the coal seams along strike.Moreover,the opencast-mining activities carried out during 2009–2015 and the structurally weak planes facilitated the fire propagation.
基金The National Natural Science Foundation of China under contract No.40730843the National High Technology Development Program ("863"Program)under contract No.2007AA12Z182
文摘Some missions have been carried out to measure wave directional spectrum by synthetic aperture radar (SAR) and airborne real aperture radar (RAR) at a low incidence.Both them have their own advantages and limitations.Scientists hope that SAR and satellite-based RAR can complement each other for the research on wave properties in the future.For this study,the authors aim to simulate the satellite-based RAR system to validate performance for measuring the directional wave spectrum.The principal measurements are introduced and the simulation methods based on the one developed by Hauser are adopted and slightly modified.To enhance the authenticity of input spectrum and the wave spectrum measuring consistency for SAR and satellite-based RAR,the wave height spectrum inversed from Envisat ASAR data by cross spectrum technology is used as the input spectrum of the simulation system.In the process of simulation,the sea surface,backscattering signal,modulation spectrum and the estimated wave height spectrum are simulated in each look direction.Directional wave spectrum are measured based on the simulated observations from 0 ? to 360 ? .From the estimated wave spectrum,it has an 180 ? ambiguity like SAR,but it has no special high wave number cut off in all the direction.Finally,the estimated spectrum is compared with the input one in terms of the dominant wave wavelength,direction and SWH and the results are promising.The simulation shows that satellite-based RAR should be capable of measuring the directional wave properties.Moreover,it indicates satellite-based RAR basically can measure waves that SAR can measure.
基金supported by the Making Earth System data records for Use in Research En-vironments (MEaSUREs) Program of NASA Science Mission Directorate-Earth Science Division
文摘Accurate sea surface flux measurements are crucial for understanding the global water and energy cycles. The oceanic evaporation, which is a major component of the global oceanic fresh water flux, is useful for predicting oceanic circulation and transport. The global Goddard Satellite-based Surface Turbulent Fluxes Version-2 (GSSTF2; July 1987–December 2000) dateset that was o?cially released in 2001 has been widely used by scientific community for global energy and water cycle research, and regional and short period data analyses. We have recently been funded by NASA to resume processing the GSSTF dataset with an objective of continually producing a uniform dataset of sea surface turbulent fluxes, derived from remote sensing data. The dataset is to be reprocessed and brought up-to-date (GSSTF2b) using improved input datasets such as a recently upgraded NCEP/DOE sea surface temperature reanalysis, and an upgraded surface wind and microwave brightness temperature V6 dataset (Version 6) from the Special Sensor Microwave Imager (SSM/I) produced by Remote Sensing Systems (RSS). A second new product (GSSTF3) is further proposed with a finer temporal (12-h) and spatial (0.25° × 0.25°) resolution. GSSTF2b (July 1987–December 2008) and GSSTF3 (July 1999–December 2009) will be released for the research community to use by late 2009 and early 2011, respectively.
基金supported by National Natural Science Foundation of China(Nos.12275305 and 12205334)the Chinese Academy of Science Hundred Youth Talent Program+1 种基金China Postdoctoral Science Foundation(No.2022M713188)the Director’s Fund of Hefei Institutes of Physical Science,Chinese Academy of Sciences(No.YZJJ2022QN19)。
文摘In this article,the effect of the finite conductive surface area of a satellite on the use of satellite-based Langmuir probes is reviewed in light of the basic theory of asymmetric double Langmuir probes(ADLPs).Recent theoretical and experimental studies have discussed electron sheath/presheath formation and the electron Bohm criterion along with their implications for satellite-based Langmuir probes.The effects predicted by the latest theory of the electron Bohm criterion were not experimentally observed and the experimental results remain supportive of a critical area ratio(A_(L)/A_(S))_(crit)=(m_(i)/(2.3m_(e)))^(1/2)between the probe area A_(S)and the satellite area A_L as conventionally believed.A satellite-based Langmuir probe must satisfy this criterion to physically act as a single Langmuir probe.However,experimental investigations also found that high-energy electrons adversely affect(A_(L)/A_(S))_(crit)and a Langmuir probe's signal quality by giving additional electron current to A_(L).Based on these results,a number of limitations of the maximum probe area are derived when designing satellite-based Langmuir probes,with consideration of both the aim of the satellite and the plasma where the satellite-based probe works.These proposed measures are expected to only partially alleviate the effect of the inadequate satellite surface area on the application of satellite-based Langmuir probes.Using a larger satellite to carry a Langmuir probe remains the most viable means to obtain precise space plasma parameters.
文摘A new handover strategy named minimal-hops handover(MHH) strategy for the lowearth orbit(LEO) satellite constellations networks equipped with inter-satellite links(ISLs) is proposed.MHH strategy,which is based on the hops of the end-to-end connection paths and makes good use of theregularity of the constellation network topology,can appropriately combine the handover procedure withrouting and efficiently solve the inter-satellite handover issue.Moreover,MHH strategy can providequality of services(QoS) guarantees to some extent.The system performances of the MHH strategy,suchas time propagation delay and handover frequency,are evaluated and compared with that of otherprevious strategies.The simulation results show that MHH strategy performs better than other previoushandover strategies.
基金This work was supported by the National Key Research and Development plan[#2017YFB0504204]“100 Talents Project”of CAS[Y938091&Y674141001]+2 种基金Hunan NSF[#2018JJ2116&2018JJ3151]open funding of state key laboratory of Remote Sensing Science[#OFSLRSS201102]Liaoning Revitalization Talents Program[#XLYC1802027].
文摘Land surface albedo is a critical variable in determining surface energy balance,and regulating climate and ecosystem processes through feedback mechanisms.Therefore,climatic modelers and radiative monitoring require accurate estimates of land surface albedo.With the instrument development,algorithm upgrade,spectral-band-adjustment in wavelength center or band width,and the increasing distinct requirement from diversified communities,various albedo terms have been generated in related satellite-based products.The lack of understanding on the divergence of these terminologies can introduce potential considerable errors in the subsequent applications,or an elevated probability to invert the deduced conclusion.We surveyed the basic concepts of reflectance quantities,retrieval strategies,and models developed since the 1970s,and discuss both strength and opportunity for improvements on land surface albedo extraction,and product generation.In addition,we exemplified the difference of albedo terms using the daily MODIS product(MCD43A)to emphasize the potential risk of the ambiguous usage,over typical IGBP land covers in Northern Kazakhstan.Our investigation shows that relative differences among various albedo terms can reach up to 181%and 50%,while 0.266 and 0.118 of absolute variance respectively in the narrow and broad-band surface albedo,which illuminated cautions against the ambiguous understanding of albedo terminologies or erroneous usage of albedo products.
基金Supported by the National Natural Science Foundation of China(91437220)National Key Research and Development Program of China(2018YFC1506601)China Meteorological Administration Special Public Welfare Research Fund(GYHY201506002)
文摘Assimilation of snow cover is an important method to improve the accuracy of snow simulation. However, the effects of snow assimilation are poor because satellite observed snow cover data contain erroneous information, such as cloud contamination. In this paper, an improved approach is proposed to reduce the effects of observational errors during assimilation of snow cover fraction acquired by the Fengyun-3(FY-3) satellite in northeastern China. A snow depth constraint was imposed on quality control of a snow depth product from a microwave radiation imager. The assimilation experiments were carried out before and after quality control(denoted as SCFDA and SCFDA_WSD, respectively). The snow cover fraction results were evaluated against the Moderate Resolution Imaging Spectroradiometer(MODIS) snow cover products. When assimilating the snow cover fraction with the snow depth constraint(i.e., SCFDA_WSD), substantially larger improvement was obtained than that without such a constraint/quality control(SCFDA), and the deviation and root mean square error of the snow cover fraction were significantly reduced.The assimilation performance was also evaluated against in-situ snow depth observations. The SCFDA_WSD also showed greater improvements during the snow accumulation and snowmelt periods than the SCFDA. The SCFDA_WSD improvements in woodland and shrubland were the most obvious. At different altitudes, the effects of the SCFDA_WSD were basically equivalent, and the deeper the snow depth was, the better the effect. In addition, the SCFDA_WSD method was found in close agreement with the observations during a sudden snowfall event.
基金supported by the Research Startup Funds from Tianjin University of Technology under Grant 01002101.
文摘Satellite integrity monitoring is vital to satellite-based augmentation systems,and can provide the confdence of the diferential corrections for each monitored satellite satisfying the stringent safety-of-life requirements.Satellite integrity information includes the user diferential range error and the clock-ephemeris covariance which are used to deduce integrity probability.However,the existing direct statistic methods sufer from a low integrity bounding percentage.To address this problem,we develop an improved covariance-based method to determine satellite integrity information and evaluate its performance in the range domain and position domain.Compared with the direct statistic method,the integrity bounding percentage is improved by 24.91%and the availability by 5.63%.Compared with the covariance-based method,the convergence rate for the user diferential range error is improved by 8.04%.The proposed method is useful for the satellite integrity monitoring of a satellite-based augmentation system.
基金supported by The Technology Innovation Team(Tianshan Innovation Team),Innovative Team for Efficient Utilization of Water Resources in Arid Regions(2022TSYCTD0001)the National Natural Science Foundation of China(42171269)the Xinjiang Academician Workstation Cooperative Research Project(2020.B-001).
文摘Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating and integrating precipitation datasets from different sources to accurately characterize precipitation patterns has become a challenge to provide more accurate and alternative precipitation information for the region,which can even improve the performance of hydrological modelling.This study evaluated the applicability of widely used five satellite-based precipitation products(Climate Hazards Group InfraRed Precipitation with Station(CHIRPS),China Meteorological Forcing Dataset(CMFD),Climate Prediction Center morphing method(CMORPH),Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record(PERSIANN-CDR),and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis(TMPA))and a reanalysis precipitation dataset(ECMWF Reanalysis v5-Land Dataset(ERA5-Land))in Xinjiang using ground-based observational precipitation data from a limited number of meteorological stations.Based on this assessment,we proposed a framework that integrated different precipitation datasets with varying spatial resolutions using a dynamic Bayesian model averaging(DBMA)approach,the expectation-maximization method,and the ordinary Kriging interpolation method.The daily precipitation data merged using the DBMA approach exhibited distinct spatiotemporal variability,with an outstanding performance,as indicated by low root mean square error(RMSE=1.40 mm/d)and high Person's correlation coefficient(CC=0.67).Compared with the traditional simple model averaging(SMA)and individual product data,although the DBMA-fused precipitation data were slightly lower than the best precipitation product(CMFD),the overall performance of DBMA was more robust.The error analysis between DBMA-fused precipitation dataset and the more advanced Integrated Multi-satellite Retrievals for Global Precipitation Measurement Final(IMERG-F)precipitation product,as well as hydrological simulations in the Ebinur Lake Basin,further demonstrated the superior performance of DBMA-fused precipitation dataset in the entire Xinjiang region.The proposed framework for solving the fusion problem of multi-source precipitation data with different spatial resolutions is feasible for application in inland arid areas,and aids in obtaining more accurate regional hydrological information and improving regional water resources management capabilities and meteorological research in these regions.
基金National Key R&D Program of China(No.2016YFA0601601)National Natural Science Foundation of China(No.41601026,41661099)Science and Technology Planning Project of Yunnan Province,China(No.2017FB073)
文摘Satellite-based products with high spatial and temporal resolution provide useful precipitation information for data-sparse or ungauged large-scale watersheds. In the Lower Lancang-Mekong River Basin, rainfall stations are sparse and unevenly distributed, and the transboundary characteristic makes the collection of precipitation data more difficult, which has restricted hydrological processes simulation. In this study, daily precipitation data from four datasets(gauge observations, inverse distance weighted(IDW) data, Tropical Rainfall Measuring Mission(TRMM) estimates, and Climate Hazards Group InfraRed Precipitation with Stations(CHIRPS) estimates), were applied to drive the Soil and Water Assessment Tool(SWAT) model, and then their capability for hydrological simulation in the Lower Lancang-Mekong River Basin were examined. TRMM and CHIRPS data showed good performances on precipitation estimation in the Lower Lancang-Mekong River Basin, with the better performance for TRMM product. The Nash-Sutcliffe efficiency(NSE) values of gauge, IDW, TRMM, and CHIRPS simulations during the calibration period were 0.87, 0.86, 0.95, and 0.93 for monthly flow, respectively, and those for daily flow were 0.75, 0.77, 0.86, and 0.84, respectively. TRMM and CHIRPS data were superior to rain gauge and IDW data for driving the hydrological model, and TRMM data produced the best simulation performance. Satellite-based precipitation estimates could be suitable data sources when simulating hydrological processes for large data-poor or ungauged watersheds, especially in international river basins for which precipitation observations are difficult to collect. CHIRPS data provide long precipitation time series from 1981 to near present and thus could be used as an alternative precipitation input for hydrological simulation, especially for the period without TRMM data. For satellite-based precipitation products, the differences in the occurrence frequencies and amounts of precipitation with different intensities would affect simulation results of water balance components, which should be comprehensively considered in water resources estimation and planning.
基金The National Key Basic Research Program(973 Program)of China under contract No.2010CB950404the National High Technology Research and Development Program(863 Program)of China under contract No.2013AA09A506+1 种基金the Basic Scientific Fund for National Public Research Institutes of China under contract No.GY0214G01the Ocean Renewable Energy Special Fund Project of the State Oceanic Administration of China under contract No.GHME2011ZC07
文摘The pro and con of whitecap parameterizations and a statistical wave breaking model are discussed. An improved model is derived by combining satellite-based parameterization and the wave breaking model. The appropriate constants for the general wave state are obtained by considering the breaking condition of the wave slope and fitting with the satellite-based parameterization. The result is close to the constants based on the whitecap data from Monahan. Comparing with satellite-based data and the original model's results, the improved model's results are consistent with satellite-based data and previous studies. The global seasonal distributions of the whitecap coverage averaged from 1998 to 2008 are presented. Spatial and seasonal features of the whitecap coverage are analyzed.
基金National Key R&D Program of China(No.2021YFB3901301)National Natural Science Foundation of China(Nos.42074043,42122026,42174038)Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.Y9E006033D)。
文摘The ionosphere is the ionized part of the upper atmosphere of the Earth,which plays an important role in atmospheric electricity and forms the inner edge of the magnetosphere.It influences radio propagation significantly,such as the Global Navigation Satellite System(GNSS).Meanwhile,the GNSS is also an essential technique for sensing the variation of ionosphere.During the years of 2019—2023,a large number of Chinese geodesy scientists devoted much efforts to the geodesy related ionosphere.Due to the very limited length,the achievements are carried out from the following six aspects,including:①The ionospheric correction models for BDS and BDSBAS;②Real-time global ionospheric monitoring and modeling;③The ionospheric 2D and 3D modeling based on GNSS and LEO satellites;④The ionospheric prediction based on artificial intelligence;⑤The monitoring and mitigation of ionospheric disturbances for GNSS users;⑥The ionospheric related data products and classical applications.
文摘<span style="font-family:Verdana;">This study aimed at investigating the characteristics of the wind power resource in the Far North Region of Cameroon (FNR), based on modelling of daily long-term satellite-derived data (2005-2020) and </span><i><span style="font-family:Verdana;">in-situ</span></i><span style="font-family:Verdana;"> wind measurements data (1987-2020). Five</span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">different reliable statistical indicators assessed the accuracy level for the goodness-of-fit tests of satellite-derived data. The two-parameter Weibull distribution function using the energy factor method described the statistical distribution of wind speed</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">and investigated the characteristics of the wind power resource. Six 10-kW pitch-controlled wind turbines (WT) evaluated the power output, energy and water produced. A 50 m pumping head was considered to estimate seasonal variations of volumetric flow rates and costs of water produced. The results revealed that the wind resource in FNR is suitable only</span></span></span></span></span><span><span><span><span><span style="font-family:;" "=""> </span></span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">for wind pumping applications. Based on the hydraulic requirements for wind pumps, mechanical wind pumping system can be the most cost-effective option of wind pumping technologies in FNR. However, based on the estimated capacity factors of selected WT, wind electric pumping system can be acceptable for only four out of twenty-one sites in FNR.</span></span></span></span></span>
基金supported by the National Natural Science Foundation of China(No.41931076)the National Key Research and Development Program of China(No.2020YFB0505802)the Wenhai Program of Qingdao National Laboratory for Marine Science and Technology(QNLM)(No.2021WHZZB1005).
文摘Within the framework of diferential augmentation,this paper introduces the basic technical framework and performance of the BeiDou Global Navigation Satellite System(BDS-3)Satellite-Based Augmentation System(BDSBAS),including orbit products,satellite clock ofset products,ionosphere and its integrity performance.The basic principle of BDS-3 Precise Point Positioning(PPP-B2b)is expounded,the similarities and diferences between the PPP service provided by BDS-3 and International Global Navigation Satellite System(GNSS)Service(IGS)are discussed,and the limitations of PPP-B2b are analyzed.Since both the BDSBAS and PPP-B2b utilize a ground monitoring station network to determine the satellite orbits and clock ofset corrections,and broadcast diferential corrections through the three Geostationary Orbit(GEO)satellites of BDS-3,the feasibility of the co-construction of BDSBAS and PPP-B2b is analyzed,strategies for the infrastructure sharing and correction broadcasting are presented,and the infuences of BDSBAS correction broadcasting strategy adjustment are evaluated.In addition,it assesses the possibility of broadcasting diferential corrections through the Inclined Geosynchronous Orbit(IGSO)satellites of BDS-3,and the feasibility of augmenting satellite navigation with Low Earth Orbit(LEO)satellites.
文摘This paper summarizes the results and findings from the first International Workshop on Satellite Analyses of Tropical Cyclones(IWSATC).Estimating tropical cyclone intensity in the absence of penetrating reconnaissance aircraft is mainly left to satellite-based remote sensing methods.The primary method used globally since the latter part of the last century is the Dvorak Technique.While this method has withstood the test of time,it is not without limitations,and has been subject to regional modifications by various national tropical cyclone analysis centers.Differences between agencies in both the application of the Dvorak Technique and in general operational procedures to derive final intensity estimates can lead to real-time warning conflicts,as well as issues with final best track values for climatological analyses.As coastal populations increase,the WMO recognizes these issues as potentially serious problems,and organized a workshop in 2011 to bring together tropical cyclone experts to 1) discuss current operational analysis practices,2) learn about developing satellite techniques,and 3) come up with a set of recommendations to start down a path towards a global congruence on intensity estimation procedures.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05040403)the National High Technology Research and Development Program of China (2013AA122002)
文摘Satellite observations of atmospheric carbon dioxide (CO2) provide a useful way to improve the understanding of global carbon cycling. In this paper, we present a comparison between simulated CO2 concentrations from an inversion model of the CarbonTracker Data Assimilation System (CTDAS) and satellite-based CO2 measurements of column-averaged dry air mole fraction (denoted XCO2) derived from version 3.3 Atmospheric CO2 Observations from Space retrievals of the Greenhouse Gases Observing SATellite (ACOS-GOSAT) L2 data products. We examine the differences of CTDAS and GOSAT to provide important guidance for the further investigation of CTDAS in order to quantify the corre- sponding flux estimates with satellite-based CO2 observations. We find that the mean point-by-point difference (CTDAS-GOSAT) between CTDAS and GOSAT XCO2 is -0.11 4-1.81 ppm, with a high agreement (correlation r = 0.77, P 〈 0.05) over the studied period. The latitudinal zonal variations of CTDAS and GOSAT are in general agreement with clear seasonal fluctuations. The major exception occurs in the zonal band of 0°-15°N where the difference is approximately 4 ppm, indicating that large uncertainty may exist in the assimilated CO2 for the low- latitude region of the Northem Hemisphere (NH). Additionally, we find that the hemispherical/continental differences between CTDAS and GOSAT are typically less than 1 ppm, but obvious discrepancies occur in different hemispheres/continents, with high consistency (point-by-point correlation r = 0.79, P 〈 0.05) in the NH and a weak correlation (point-by-point correlation r = 0.65, P 〈 0.05) in the Southern Hemisphere. Overall, the difference of CTDAS and GOSAT is small, and the comparison of CTDAS and GOSAT will further instruct the inverse modeling of CO2 fluxes using GOSAT.
基金the State Key Laboratory of Geo-Information Engineering,No.SKLGIE2018-Z-2-2.
文摘The development of a dual-frequency multi-constellation satellite-based augmentation system(DFMC SBAS)is in progress worldwide.The broadcasted dual-frequency range error(DFRE)integrity parameter reflects the effects of satellite ephemeris and clock corrections.A user uses the DFRE to calculate the protection level and then determines whether the DFMC SBAS service satisfies the requirements of the current flight phase.However,the calculation of the DFRE has not been reported.Herein,a DFRE estimation method is proposed based on the projection method.Using the ephemeris-clock covariance matrix of each satellite,the maximal projection direction was solved,and the projection of the covariance matrix on this direction was used as the DFRE to form an envelope for the maximal corrected error.Results show that the DFRE can form an envelope of the maximal corrected error with a set probability,and the integrity performance in the user segment satisfies the Category I precision approach requirement.
基金Supported by the National Natural Science Foundation of China(42030611 and 42165005)the Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(2019QZKK0103 and 2019QZKK0106)Key Research and Development Plans of Tibet Autonomous Region in 2022(XZ202201ZY0008G)。
文摘Being constructed in southwestern China, the Sichuan–Tibet Railway(STR) travels across the eastern Tibetan Plateau where there is the most complex terrain and changeable weather in the world. Due to sparse ground-based observations over the Tibetan Plateau, precipitation products retrieved by remote sensing are more widely used;however,satellite-based precipitation products(SPPs) have not yet been strictly and systematically evaluated along the STR.This study aims to evaluate the performance of six SPPs by a series of metrics with available ground observations along the STR during 1998–2020. The six SPPs include the datasets derived from the Tropical Rainfall Measuring Mission(TRMM), Climate Prediction Center morphing technique(CMORPH), Global Precipitation Measurement(GPM), Global Satellite Mapping of Precipitation(GSMaP), Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks(PERSIANN), and Fengyun-2 satellites precipitation estimate(FY2PRE). The results indicate that most of the SPPs can capture the precipitation characteristics on multiple timescales(monthly,daily, hourly, and diurnal cycle) as shown by the evaluated metrics. The probability density functions of the daily and hourly precipitation are also well represented by the SPPs, and 30 mm day^(-1) and 16 mm h^(-1) are identified as the daily and hourly thresholds of extreme precipitation events along the STR. The best SPP varies at different timescales:GPM and GSMaP are suitable for the monthly and daily scale, and FY2PRE and GPM are suited to the hourly scale.In general, GPM is relatively optimum on multiple timescales, and PERSIANN gives the worst performance. In addition, the SPPs perform worse at higher altitudes and for more intense precipitation. Overall, the results from this study are expected to provide essential reference for using the SPPs in meteorological services and disaster prevention in the STR construction and its future operation.
文摘The old city centers of many major cities represent a great challenge from a constructive point of view since the foundations of the buildings consist of an aggregation of previous constructions.This endorses thorough monitoring activities during any underground construction.The capabilities of the persistent scatterer interferometry(PSI)can be exploited to cope with these monitoring needs.However,the old city centers represent a very challenging urban scenario since the rooftops are usually filled with air conditioning systems and due to the fact that the streets are usually crowded.This work assesses the applicability of the PSI technique under this challenging scenario.Moreover,it proposes a set of novel classification indexes that allow an objective assessment of the building’s health and the impact derived from any activity.They can be applied in deformation monitoring and risk evaluation in urban areas.The applicability of the technique and the proposed indexes is validated in the monitoring of underground construction works in the old city center of Madrid comparing the results against on-ground measurements and identifying the potential and the limitation of the technique.