Recently developed ‘super’ rice cultivars with greater yield potentials often suffer from the problem of poor grain filling, especially in inferior spikelets. Here, we studied the activities of enzymes related to st...Recently developed ‘super’ rice cultivars with greater yield potentials often suffer from the problem of poor grain filling, especially in inferior spikelets. Here, we studied the activities of enzymes related to starch metabolism in rice stems and grains, and the microstructures related to carbohydrate accumulation and transportation to investigate the effects of different water regimes on grain filling. Two ‘super’ rice cultivars were grown under two irrigation regimes of well-watered(WW) and alternate wetting and moderate soil drying(AWMD). Compared with the WW treatment,the activities of ADP glucose pyrophosphorylase(AGPase), starch synthase(StSase) and starch branching enzyme(SBE), and the accumulation of non-structural carbohydrates(NSCs) in the stems before heading were significantly improved, and more starch granules were stored in the stems in the AWMD treatment. After heading, the activities of α-amylase, β-amylase, sucrose phosphate synthase(SPS) and sucrose synthase in the synthetic direction(SSs)were increased in the stems to promote the remobilization of NSCs for grain filling under AWMD. During grain filling, the enzymatic activities of sucrose synthase in the cleavage direction(SSc), AGPase, StSase and SBE in the inferior spikelets were increased, which promoted grain filling, especially for the inferior spikelets under AWMD.However, there were no significant differences in vascular microstructures. The grain yield and grain weight could be improved by 13.1 and 7.5%, respectively, by optimizing of the irrigation regime. We concluded that the low activities of key enzymes in carbon metabolism is the key limitation for the poor grain filling, as opposed to the vascular microstructures, and AWMD can increase the amount of NSC accumulation in the stems before heading, improve the utilization rate of NSCs after heading, and increase the grain filling, especially in the inferior spikelets, by altering the activities of key enzymes in carbon metabolism.展开更多
Tillering is an important agronomic trait of rice(Oryza sativa)that affects the number of effective panicles,thereby affecting yields.The phytohormone auxin plays a key role in tillering.Here we identified the high ti...Tillering is an important agronomic trait of rice(Oryza sativa)that affects the number of effective panicles,thereby affecting yields.The phytohormone auxin plays a key role in tillering.Here we identified the high tillering and semi-dwarf 1(htsd1)mutant with auxin-deficiency root characteristics,such as shortened lateral roots,reduced lateral root density,and enlarged root angles.htsd1 showed reduced sensitivity to auxin,but the external application of indole-3-acetic acid(IAA)inhibited its tillering.We identified the mutated gene in htsd1 as AUXIN1(OsAUX1,LOC_Os01g63770),which encodes an auxin influx transporter.The promoter sequence of OsAUX1 contains many SQUAMOSA PROMOTER BINDING PROTEIN-LIKE(SPL)binding sites,and we demonstrated that SPL7 binds to the OsAUX1 promoter.TEOSINTE BRANCHED1(OsTB1),a key gene that negatively regulates tillering,was significantly downregulated in htsd1.Tillering was enhanced in the OsTB1 knockout mutant,and the external application of IAA inhibited tiller elongation in this mutant.Overexpressing OsTB1 restored the multi-tiller phenotype of htsd1.These results suggest that SPL7 directly binds to the OsAUX1 promoter and regulates tillering in rice by altering OsTB1 expression to modulate auxin signaling.展开更多
Rice(Oryza sativa L.)is one of the most important cereal crops in the world.Bakanae disease is a significant rice disease widely distributed in rice-growing regions worldwide.Therefore,the present investigation aimed ...Rice(Oryza sativa L.)is one of the most important cereal crops in the world.Bakanae disease is a significant rice disease widely distributed in rice-growing regions worldwide.Therefore,the present investigation aimed to assess the optimal concentrations of paclobutrazol(PBZ)as a treatment for rice grains(cv.Sakha 108)to control bakanae disease,also evaluating its impact on grain germination,seedling growth parameters as well as disease index.Paclobutrazol concentrations had no significant impact on seed germination,regardless of whether the seeds were incubated with Fusarium fujikuroi or not.Application of PBZ,either alone or in combination with fungal pathogens,negatively impacted the rice seedlings’height.Paclobutrazol at 25,50 and 100 mg/L,combined with the fungal pathogen positively impacted root length.Paclobutrazol at 3 and 6 mg/L mitigated the adverse impact on chlorophyll pigments content in infected seedlings.The highest proline contents were achieved by 100 mg/L PBZ alone or in combination with fungal pathogens.It has been observed that the application of PBZ,either alone or in combination with a fungal pathogen,leads to the enhancement of catalase,peroxidase,and polyphenol oxidase activities.The median lethal concentration of PBZ was 0.874 mg/L;applying low concentrations of paclobutrazol effectively increased the percentage of fungal growth suppression.Application of PBZ,at higher concentrations(50 and 100 mg/L),decreased infection percentage and disease severity index(DSI)significantly.These findings suggest that PBZ can be an effective treatment for controlling bakanae disease and enhancing resistance in rice plants.展开更多
Many studies have already shown that dwarfism and moderate delayed leaf senescence positively impact rice yield,but the underlying molecular mechanism of dwarfism and leaf senescence remains largely unknown.Here,using...Many studies have already shown that dwarfism and moderate delayed leaf senescence positively impact rice yield,but the underlying molecular mechanism of dwarfism and leaf senescence remains largely unknown.Here,using map-based cloning,we identified an allele of DEP2,DDG1,which controls plant height and leaf senescence in rice.The ddg1 mutant displayed dwarfism,short panicles,and delayed leaf senescence.Compared with the wild-type,ddg1 was insensitive to exogenous gibberellins(GA)and brassinolide(BR).DDG1 is expressed in various organs,especially in stems and panicles.Yeast two-hybrid assay,bimolecular fluorescent complementation and luciferase complementation image assay showed that DDG1 interacts with theα-subunit of the heterotrimeric G protein.Disruption of RGA1 resulted in dwarfism,short panicles,and darker-green leaves.Furthermore,we found that ddg1 and the RGA1 mutant was more sensitive to salt treatment,suggesting that DDG1 and RGA1 are involved in regulating salt stress response in rice.Our results show that DDG1/DEP2 regulates plant height and leaf senescence through interacting with RGA1.展开更多
Monogenic lines,which carried 23 genes for blast resistance were tested and used donors to transfer resistance genes by crossing method.The results under blast nursery revealed that 9 genes from 23 genes were suscepti...Monogenic lines,which carried 23 genes for blast resistance were tested and used donors to transfer resistance genes by crossing method.The results under blast nursery revealed that 9 genes from 23 genes were susceptible to highly susceptible under the three locations(Sakha,Gemmeza,and Zarzoura in Egypt);Pia,Pik,Pik-p,Piz-t,Pita,Pi b,Pi,Pi 19 and Pi 20.While,the genes Pii,Pik-s,Pik-h,Pi z,Piz-5,Pi sh,Pi 3,Pi 1,Pi 5,Pi 7,Pi 9,Pi 12,Pikm and Pita-2 were highly resistant at the same locations.Clustering analysis confirmed the results,which divided into two groups;the first one included all the susceptible genes,while the second one included the resistance genes.In the greenhouse test,the reaction pattern of five races produced 100%resistance under artificial inoculation with eight genes showing complete resistance to all isolates.The completely resistant genes:Pii,Pik-s,Piz,Piz-5(=bi2)(t),Pita(=Pi4)(t),Pita,Pi b and Pi1 as well as clustering analysis confirmed the results.In the F1 crosses,the results showed all the 25 crosses were resistant for leaf blast disease under field conditions.While,the results in F2 population showed seven crosses with segregation ratio of 15(R):1(S),two cross gave segregated ratio of 3 R:1 S and one gave 13:3.For the identification of blast resistance genes in the parental lines,the marker K3959,linked to Pik-s gene and the variety IRBLKS-F5 carry this gene,which was from the monogenic line.The results showed that four genotypes;Sakha 105,Sakha 103,Sakha 106 and IRBLKS-F5 were carrying Pik-s gene,while was absent in the Sakha 101,Sakha 104,IRBL5-M,IRBL9-W,IRBLTACP1 and IRBL9-W(R)genotypes.As for Pi 5 gene,the results showed that it was present in Sakha 103 and Sakha 104 varieties and absent in the rest of the genotypes.In addition,Pita-Pita-2 gene was found in the three Egyptian genotypes(Sakha 105,Sakha 101 and Sakha 104)plus IRBLTACP1 monogenetic.In F2 generation,six populations were used to study the inheritance of blast resistance and specific primers to confirm the ratio and identify the resistance genes.However,the ratios in molecular markers were the same of the ratio under field evaluation in the most population studies.These findings would facilitate in breeding programs for gene pyramiding and gene accumulation to produce durable resistance for blast using those genotypes.展开更多
Purpose:Meniere's disease(MD),first introduced by Prosper Meniere,is characterized mainly by vertigo,tinnitus,aural fullness and sensorineural hearing loss.Though the exact pathophysiology of MD is unknown,immunol...Purpose:Meniere's disease(MD),first introduced by Prosper Meniere,is characterized mainly by vertigo,tinnitus,aural fullness and sensorineural hearing loss.Though the exact pathophysiology of MD is unknown,immunologic and inflammatory interactions are possible underlying mechanisms involved in MD.This study is aimed to investigate the immunomodulatory and anti-inflammatory effect of Nigella sativa on MD as a therapeutic agent.Methods:We divided 40 patients with definite MD into two groups of 20 cases.The study group received 1 g of Nigella sativa oil daily for three months and the control group received a placebo.Changes in hearing,tinnitus and vertigo were estimated by pure tone audiometry,tinnitus handicap inventory questionnaire and dizziness handicap inventory questionnaire,respectively.Results:At the end of the study we did not observe any significant improvement in study's group hearing threshold,tinnitus and vertigo compared to the control group.Conclusions:In this study,statistical analysis showed that Nigella sativa failed to improve signs and symptoms of MD.However,further investigations with a larger study population are needed to ascertain the current conclusion.展开更多
Alfalfa is the most widely cultivated perennial legume forage crop worldwide.Drought is one of the major environmental factors influencing alfalfa productivity.However,the molecular mechanisms underlying alfalfa respo...Alfalfa is the most widely cultivated perennial legume forage crop worldwide.Drought is one of the major environmental factors influencing alfalfa productivity.However,the molecular mechanisms underlying alfalfa responses to drought stress are still largely unknown.This study identified a drought-inducible gene of unknown function,designated as Medicago sativa DROUGHT-INDUCED UNKNOWN PROTEIN 1(MsDIUP1).MsDIUP1 was localized to the nucleus,chloroplast,and plasma membranes.Overexpression of MsDIUP1 in Arabidopsis resulted in increased tolerance to drought,with higher seed germination,root length,fresh weight,and survival rate than in wild-type(WT)plants.Consistently,analysis of MsDIUP1 over-expression(OE)alfalfa plants revealed that MsDIUP1 also increased tolerance to drought stress,accompanied by physiological changes including reduced malondialdehyde(MDA)content and increased osmoprotectants accumulation(free proline and soluble sugar),relative to the WT.In contrast,disruption of MsDIUP1 expression by RNA interference(RNAi)in alfalfa resulted in a droughthypersensitive phenotype,with a lower chlorophyll content,higher MDA content,and less osmoprotectants accumulation than that of the WT.Transcript profiling of alfalfa WT,OE,and RNAi plants during drought stress showed differential responses for genes involved in stress signaling,antioxidant defense,and osmotic adjustment.Taken together,these results reveal a positive role for MsDIUP1 in regulating drought tolerance.展开更多
Abiotic stresses,including drought,have been found to affect the growth and medicinal quality of numerous herbs.The proposed study aims to study the effects of different drought regimes on the metabolic profile,growth...Abiotic stresses,including drought,have been found to affect the growth and medicinal quality of numerous herbs.The proposed study aims to study the effects of different drought regimes on the metabolic profile,growth,ecophysiology,cellular antioxidants,and antioxidant potential of Nigella sativa(Black cumin)leaf.Forty-day-old seedlings of N.sativa were exposed to three regimes of drought(control,moderate and high)for a week.UPLCMS/MS metabolic profile of the leaf reveals the presence of more than a hundred metabolites belonging to anthocyanins,chalcones,dihydro flavonoids,flavonoids,flavanols,flavones,flavonoid carbonoside,isoflavones,etc.Drought was found to alter the contents of identified metabolites.Drought stress-induced oxidative stress and increased production of hydrogen peroxide and superoxide anions.Physiological changes,activities of antioxidant enzymes,contents of antioxidants,and proline were significantly high under drought to protect against the low water regimes.Furthermore,stressed leaf extract had higher antioxidant potential.Thus,N.sativa leaf bears multiple metabolic pathways and can tolerate a higher degree of drought or osmotic stress.展开更多
The impact of low-quality irrigation water on plant development has garnered significant attention from researchers. In light of this, two field experiments were conducted to evaluate the performance, yield, oil produ...The impact of low-quality irrigation water on plant development has garnered significant attention from researchers. In light of this, two field experiments were conducted to evaluate the performance, yield, oil production and composition, as well as active constituents of Rocket(Eruca sativa Mill) cultivated in calcareous soil under saline water irrigation. Foliar sprays containing condensed molasses soluble(CMS), zinc(Zn), and boron(B) alone or in combination were used for irrigation. The data obtained from measuring various parameters of Rocket following foliar spraying with CMS, Zn, B or their combinations demonstrated that most treatments resulted in a significant increase in these parameters. The highest values for most measurements were observed when foliar application included all three components(CMS + Zn + B), resulting in a seed yield of 184.6 g/m2and an oil content of 675.3 kg/ha. Compared to the control group, the macronutrient content of N, P, K, Mg, and Ca increased by 34.4%, 56%, 42%, 45%, and 39% respectively in the seeds treated with these components.Furthermore, carbohydrates, proteins, phenolics flavonoids, and antioxidants showed increases of 24%, 34%,21%, 43%, and 28% respectively compared to the control group. Gas-liquid chromatography analysis identified ten components present in the seed oil characterized by higher unsaturated fatty acids ranging from 81.28% to92.28% and lower saturated fatty acids ranging from 6.72% to 8.21%. Therefore, foliar spray application including CMS, zinc, and boron can help alleviate salinity effects on Rocket plants grown under saline water irrigation conditions while improving growth, yield, oil production, and nutritional content such as total carbohydrates, proteins, and macronutrients levels.展开更多
Most indigenous rice landraces are sensitive to photoperiod during short day seasons,and this sensitivity is more pronounced in indica than in japonica landraces.Attempts to identify photoperiod sensitive(PPS)cultivar...Most indigenous rice landraces are sensitive to photoperiod during short day seasons,and this sensitivity is more pronounced in indica than in japonica landraces.Attempts to identify photoperiod sensitive(PPS)cultivars based on the life history stages of the rice plant,and several models and indices based on phenology and day length have not been precise,and in some cases yield counterfactual inferences.Following the empirical method of traditional Asian rice farmers,the author has developed a robust index,based on the sowing and flowering dates of a large number of landraces grown in different seasons from 2020 to 2023,to contradistinguish PPS from photoperiod insensitive cultivars.Unlike other indices and models of photoperiod sensitivity,the index does not require the presumed duration of different life history stages of the rice plant but relies only on the flowering dates and the number of days till flowering of a rice cultivar sown on different dates to consistently identify photoperiod sensitive cultivars.展开更多
Background:In the management of patients with MARV infection,this review article focuses on the potential protective effects of black seeds(Nigella sativa).Methods:To find studies that evaluated various effects of bla...Background:In the management of patients with MARV infection,this review article focuses on the potential protective effects of black seeds(Nigella sativa).Methods:To find studies that evaluated various effects of black seeds(N.sativa)related to signs and symptoms of MARV infection,reference lists and databases such as Medline/Pubmed/PMC,Google Scholar,Science Direct,Ebsco,Scopus,Web of Science,and Embase were searched.Results:In numerous clinical,animal,in-vitro,in-vivo,and in-ovo studies,black seeds(N.sativa)have demonstrated potential antiviral,anti-inflammatory,antioxidant,immunomodulatory,and hepatoprotective properties that may aid in the treatment of MARV-infected patients.Conclusion:In the initial generalization phase of MARV infection,patients may use black seeds(N.sativa)as an adjunctive therapy in addition to symptomatic treatment and supportive care.Future randomized controlled clinical trials would confirm N.sativa’s efficacy and safety in MARV-infected patients.展开更多
基金This project was finically supported by the R&D Foundation of Jiangsu Province,China(BE2022425)the National Key Research and Development Program of China(2022YFD2300304)the Priority Academic Program Development of Jiangsu Higher-Education Institutions,China(PAPD).
文摘Recently developed ‘super’ rice cultivars with greater yield potentials often suffer from the problem of poor grain filling, especially in inferior spikelets. Here, we studied the activities of enzymes related to starch metabolism in rice stems and grains, and the microstructures related to carbohydrate accumulation and transportation to investigate the effects of different water regimes on grain filling. Two ‘super’ rice cultivars were grown under two irrigation regimes of well-watered(WW) and alternate wetting and moderate soil drying(AWMD). Compared with the WW treatment,the activities of ADP glucose pyrophosphorylase(AGPase), starch synthase(StSase) and starch branching enzyme(SBE), and the accumulation of non-structural carbohydrates(NSCs) in the stems before heading were significantly improved, and more starch granules were stored in the stems in the AWMD treatment. After heading, the activities of α-amylase, β-amylase, sucrose phosphate synthase(SPS) and sucrose synthase in the synthetic direction(SSs)were increased in the stems to promote the remobilization of NSCs for grain filling under AWMD. During grain filling, the enzymatic activities of sucrose synthase in the cleavage direction(SSc), AGPase, StSase and SBE in the inferior spikelets were increased, which promoted grain filling, especially for the inferior spikelets under AWMD.However, there were no significant differences in vascular microstructures. The grain yield and grain weight could be improved by 13.1 and 7.5%, respectively, by optimizing of the irrigation regime. We concluded that the low activities of key enzymes in carbon metabolism is the key limitation for the poor grain filling, as opposed to the vascular microstructures, and AWMD can increase the amount of NSC accumulation in the stems before heading, improve the utilization rate of NSCs after heading, and increase the grain filling, especially in the inferior spikelets, by altering the activities of key enzymes in carbon metabolism.
基金This work was supported by the National Key Research and Development Program of China(2022YFD1201600)the National Natural Science Foundation of China(32171964)the Science Fund for Creative Research Groups of Chongqing,China(cstc2021jcyj-cxttX0004)。
文摘Tillering is an important agronomic trait of rice(Oryza sativa)that affects the number of effective panicles,thereby affecting yields.The phytohormone auxin plays a key role in tillering.Here we identified the high tillering and semi-dwarf 1(htsd1)mutant with auxin-deficiency root characteristics,such as shortened lateral roots,reduced lateral root density,and enlarged root angles.htsd1 showed reduced sensitivity to auxin,but the external application of indole-3-acetic acid(IAA)inhibited its tillering.We identified the mutated gene in htsd1 as AUXIN1(OsAUX1,LOC_Os01g63770),which encodes an auxin influx transporter.The promoter sequence of OsAUX1 contains many SQUAMOSA PROMOTER BINDING PROTEIN-LIKE(SPL)binding sites,and we demonstrated that SPL7 binds to the OsAUX1 promoter.TEOSINTE BRANCHED1(OsTB1),a key gene that negatively regulates tillering,was significantly downregulated in htsd1.Tillering was enhanced in the OsTB1 knockout mutant,and the external application of IAA inhibited tiller elongation in this mutant.Overexpressing OsTB1 restored the multi-tiller phenotype of htsd1.These results suggest that SPL7 directly binds to the OsAUX1 promoter and regulates tillering in rice by altering OsTB1 expression to modulate auxin signaling.
基金supported and funded by Deanship of Scientific Research,Vice Presidency for Graduate Studies and Scientific Research,King Faisal University,Saudi Arabia(KFU241897).
文摘Rice(Oryza sativa L.)is one of the most important cereal crops in the world.Bakanae disease is a significant rice disease widely distributed in rice-growing regions worldwide.Therefore,the present investigation aimed to assess the optimal concentrations of paclobutrazol(PBZ)as a treatment for rice grains(cv.Sakha 108)to control bakanae disease,also evaluating its impact on grain germination,seedling growth parameters as well as disease index.Paclobutrazol concentrations had no significant impact on seed germination,regardless of whether the seeds were incubated with Fusarium fujikuroi or not.Application of PBZ,either alone or in combination with fungal pathogens,negatively impacted the rice seedlings’height.Paclobutrazol at 25,50 and 100 mg/L,combined with the fungal pathogen positively impacted root length.Paclobutrazol at 3 and 6 mg/L mitigated the adverse impact on chlorophyll pigments content in infected seedlings.The highest proline contents were achieved by 100 mg/L PBZ alone or in combination with fungal pathogens.It has been observed that the application of PBZ,either alone or in combination with a fungal pathogen,leads to the enhancement of catalase,peroxidase,and polyphenol oxidase activities.The median lethal concentration of PBZ was 0.874 mg/L;applying low concentrations of paclobutrazol effectively increased the percentage of fungal growth suppression.Application of PBZ,at higher concentrations(50 and 100 mg/L),decreased infection percentage and disease severity index(DSI)significantly.These findings suggest that PBZ can be an effective treatment for controlling bakanae disease and enhancing resistance in rice plants.
基金supported by the Program for Huaishang Talents,Huai’an Academy of Agricultural Sciences Initiation and Development of Scientific Research Fund for High-Level Introduced Talents(0062019016B)Jiangsu Collaborative Innovation Center of Regional Modern Agriculture&Environmental Protection(HSXT30133)+1 种基金the Jiangsu Qinglan Project,the Hunan Province Natural Science Fund(2019JJ50714)the Student Innovation Program of Jinagsu Province(202110323084Y,202210323029Z).
文摘Many studies have already shown that dwarfism and moderate delayed leaf senescence positively impact rice yield,but the underlying molecular mechanism of dwarfism and leaf senescence remains largely unknown.Here,using map-based cloning,we identified an allele of DEP2,DDG1,which controls plant height and leaf senescence in rice.The ddg1 mutant displayed dwarfism,short panicles,and delayed leaf senescence.Compared with the wild-type,ddg1 was insensitive to exogenous gibberellins(GA)and brassinolide(BR).DDG1 is expressed in various organs,especially in stems and panicles.Yeast two-hybrid assay,bimolecular fluorescent complementation and luciferase complementation image assay showed that DDG1 interacts with theα-subunit of the heterotrimeric G protein.Disruption of RGA1 resulted in dwarfism,short panicles,and darker-green leaves.Furthermore,we found that ddg1 and the RGA1 mutant was more sensitive to salt treatment,suggesting that DDG1 and RGA1 are involved in regulating salt stress response in rice.Our results show that DDG1/DEP2 regulates plant height and leaf senescence through interacting with RGA1.
基金Authors extend their appreciation to Deanship of Scientific Research,King Faisal University,Saudi Arabia,for supporting this research(NA000112).
文摘Monogenic lines,which carried 23 genes for blast resistance were tested and used donors to transfer resistance genes by crossing method.The results under blast nursery revealed that 9 genes from 23 genes were susceptible to highly susceptible under the three locations(Sakha,Gemmeza,and Zarzoura in Egypt);Pia,Pik,Pik-p,Piz-t,Pita,Pi b,Pi,Pi 19 and Pi 20.While,the genes Pii,Pik-s,Pik-h,Pi z,Piz-5,Pi sh,Pi 3,Pi 1,Pi 5,Pi 7,Pi 9,Pi 12,Pikm and Pita-2 were highly resistant at the same locations.Clustering analysis confirmed the results,which divided into two groups;the first one included all the susceptible genes,while the second one included the resistance genes.In the greenhouse test,the reaction pattern of five races produced 100%resistance under artificial inoculation with eight genes showing complete resistance to all isolates.The completely resistant genes:Pii,Pik-s,Piz,Piz-5(=bi2)(t),Pita(=Pi4)(t),Pita,Pi b and Pi1 as well as clustering analysis confirmed the results.In the F1 crosses,the results showed all the 25 crosses were resistant for leaf blast disease under field conditions.While,the results in F2 population showed seven crosses with segregation ratio of 15(R):1(S),two cross gave segregated ratio of 3 R:1 S and one gave 13:3.For the identification of blast resistance genes in the parental lines,the marker K3959,linked to Pik-s gene and the variety IRBLKS-F5 carry this gene,which was from the monogenic line.The results showed that four genotypes;Sakha 105,Sakha 103,Sakha 106 and IRBLKS-F5 were carrying Pik-s gene,while was absent in the Sakha 101,Sakha 104,IRBL5-M,IRBL9-W,IRBLTACP1 and IRBL9-W(R)genotypes.As for Pi 5 gene,the results showed that it was present in Sakha 103 and Sakha 104 varieties and absent in the rest of the genotypes.In addition,Pita-Pita-2 gene was found in the three Egyptian genotypes(Sakha 105,Sakha 101 and Sakha 104)plus IRBLTACP1 monogenetic.In F2 generation,six populations were used to study the inheritance of blast resistance and specific primers to confirm the ratio and identify the resistance genes.However,the ratios in molecular markers were the same of the ratio under field evaluation in the most population studies.These findings would facilitate in breeding programs for gene pyramiding and gene accumulation to produce durable resistance for blast using those genotypes.
文摘Purpose:Meniere's disease(MD),first introduced by Prosper Meniere,is characterized mainly by vertigo,tinnitus,aural fullness and sensorineural hearing loss.Though the exact pathophysiology of MD is unknown,immunologic and inflammatory interactions are possible underlying mechanisms involved in MD.This study is aimed to investigate the immunomodulatory and anti-inflammatory effect of Nigella sativa on MD as a therapeutic agent.Methods:We divided 40 patients with definite MD into two groups of 20 cases.The study group received 1 g of Nigella sativa oil daily for three months and the control group received a placebo.Changes in hearing,tinnitus and vertigo were estimated by pure tone audiometry,tinnitus handicap inventory questionnaire and dizziness handicap inventory questionnaire,respectively.Results:At the end of the study we did not observe any significant improvement in study's group hearing threshold,tinnitus and vertigo compared to the control group.Conclusions:In this study,statistical analysis showed that Nigella sativa failed to improve signs and symptoms of MD.However,further investigations with a larger study population are needed to ascertain the current conclusion.
基金supported by the Strategic Pilot Projects of Chinese Academy of Sciences(XDA26030103)the National Natural Science Foundation of China(31722055 and 31672476)the Key Science and Technology Foundation of Gansu Province(19ZD2NA002)。
文摘Alfalfa is the most widely cultivated perennial legume forage crop worldwide.Drought is one of the major environmental factors influencing alfalfa productivity.However,the molecular mechanisms underlying alfalfa responses to drought stress are still largely unknown.This study identified a drought-inducible gene of unknown function,designated as Medicago sativa DROUGHT-INDUCED UNKNOWN PROTEIN 1(MsDIUP1).MsDIUP1 was localized to the nucleus,chloroplast,and plasma membranes.Overexpression of MsDIUP1 in Arabidopsis resulted in increased tolerance to drought,with higher seed germination,root length,fresh weight,and survival rate than in wild-type(WT)plants.Consistently,analysis of MsDIUP1 over-expression(OE)alfalfa plants revealed that MsDIUP1 also increased tolerance to drought stress,accompanied by physiological changes including reduced malondialdehyde(MDA)content and increased osmoprotectants accumulation(free proline and soluble sugar),relative to the WT.In contrast,disruption of MsDIUP1 expression by RNA interference(RNAi)in alfalfa resulted in a droughthypersensitive phenotype,with a lower chlorophyll content,higher MDA content,and less osmoprotectants accumulation than that of the WT.Transcript profiling of alfalfa WT,OE,and RNAi plants during drought stress showed differential responses for genes involved in stress signaling,antioxidant defense,and osmotic adjustment.Taken together,these results reveal a positive role for MsDIUP1 in regulating drought tolerance.
基金funded by the Deanship of Scientific Research (DSR)at King Abdulaziz University,Jeddah,under Grant No.G:243-130-1439.
文摘Abiotic stresses,including drought,have been found to affect the growth and medicinal quality of numerous herbs.The proposed study aims to study the effects of different drought regimes on the metabolic profile,growth,ecophysiology,cellular antioxidants,and antioxidant potential of Nigella sativa(Black cumin)leaf.Forty-day-old seedlings of N.sativa were exposed to three regimes of drought(control,moderate and high)for a week.UPLCMS/MS metabolic profile of the leaf reveals the presence of more than a hundred metabolites belonging to anthocyanins,chalcones,dihydro flavonoids,flavonoids,flavanols,flavones,flavonoid carbonoside,isoflavones,etc.Drought was found to alter the contents of identified metabolites.Drought stress-induced oxidative stress and increased production of hydrogen peroxide and superoxide anions.Physiological changes,activities of antioxidant enzymes,contents of antioxidants,and proline were significantly high under drought to protect against the low water regimes.Furthermore,stressed leaf extract had higher antioxidant potential.Thus,N.sativa leaf bears multiple metabolic pathways and can tolerate a higher degree of drought or osmotic stress.
基金by the National Research Centre(NRC)the Fertilization Technology Department as part of the Egypt-German Project“Micronutrient and Other Plant Nutrition Problems”(Coordinator,Prof.Dr M.M.El-Fouly)Medicinal and Aromatic Plants Department,National Research Centre,El-Buhouth St.,12622,Dokki,Cairo,Egypt.
文摘The impact of low-quality irrigation water on plant development has garnered significant attention from researchers. In light of this, two field experiments were conducted to evaluate the performance, yield, oil production and composition, as well as active constituents of Rocket(Eruca sativa Mill) cultivated in calcareous soil under saline water irrigation. Foliar sprays containing condensed molasses soluble(CMS), zinc(Zn), and boron(B) alone or in combination were used for irrigation. The data obtained from measuring various parameters of Rocket following foliar spraying with CMS, Zn, B or their combinations demonstrated that most treatments resulted in a significant increase in these parameters. The highest values for most measurements were observed when foliar application included all three components(CMS + Zn + B), resulting in a seed yield of 184.6 g/m2and an oil content of 675.3 kg/ha. Compared to the control group, the macronutrient content of N, P, K, Mg, and Ca increased by 34.4%, 56%, 42%, 45%, and 39% respectively in the seeds treated with these components.Furthermore, carbohydrates, proteins, phenolics flavonoids, and antioxidants showed increases of 24%, 34%,21%, 43%, and 28% respectively compared to the control group. Gas-liquid chromatography analysis identified ten components present in the seed oil characterized by higher unsaturated fatty acids ranging from 81.28% to92.28% and lower saturated fatty acids ranging from 6.72% to 8.21%. Therefore, foliar spray application including CMS, zinc, and boron can help alleviate salinity effects on Rocket plants grown under saline water irrigation conditions while improving growth, yield, oil production, and nutritional content such as total carbohydrates, proteins, and macronutrients levels.
文摘Most indigenous rice landraces are sensitive to photoperiod during short day seasons,and this sensitivity is more pronounced in indica than in japonica landraces.Attempts to identify photoperiod sensitive(PPS)cultivars based on the life history stages of the rice plant,and several models and indices based on phenology and day length have not been precise,and in some cases yield counterfactual inferences.Following the empirical method of traditional Asian rice farmers,the author has developed a robust index,based on the sowing and flowering dates of a large number of landraces grown in different seasons from 2020 to 2023,to contradistinguish PPS from photoperiod insensitive cultivars.Unlike other indices and models of photoperiod sensitivity,the index does not require the presumed duration of different life history stages of the rice plant but relies only on the flowering dates and the number of days till flowering of a rice cultivar sown on different dates to consistently identify photoperiod sensitive cultivars.
文摘Background:In the management of patients with MARV infection,this review article focuses on the potential protective effects of black seeds(Nigella sativa).Methods:To find studies that evaluated various effects of black seeds(N.sativa)related to signs and symptoms of MARV infection,reference lists and databases such as Medline/Pubmed/PMC,Google Scholar,Science Direct,Ebsco,Scopus,Web of Science,and Embase were searched.Results:In numerous clinical,animal,in-vitro,in-vivo,and in-ovo studies,black seeds(N.sativa)have demonstrated potential antiviral,anti-inflammatory,antioxidant,immunomodulatory,and hepatoprotective properties that may aid in the treatment of MARV-infected patients.Conclusion:In the initial generalization phase of MARV infection,patients may use black seeds(N.sativa)as an adjunctive therapy in addition to symptomatic treatment and supportive care.Future randomized controlled clinical trials would confirm N.sativa’s efficacy and safety in MARV-infected patients.