In this paper,we study the following Schrodinger-Poisson system with critical growth:■We establish the existence of a positive ground state solution and a least energy sign-changing solution,providing that the nonlin...In this paper,we study the following Schrodinger-Poisson system with critical growth:■We establish the existence of a positive ground state solution and a least energy sign-changing solution,providing that the nonlinearity f is super-cubic,subcritical and that the potential V(x)has a potential well.展开更多
We study the following nonlinear fractional Schrodinger-Poisson system with critical growth:{(-△)sμ+μ+φμ=f(μ)+|μ|2s-2μ,x∈R3.(-△)tφ=μ2x∈R3,(0.1)where 0<s,t<1,2s+2t>3 and 2s=6/3-2s is the critical ...We study the following nonlinear fractional Schrodinger-Poisson system with critical growth:{(-△)sμ+μ+φμ=f(μ)+|μ|2s-2μ,x∈R3.(-△)tφ=μ2x∈R3,(0.1)where 0<s,t<1,2s+2t>3 and 2s=6/3-2s is the critical Sobolev exponent in 1R3.Under some more general assumptions on f,we prove that(0.1)admits a nontrivial ground state solution by using a constrained minimization on a Nehari-Pohozaev manifold.展开更多
In this paper,we study the existence of localized nodal solutions for Schrodinger-Poisson systems with critical growth{−ε^(2)Δv+V(x)v+λψv=v^(5)+μ|v|^(q−2)v,in R^(3),−ε^(2)Δψ=v^(2),in R^(3);v(x)→0,ψ(x)→0as|x...In this paper,we study the existence of localized nodal solutions for Schrodinger-Poisson systems with critical growth{−ε^(2)Δv+V(x)v+λψv=v^(5)+μ|v|^(q−2)v,in R^(3),−ε^(2)Δψ=v^(2),in R^(3);v(x)→0,ψ(x)→0as|x|→∞.We establish,for smallε,the existence of a sequence of localized nodal solutions concentrating near a given local minimum point of the potential function via the perturbation method,and employ some new analytical skills to overcome the obstacles caused by the nonlocal term φu(x)=1/4π∫R^(3)u^(2)(y)/|x−y|dy.Our results improve and extend related ones in the literature.展开更多
We consider the Schrodinger-Poisson system with nonlinear term Q(x)|u|^p-1u,where the value of |x|→∞ lim Q(x)may not exist and Q may change sign.This means that the problem may have no limit problem.The existence of...We consider the Schrodinger-Poisson system with nonlinear term Q(x)|u|^p-1u,where the value of |x|→∞ lim Q(x)may not exist and Q may change sign.This means that the problem may have no limit problem.The existence of nonnegative ground state solutions is established.Our method relies upon the variational method and some analysis tricks.展开更多
基金supported by the National NaturalScience Foundation of China(12071170,11961043,11931012,12271196)supported by the excellent doctoral dissertation cultivation grant(2022YBZZ034)from Central China Normal University。
文摘In this paper,we study the following Schrodinger-Poisson system with critical growth:■We establish the existence of a positive ground state solution and a least energy sign-changing solution,providing that the nonlinearity f is super-cubic,subcritical and that the potential V(x)has a potential well.
基金the Science and Technology Project of Education Department in Jiangxi Province(GJJ180357)the second author was supported by NSFC(11701178).
文摘We study the following nonlinear fractional Schrodinger-Poisson system with critical growth:{(-△)sμ+μ+φμ=f(μ)+|μ|2s-2μ,x∈R3.(-△)tφ=μ2x∈R3,(0.1)where 0<s,t<1,2s+2t>3 and 2s=6/3-2s is the critical Sobolev exponent in 1R3.Under some more general assumptions on f,we prove that(0.1)admits a nontrivial ground state solution by using a constrained minimization on a Nehari-Pohozaev manifold.
文摘In this paper,we study the existence of localized nodal solutions for Schrodinger-Poisson systems with critical growth{−ε^(2)Δv+V(x)v+λψv=v^(5)+μ|v|^(q−2)v,in R^(3),−ε^(2)Δψ=v^(2),in R^(3);v(x)→0,ψ(x)→0as|x|→∞.We establish,for smallε,the existence of a sequence of localized nodal solutions concentrating near a given local minimum point of the potential function via the perturbation method,and employ some new analytical skills to overcome the obstacles caused by the nonlocal term φu(x)=1/4π∫R^(3)u^(2)(y)/|x−y|dy.Our results improve and extend related ones in the literature.
基金National Natural Science Foundation of China(11471267)the first author was supported by Graduate Student Scientific Research Innovation Projects of Chongqing(CYS17084).
文摘We consider the Schrodinger-Poisson system with nonlinear term Q(x)|u|^p-1u,where the value of |x|→∞ lim Q(x)may not exist and Q may change sign.This means that the problem may have no limit problem.The existence of nonnegative ground state solutions is established.Our method relies upon the variational method and some analysis tricks.