Based on the quantitative analyses of abundance of planktonic foraminifera, benthic foraminifera, calcareous nannofossils, the ratios of calcareous to siliceous microfossils, and the determination of carbonate content...Based on the quantitative analyses of abundance of planktonic foraminifera, benthic foraminifera, calcareous nannofossils, the ratios of calcareous to siliceous microfossils, and the determination of carbonate contents in the surface sediments of the northeastern South China Sea, it has been found that the carbonate contents, the abundance of planktonic foraminifera and calcareous nannoplankton, and the ratio of calcareous microfossils decrease rapidly while the ratio of the benthic foraminifera to the total foraminiferal fauna, specific value of siliceous microfossils, and the percentage of the agglutinated tests in the benthic foraminiferal fauna increase with the water depth. The results indicate that the microfossils abundance and ratio, and the carbonate content are closely related to the carbonate lysocline and carbonate compensation depth (CCD) in the study area. In addition, the carbonate lysocline and the CCD are different between the southern and northern parts of the South China Sea. Both the lysocline and the CCD are deeper in the south with 2 600 and 3 600 m than in the north with 2 200 and 3 400 m, respectively.展开更多
Based on the concentrations of the trace elements,rare earth elements(REE),and Sr isotopic compositions in reef carbonates from the well‘Xike-1’reef core of the Xisha Islands,the constraints on sediment provenance a...Based on the concentrations of the trace elements,rare earth elements(REE),and Sr isotopic compositions in reef carbonates from the well‘Xike-1’reef core of the Xisha Islands,the constraints on sediment provenance and paleoenvironment were defined.Variations of the terrigenous input into the paleoseawater were traced in detail and the paleoenvironment and sediment provenance were further investigated.The results show that the HREE/LREE values in the reef carbonates are negatively associated with their Th and Al concentrations;however,their Al and Th concentrations show positive correlation.The lowest 87 Sr/86 Sr values in the reef carbonates generally coincide with the lowest values of Al,Th concentrations and the highest values of HREE/LREE.These data indicate that the HREE/LREE,Al concentrations,and Th concentrations of the reef carbonates are useful indexes for evaluating the influence of the terrigenous inputs on the seawater composition in the study area.From top to bottom,the changing process of the HREE/LREE values and Al,Th concentrations can be divided into 6 intervals;they are H1(0–89.30 m,about 0–0.11 Myr),L1(89.30–198.30 m,about 0.11–2.2 Myr),H2(198.30–374.95 m,about 2.2–5.3 Myr),D(374.95–758.40 m,about 5.3–13.6 Myr),L2(758.40–976.86 m,about 13.6–15.5 Myr),and H3(976.86–1200.00 m,about 15.5–21.5 Myr).Moreover,the changing trend of the HREE/LREE values coincides with that of the seawater δ^13C values recorded by benthonic foraminiferal skeletons from the drill core of ODP site 1148 in the South China Sea(SCS),but not with that of the seawaterδ18O values.The high uplifting rates of the Qinghai-Tibet Plateau coincide with the high Th and Al concentrations and the low HREE/LREE values in the reef carbonates.These data indicate that the main factors controlling the changes of terrigenous flux in the SCS are the tectonic activities associated with Qinghai-Tibet Plateau uplifting and the variations of uplifting rates rather than paleoclimatic changes.展开更多
A numerical study to a generalized Korteweg-de Vries (KdV) equation is adopted to model the propagation and disintegration of large-amplitude internal solitary waves (ISWs) in the South China Sea (SCS). Based on theor...A numerical study to a generalized Korteweg-de Vries (KdV) equation is adopted to model the propagation and disintegration of large-amplitude internal solitary waves (ISWs) in the South China Sea (SCS). Based on theoretical analysis and in situ measurements, the drag coefficient of the Chezy friction is regarded as inversely proportional to the initial amplitude of an ISW, rather than a constant as assumed in the previous studies. Numerical simulations of ISWs propagating from a deep basin to a continental shelf are performed with the generalized KdV model. It is found that the depression waves are disintegrated into several solitons on the continental shelf due to the variable topography. It turns out that the amplitude of the leading ISW reaches a maximum at the shelf break, which is consistent with the field observation in the SCS.Moreover, a dimensionless parameter defining the relative importance of the variable topography and friction is presented.展开更多
Near-diurnal vertically-standing waves with high vertical wavenumbers k z were observed in the velocity and shear fi elds from a set of 75-d long ADCP moored in the northeastern South China Sea(SCS)away from the“crit...Near-diurnal vertically-standing waves with high vertical wavenumbers k z were observed in the velocity and shear fi elds from a set of 75-d long ADCP moored in the northeastern South China Sea(SCS)away from the“critical”latitude of 28.8°.These enhanced near-diurnal internal waves followed a fortnightly spring-neap cycle.However,they always happened during semidiurnal spring tides rather than diurnal springs although strong diurnal internal tides with the fortnightly spring-neap cycle were prevailing,suggesting that they were generated via subharmonic instability(PSI)of dominant semidiurnal M 2 internal tides.When two semidiurnal internal tidal waves with opposite vertical propagation direction intersected,both semidiurnal subharmonic and super harmonic waves were largely intensifi ed.The observed maximum diurnal velocity amplitudes were up to 0.25 m/s.The kinetic energy and shear spectra further suggested that frequencies of daughter waves were not always perfectly equal to M 2/2.The superposition of two daughter waves with nearly equal frequencies and nearly opposite k z in a PSI-triad leaded to the vertically-standing waves.展开更多
The daily regional reanalysis product of the China Ocean Reanalysis(CORA)product was released in website in 2018.Using in situ observational data including Argo profiling floats,drifters,and cruise data,the performanc...The daily regional reanalysis product of the China Ocean Reanalysis(CORA)product was released in website in 2018.Using in situ observational data including Argo profiling floats,drifters,and cruise data,the performance of CORA in the South China Sea in terms of temperature,salinity,current and mixed layer depths is evaluated based on timescale(seasonal and interannual)and spatial distribution characteristics.The CORA temperature,salinity,and mixed layer depth show certain seasonal and interannual variations.In 50-400 m depth in the SCS,the CORA temperature is colder in winter and warmer in summer and autumn.In 0-150 m in the SCS,the CORA salinity is higher in most time of the year.However,in the second half of the year,the salinity is slightly weaker in 100-150 m depth.In most years,the CORA mixed layer depths tend to be shallower,and in season,shallower in winter and deeper in summer.In spatial distribution,the closer the area is to the coast,the greater the CORA errors would be.The CORA temperature is colder in the western side and warmer in the eastern side,resulting in a weaker SCS western boundary current(SCSwbc).In most areas,the CORA mixed layer depths are shallower.In the area close to the coast,the CORA mixed layer depths change rapidly,and the deviations in the mixed layer depths are larger.In the central SCS,the CORA mixed layer depths change slowly,and the deviations in the mixed layer depths are also small.展开更多
The relationship between the tropical intra-seasonal oscillation(ISO) and tropical cyclones(TCs) activities over the South China Sea(SCS) is investigated by utilizing the National Centers for Environmental Prediction/...The relationship between the tropical intra-seasonal oscillation(ISO) and tropical cyclones(TCs) activities over the South China Sea(SCS) is investigated by utilizing the National Centers for Environmental Prediction/National Center for Atmospheric Research(NCEP/NCAR) global reanalysis data and tropical cyclone best-track data from 1949 to 2009.The main conclusions are:(1)A new ISO index is designed to describe the tropical ISO activity over the SCS,which can simply express ISO for SCS.After examining the applicability of the index constructed by the Climate Prediction Center(CPC),we find that the convection spatial scale reflected by this index is too large to characterize the small-scale SCS and fails to divide the TCs activities over the SCS into active and inactive categories.Consequently,the CPC index can't replace the function of the new ISO index;(2)The eastward spread process of tropical ISO is divided into eight phases using the new ISO index,the phase variation of which corresponds well with the TCs activities over the SCS.TCs generation and landing are significantly reduced during inactive period(phase 4-6) relative to that during active period(phase 7-3);(3)The composite analyses indicate distinct TCs activities over the SCS,which is consistent with the concomitant propagation of the ISO convective activity.During ISO active period,the weather situations are favorable for TCs development over the SCS,e.g.,strong convection,cyclonic shear and weak subtropical high,and vice versa;(4)The condensation heating centers,strong convection and water vapor flux divergence are well collocated with each other during ISO active period.In addition,the vertical profile of condensation heat indicates strong ascending motion and middle-level heating over the SCS during active period,and vice versa.Thus,the eastward propagation of tropical ISO is capable to modulate TCs activities by affecting the heating configuration over the SCS.展开更多
Methane hydrate in the South China Sea (SCS) has extensively been considered to be biogenic on the basis of its δ13C andδD values.Although previous efforts have greatly been made,the contribution of thermogenic oil/...Methane hydrate in the South China Sea (SCS) has extensively been considered to be biogenic on the basis of its δ13C andδD values.Although previous efforts have greatly been made,the contribution of thermogenic oil/gas has still been underestimated.In this study,biomarkers and porewater geochemical parameters in hydrate-free and hydrate-bearing sediments in the Taixinan Basin,the SCS have been measured for evaluating the contribution of petroleum hydrocarbons to the formation of hydrate deposits via a comparative study of their source inputs of organic matters,environmental conditions,and microbial activities.The results reveal the occurrence of C_(14)–C_(16) branched saturated fatty acids (bSFAs) with relatively high concentrations from sulfate-reducing bacteria(SRBs) in hydrate-bearing sediments in comparison with hydrate-free sediments,which is in accord with the positive δ^(13)C values of dissolved inorganic carbon (DIC),increasing methane concentrations,decreasing alkalinity,and concentration fluctuation of ions (Cl^(-),Br^(-),SO_(4)^(2-),Ca^(2+),and Mg^(2+)).These data indicate the relatively active microbial activities in hydrate-bearing sediments and coincident variations of environmental conditions.Carbon isotope compositions of b SFAs (-34.0‰to -21.2‰),n-alkanes (-34.5‰to-29.3‰),and methane(-70.7‰to -69.9‰) jointly demonstrate that SRBs might thrive on a different type of organic carbon rather than methane.Combining with numerous gas/oil reservoirs and hydrocarbon migration channels in the SCS,the occurrence of unresolved complex mixtures (UCMs),odd-even predominance (OEP) values (about 1.0),and biomarker patterns suggest that petroleum hydrocarbons from deep oil/gas reservoirs are the most probable carbon source.Our new results provide significant evidence that the deep oil/gas reservoirs may make a contribution to the formation of methane hydrate deposits in the SCS.展开更多
Wind and wave data are essential in climatological and engineering design applications.In this study,data from 15 buoys located throughout the South China Sea(SCS)were used to evaluate the ERA5 wind and wave data.Appl...Wind and wave data are essential in climatological and engineering design applications.In this study,data from 15 buoys located throughout the South China Sea(SCS)were used to evaluate the ERA5 wind and wave data.Applicability assessment are beneficial for gaining insight into the reliability of the ERA5 data in the SCS.The bias range between the ERA5 and observed wind-speed data was-0.78-0.99 m/s.The result indicates that,while the ERA5 wind-speed data underestimation was dominate,the overestimation of such data existed as well.Additionally,the ERA5 data underestimated annual maximum wind-speed by up to 38%,with a correlation coefficient>0.87.The bias between the ERA5 and observed significant wave height(SWH)data varied from-0.24 to 0.28 m.And the ERA5 data showed positive SWH bias,which implied a general underestimation at all locations,except those in the Beibu Gulf and centralwestern SCS,where overestimation was observed.Under extreme conditions,annual maximum SWH in the ERA5 data was underestimated by up to 30%.The correlation coefficients between the ERA5 and observed SWH data at all locations were greater than 0.92,except in the central-western SCS(0.84).The bias between the ERA5 and observed mean wave period(MWP)data varied from-0.74 to 0.57 s.The ERA5 data showed negative MWP biases implying a general overestimation at all locations,except for B1(the Beibu Gulf)and B7(the northeastern SCS),where underestimation was observed.The correlation coefficient between the ERA5 and observed MWP data in the Beibu Gulf was the smallest(0.56),and those of other locations fluctuated within a narrow range from 0.82 to 0.90.The intercomparison indicates that during the analyzed time-span,the ERA5 data generally underestimated wind-speed and SWH,but overestimated MWP.Under non-extreme conditions,the ERA5 wind-speed and SWH data can be used with confidence in most regions of the SCS,except in the central-western SCS.展开更多
The seasonal and interannual variabilities of sea surface wind(SSW)in the South China Sea(SCS),especially in coral reef regions such as Nansha Islands,Xisha Islands,Zhongsha Islands and Dongsha Islands were investigat...The seasonal and interannual variabilities of sea surface wind(SSW)in the South China Sea(SCS),especially in coral reef regions such as Nansha Islands,Xisha Islands,Zhongsha Islands and Dongsha Islands were investigated in detail using the Blended Sea Winds dataset(1988-2017).Annual and monthly variations of SSW and sea surface temperature(SST)in the four zones were investigated.Empirical Orthogonal Function(EOF)analysis of wind field was performed to aid in better understanding the different spatial patterns.The results indicate that,as observed in the spatial distribution of the first mode of monthly mean wind speed anomaly,the mag-nitudes in the four island zones are all negative and are similar to each other,showing that the variations of SSW in the four island zones are consistent.In the second mode,the magnitudes in Nansha Islands are opposite to those in the other three zones.The spatial distribution of the third mode reflects regional differences.The maximum annual SSW appears in Dongsha Islands,and the minimum appears in Nansha Islands.The interannual variations of SSW in all island zones are basically concurrent.The island zones with high SSW mostly have low SST,and vice versa.There may be an inverse relationship between SSW and SST in coral reef regions in the SCS.The multiyear monthly variations of SSW in the island zones present a'W'-shaped structural variation.Each island undergoes two months of minimum SSW every year,one during March-May(MAM)and the other during September-November(SON).Both months are in mon-soon transition periods.During the months with low SSW,high SST appears.The SST peaks almost correspond to the SSW troughs.This further indicates that SSW and SST may have opposite changes in coral reef regions.Coral bleaching events often correspond to years of high SST and low SSW.展开更多
Submarine volcanism is widely developed in the South China Sea(SCS).However,the characteristics,distribution,and genesis of submarine volcanoes in the southern margin of the SCS remain obscure.In this study,we analyze...Submarine volcanism is widely developed in the South China Sea(SCS).However,the characteristics,distribution,and genesis of submarine volcanoes in the southern margin of the SCS remain obscure.In this study,we analyzed the characteristics of submarine volcanoes and identified a total of 43 submarine volcanoes in the southern margin of the SCS,based on a newly acquired 310-km seismic reflection profile,along with previous 45 multi-channel seismic(MCS)profiles,petrological results from volcanic rocks sampled by dredging and drilling,nearby ocean bottom seismometer(OBS)wide-angle seismic profiles,and gravity and magnetic data.The study ascertains that most of these volcanoes are located in fault-block belts and graben-horst zones with strong crustal stretching and thinning.These volcanoes exhibit positive high-amplitude external seismic reflections,weak and chaotic internal seismic reflections,and are accompanied by local deformation of the surrounding sedimentary strata.Meanwhile,they have higher positive gravity anomalies and higher magnetic anomalies than the background strata.The petrological dating results show that volcanic ages are primarily in the Pliocene-Pleistocene,with geochemical characteristics indicating dominance of oceanic island basalt(OIB)-type alkali-basalts.Extensional faults have obviously spatial correspondence with post-spreading volcanism,suggesting these faults may provide conduits for submarine volcanism.The high-velocity bodies(HVBs)in the lower crust and magma underplating exist in the southern SCS,which could provide a clue of genesis for submarine volcanism.The inference is that the intensity of post-spreading volcanism in the southern margin might be affected by stretching faults,crustal thinning and magma underplating.展开更多
An ensemble-based method for the observation system simulation experiment(OSSE)is employed to design optimal observation stations and assess the present observation stations in the northeastern South China Sea(SCS).We...An ensemble-based method for the observation system simulation experiment(OSSE)is employed to design optimal observation stations and assess the present observation stations in the northeastern South China Sea(SCS).We employed the 20-year(1992-2012)sea surface height(SSH)data to design an array to monitor the intraseasonal to interannual variability.The results show that the most key region was found located at the northwest of Luzon Island(LI)where the energetic Luzon cyclonic gyre(LCG)occurs;other key regions include the edge of the LCG,the northwest of the Luzon Strait(LS),and the southwest of Taiwan,China.By contrast,we found that the present observation stations might oversample at the northwest of the LS and undersample at the northwest of LI.In addition,the optimal stations perform better in a larger area than the present stations.In vertical direction,the key layer is located within the upper 200-m depth,of which the surface and subsurface layers are most valuable to the observing system.展开更多
Typhoon is one of the frequent natural disasters in coastal regions of China.As shown in many studies,the impact of typhoons on the South China Sea(SCS)should not be overlooked.Super typhoon Rammasun(2014)was studied ...Typhoon is one of the frequent natural disasters in coastal regions of China.As shown in many studies,the impact of typhoons on the South China Sea(SCS)should not be overlooked.Super typhoon Rammasun(2014)was studied that formed in the northwestern Pacific,passed through the SCS,then landed in the Leizhou Peninsula.Remote sensing data and model products were used to analyze the spatiotemporal variations of the cold eddies,upwelling,sea surface temperature,mixed layer depth,rainfall,sea surface salinity,suspended sediment concentration,and surface-level anomaly.Results confirm the constant presence of upwelling and cold eddies in the southeast of Hainan(north of the Zhongsha Islands)and the southeast of Vietnam in July.In addition,we found the strengthening effect of super typhoon Rammasun on the upwelling and cold eddies in the SCS.The major reasons for the continuous decrease in sea surface temperature and the slow regaining of seawater temperature were the enhanced upwelling and vertical mixing caused by the typhoon.The increasing of the surface runoff in the Indochina Peninsula was mainly affected by the typhoon,with some contribution for the southeast of Vietnam’s cold eddy and upwelling.展开更多
The purpose of the present paper is to study the morphological structure and variability of Azpeitia africana and to determine its geographical distribution in the surface sediments of the South China Sea(SCS). Sedime...The purpose of the present paper is to study the morphological structure and variability of Azpeitia africana and to determine its geographical distribution in the surface sediments of the South China Sea(SCS). Sediment samples were collected with grabs or box corers in one cruise in 2001 and two cruises in 2007. The sampling stations were located between 3°56.61′–20°59.37′N and 108°30.68′–116°46.70′E,where the water depth ranged from 72 m to 4 238 m. The diatom was observed by phase contrast microscopy and scanning electron microscopy. Microscopical observation showed that A. africana had circular valves with the areolar lines radiating from the eccentric ring. The central rimoportula had an external tube recessed on the edge of a central ring. The marginal rimoportulae were not evenly spaced, and they were positioned more closely together in one quadrant than in the others. Azpeitia africana is the most abundant diatom species in the southern region of the SCS, and accounted for 0.9%–5.6% of all diatom species in the Xisha Islands area. Average cell density of A. africana was 1.1×10~5 valves/g. The percentage abundance of A.africana was low(0%–2.5%) in the northern regions of the SCS and the Sunda Shelf, and it was not detected in the northwestern continental shelf(shallow water area) and northern Kalimantan Island shelf. Our results suggested that A. africana is a typical warm water species and that it could be used as an indicator of the warm Paci?c Ocean water, including the Kuroshio Current, ?owing into the SCS.展开更多
Sea surface wind(SSW)observations from a newly developed“Black Pearl”wave glider,the Chinese-French Oceanography Satellite(CFOSAT),the HY-2A microwave scatterometer,and a recently released high-resolution atmospheri...Sea surface wind(SSW)observations from a newly developed“Black Pearl”wave glider,the Chinese-French Oceanography Satellite(CFOSAT),the HY-2A microwave scatterometer,and a recently released high-resolution atmospheric reanalysis(ERA5)are evaluated with respect to in-situ buoy observations(115.46°E,19.85°N)from the South China Sea.Buoy observations from June to November 2019 are used to evaluate the wind estimates from the different platforms.The comparisons show that the HY-2A and CFOSAT scatterometer wind speeds have mean root mean square errors(RMSEs)of approximately 1.6 and 1.6 m/s,respectively,and the corresponding mean wind direction RMSEs are approximately 19°and 17°,which indicates that these satellite retrievals meet the requirements of design engineering missions.The wind speed and wind direction RMSEs of ERA5 are approximately 1.9 m/s and 33°,respectively.The correlation coefficients between the HY-2A,CFOSAT,and ERA5 wind speeds and the buoy observations are 0.86,0.85,and 0.84,respectively,and the corresponding coefficients of the wind direction are 0.98,0.98,and 0.93,respectively,at a 95%confidence level.However,the wind sensor in the wave glider provides relatively poor-quality observations compared with the buoy measurements and has higher wind speed and wind direction RMSEs of 2.9 m/s and 50.1°,respectively.Taylor diagrams are utilized to illustrate comprehensive wind comparisons between the multiplatform observations and buoy observations.The results help identify the basic biases in SSWs among different products and enhance confidence in the future use of SSW data for studies of upper ocean dynamics and climate analysis.Suggestions are also off ered to help improve the design of next-generation wave gliders.展开更多
Ocean salinity is an essential measurable indicator of water cycle and plays a crucial role in regulating ocean and climate change.Using Simple Ocean Data Assimilation(SODA)reanalysis product,substantial decadal varia...Ocean salinity is an essential measurable indicator of water cycle and plays a crucial role in regulating ocean and climate change.Using Simple Ocean Data Assimilation(SODA)reanalysis product,substantial decadal variability of the salinity in the upper layer of the South China Sea(SCS)from 1960 to 2010 was examined.Results show that a decadal variation of the upper layer salinity is clear.The upper layer(100 m)waters are found to freshen from 1960,become saltier during 1975 to 1995,and freshen again from 1995 to 2010.The strongest anomalies appear in the northeastern,northern,and northwestern regions in the three periods,respectively.The salinity variation trends become weaker below the upper layer,except the salinifi cation trend in the northern SCS extends to at least 300 m during the salinifi cation period.Diagnosis of the salinity budget over the top 100 m shows that during the fi rst freshening period horizontal advection,vertical advection,and surface freshwater forcing all contribute to salinity freshening,and horizontal advection is relatively larger.The contribution of horizontal advection and surface freshwater forcing to the positive salinity anomaly is comparable,while the vertical advection is the secondary factor in the salinifi cation period.Horizontal advection,especially zonal advection,plays a crucial role during the second freshening period.Moreover,horizontal advection is more important than that in the fi rst freshening period.In addition,the contribution of horizontal advection is mainly in zonal direction controlled by Kuroshio intrusion.Further analysis shows the upper-layer salinity variations have a Pacifi c Decadal Oscillation(PDO)-like signal,with freshening during the negative PDO years,and salinifi cation during the positive PDO years.PDO mainly infl uences the upper-layer salinity changes through both atmospheric bridge and oceanic bridge.展开更多
Sea surface salinity(SSS)is an essential variable of ocean dynamics and climate research.The Soil Moisture and Ocean Salinity(SMOS),Aquarius,and Soil Moisture Active Passive(SMAP)satellite missions all provide SSS mea...Sea surface salinity(SSS)is an essential variable of ocean dynamics and climate research.The Soil Moisture and Ocean Salinity(SMOS),Aquarius,and Soil Moisture Active Passive(SMAP)satellite missions all provide SSS measurements.The European Space Agency(ESA)Climate Change Initiative Sea Surface Salinity(CCI-SSS)project merged these three satellite SSS data to produce CCI L4SSS products.We validated the accuracy of the four satellite products(CCI,SMOS,Aquarius,and SMAP)using in-situ gridded data and Argo floats in the South China Sea(SCS).Compared with in-situ gridded data,it shows that the CCI achieved the best performance(RMSD:0.365)on monthly time scales.The RMSD of SMOS,Aquarius,and SMAP(SMOS:0.389;Aquarius:0.409;SMAP:0.391)are close,and the SMOS takes a slight advantage in contrast with Aquarius and SMAP.Large discrepancies can be found near the coastline and in the shelf seas.Meanwhile,CCI with lower RMSD(0.295)perform better than single satellite data(SMOS:0.517;SMAP:0.297)on weekly time scales compared with Argo floats.Overall,the merged CCI have the smallest RMSD among the four satellite products in the SCS on both weekly time scales and monthly time scales,which illustrates the improved accuracy of merged CCI compared with the individual satellite data.展开更多
The acoustic properties of seafloor sediment are essential parameters in the exploration of marine resources,ocean scientific research and ocean engineering.Seafloor sediment samples were collected at the southern U-b...The acoustic properties of seafloor sediment are essential parameters in the exploration of marine resources,ocean scientific research and ocean engineering.Seafloor sediment samples were collected at the southern U-boundary of the South China Sea(SCS),and the acoustic and physical properties were measured in the laboratory.The correlation between physical and sound speed ratio(SSR)was discussed,and SSR-physical property empirical regressions in the Sunda Shelf were established for the first time.Compared with the northern continental shelf of SCS,the Sunda Shelf are mainly silty and sand sediment,and the SSR ranges from 0.9949 to 1.0944,which has higher SSR than the northern continental shelf,implies that the Sunda Shelf is a high SSR area.Since the same kind of sediment has different physical properties,the single physical parameter of sediment cannot fully represent the acoustic properties of sediment,therefore,the multiple parameter prediction model should develop in the future to improve the prediction precision.展开更多
The relative contributions of surface temperature and salinity to steric sea-level variations are investigated using satellite observations and reanalysis datasets.By defi ning a contribution factor,the relative roles...The relative contributions of surface temperature and salinity to steric sea-level variations are investigated using satellite observations and reanalysis datasets.By defi ning a contribution factor,the relative roles of thermal and haline steric height variations are quantifi ed over the South China Sea(SCS).The thermosteric height dominates the steric sea level variation in the northern SCS deep basin,while the contribution of the halosteric height increases southward.Further investigation reveals that this transition is related to the meridional imbalance of surface heat flux and precipitation variations.The revealed steric constitution distribution is not confi ned to the surface but extends within the upper layer to approximately 50m depth,and then the thermosteric component dominates from the depth underneath.The results of this study clarify the steric sea level constitution over the SCS,benefit the understanding of sea-level variations at the regional scale,and may further facilitate multisensor remote sensing data mining studies.展开更多
This paper is devoted to the features of sea-surface heat budget during the active/break phases of the 2000 summer monsoon in the South-China Sea (SCS) by means of the observed air-sea heat fluxes and data from Xisha ...This paper is devoted to the features of sea-surface heat budget during the active/break phases of the 2000 summer monsoon in the South-China Sea (SCS) by means of the observed air-sea heat fluxes and data from Xisha Weather Station and NCEP/NCAR in the same period.Results suggest that the primary factors affecting sea-surface thermal budget are solar shortwave penetrating radiation and latent heat flux.Regardless of their changes,however,the thermal gain is reduced or becomes net loss at the active stage and the thermal gain gets gradually increased in the weakening and lull periods:during the first emergence of southwest monsoon the net loss happens thanks to the dramatic diminution of penetrating radiation resulting from increased cloudiness and intense precipitation:while at the re-emergence of the wind.reduced net sea-surface thermal gain is attributed to the sharp increase in latent heat flux resulting from intense evaporation:owing to great thermal inertia of water the SST change lags behind that of heat budget over the sea surface, and the lagging is responsible for regulating the budget by affecting latent heat fluxes,which,in turn.has effect upon the change of the SST,thereby forming short-term oscillations that are in association with the active/break phases of the monsoons.Part of the conclusions have been borne out by the observational study based on 1998 and 2002 data.展开更多
After reviewing the analytical theories of T S curve, some methods of T S relationship, and fuzzy sets for studying water masses, new methods of fitting the membership function of oceanic water masses are presented ba...After reviewing the analytical theories of T S curve, some methods of T S relationship, and fuzzy sets for studying water masses, new methods of fitting the membership function of oceanic water masses are presented based on the characteristics of T S curve family of oceanic water masses. The membership functions of oceanic Subsurface Water Mass with high salinity and Intermediate Water Mass with low salinity are fitted and discussed using the new methods. The proposed methods are useful in analyzing the mixing and modifying processes of these water masses, especially in tracing their sources. The principles and formulae of the new methods and examples are given.展开更多
文摘Based on the quantitative analyses of abundance of planktonic foraminifera, benthic foraminifera, calcareous nannofossils, the ratios of calcareous to siliceous microfossils, and the determination of carbonate contents in the surface sediments of the northeastern South China Sea, it has been found that the carbonate contents, the abundance of planktonic foraminifera and calcareous nannoplankton, and the ratio of calcareous microfossils decrease rapidly while the ratio of the benthic foraminifera to the total foraminiferal fauna, specific value of siliceous microfossils, and the percentage of the agglutinated tests in the benthic foraminiferal fauna increase with the water depth. The results indicate that the microfossils abundance and ratio, and the carbonate content are closely related to the carbonate lysocline and carbonate compensation depth (CCD) in the study area. In addition, the carbonate lysocline and the CCD are different between the southern and northern parts of the South China Sea. Both the lysocline and the CCD are deeper in the south with 2 600 and 3 600 m than in the north with 2 200 and 3 400 m, respectively.
基金financially supported by the National Science and Technology Major Project (No. 2011ZX050 25-002-03)the Project of China National Offshore Oil Corporation (CNOOC) Limited (No. CCL2013ZJFNO729)the National Natural Science Foundation of China (No. 41530963)
文摘Based on the concentrations of the trace elements,rare earth elements(REE),and Sr isotopic compositions in reef carbonates from the well‘Xike-1’reef core of the Xisha Islands,the constraints on sediment provenance and paleoenvironment were defined.Variations of the terrigenous input into the paleoseawater were traced in detail and the paleoenvironment and sediment provenance were further investigated.The results show that the HREE/LREE values in the reef carbonates are negatively associated with their Th and Al concentrations;however,their Al and Th concentrations show positive correlation.The lowest 87 Sr/86 Sr values in the reef carbonates generally coincide with the lowest values of Al,Th concentrations and the highest values of HREE/LREE.These data indicate that the HREE/LREE,Al concentrations,and Th concentrations of the reef carbonates are useful indexes for evaluating the influence of the terrigenous inputs on the seawater composition in the study area.From top to bottom,the changing process of the HREE/LREE values and Al,Th concentrations can be divided into 6 intervals;they are H1(0–89.30 m,about 0–0.11 Myr),L1(89.30–198.30 m,about 0.11–2.2 Myr),H2(198.30–374.95 m,about 2.2–5.3 Myr),D(374.95–758.40 m,about 5.3–13.6 Myr),L2(758.40–976.86 m,about 13.6–15.5 Myr),and H3(976.86–1200.00 m,about 15.5–21.5 Myr).Moreover,the changing trend of the HREE/LREE values coincides with that of the seawater δ^13C values recorded by benthonic foraminiferal skeletons from the drill core of ODP site 1148 in the South China Sea(SCS),but not with that of the seawaterδ18O values.The high uplifting rates of the Qinghai-Tibet Plateau coincide with the high Th and Al concentrations and the low HREE/LREE values in the reef carbonates.These data indicate that the main factors controlling the changes of terrigenous flux in the SCS are the tectonic activities associated with Qinghai-Tibet Plateau uplifting and the variations of uplifting rates rather than paleoclimatic changes.
基金supported by the National Key R&D Program of China(No.2017YFC1404202)the National Natural Science Foundation of China(Nos.11572332,11602274,and 11232012)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB22040203)
文摘A numerical study to a generalized Korteweg-de Vries (KdV) equation is adopted to model the propagation and disintegration of large-amplitude internal solitary waves (ISWs) in the South China Sea (SCS). Based on theoretical analysis and in situ measurements, the drag coefficient of the Chezy friction is regarded as inversely proportional to the initial amplitude of an ISW, rather than a constant as assumed in the previous studies. Numerical simulations of ISWs propagating from a deep basin to a continental shelf are performed with the generalized KdV model. It is found that the depression waves are disintegrated into several solitons on the continental shelf due to the variable topography. It turns out that the amplitude of the leading ISW reaches a maximum at the shelf break, which is consistent with the field observation in the SCS.Moreover, a dimensionless parameter defining the relative importance of the variable topography and friction is presented.
基金Supported by the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0304)the National Natural Science Foundation of China(Nos.41630970,41876016,41676022,41521005)+2 种基金the Natural Science Foundation of Zhejiang(No.LR20D060001)the Instrument Developing Project of the CAS(No.YZ201432)the State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences(No.LTO1915)。
文摘Near-diurnal vertically-standing waves with high vertical wavenumbers k z were observed in the velocity and shear fi elds from a set of 75-d long ADCP moored in the northeastern South China Sea(SCS)away from the“critical”latitude of 28.8°.These enhanced near-diurnal internal waves followed a fortnightly spring-neap cycle.However,they always happened during semidiurnal spring tides rather than diurnal springs although strong diurnal internal tides with the fortnightly spring-neap cycle were prevailing,suggesting that they were generated via subharmonic instability(PSI)of dominant semidiurnal M 2 internal tides.When two semidiurnal internal tidal waves with opposite vertical propagation direction intersected,both semidiurnal subharmonic and super harmonic waves were largely intensifi ed.The observed maximum diurnal velocity amplitudes were up to 0.25 m/s.The kinetic energy and shear spectra further suggested that frequencies of daughter waves were not always perfectly equal to M 2/2.The superposition of two daughter waves with nearly equal frequencies and nearly opposite k z in a PSI-triad leaded to the vertically-standing waves.
基金Supported by the National Key R&D Program of China(No.2018YFC1406202)the National Natural Science Foundation of China(No.41976188)。
文摘The daily regional reanalysis product of the China Ocean Reanalysis(CORA)product was released in website in 2018.Using in situ observational data including Argo profiling floats,drifters,and cruise data,the performance of CORA in the South China Sea in terms of temperature,salinity,current and mixed layer depths is evaluated based on timescale(seasonal and interannual)and spatial distribution characteristics.The CORA temperature,salinity,and mixed layer depth show certain seasonal and interannual variations.In 50-400 m depth in the SCS,the CORA temperature is colder in winter and warmer in summer and autumn.In 0-150 m in the SCS,the CORA salinity is higher in most time of the year.However,in the second half of the year,the salinity is slightly weaker in 100-150 m depth.In most years,the CORA mixed layer depths tend to be shallower,and in season,shallower in winter and deeper in summer.In spatial distribution,the closer the area is to the coast,the greater the CORA errors would be.The CORA temperature is colder in the western side and warmer in the eastern side,resulting in a weaker SCS western boundary current(SCSwbc).In most areas,the CORA mixed layer depths are shallower.In the area close to the coast,the CORA mixed layer depths change rapidly,and the deviations in the mixed layer depths are larger.In the central SCS,the CORA mixed layer depths change slowly,and the deviations in the mixed layer depths are also small.
基金Characteristics Analysis of Typhoon Wind and Wave Field in the South China Sea(SOEDZZ1519)Multi-Source Environmental Data Analysis and Atlas Compilation in the Indian Ocean(JT1506)Special Fund of Chinese Academy of Meteorological Sciences(41575055)
文摘The relationship between the tropical intra-seasonal oscillation(ISO) and tropical cyclones(TCs) activities over the South China Sea(SCS) is investigated by utilizing the National Centers for Environmental Prediction/National Center for Atmospheric Research(NCEP/NCAR) global reanalysis data and tropical cyclone best-track data from 1949 to 2009.The main conclusions are:(1)A new ISO index is designed to describe the tropical ISO activity over the SCS,which can simply express ISO for SCS.After examining the applicability of the index constructed by the Climate Prediction Center(CPC),we find that the convection spatial scale reflected by this index is too large to characterize the small-scale SCS and fails to divide the TCs activities over the SCS into active and inactive categories.Consequently,the CPC index can't replace the function of the new ISO index;(2)The eastward spread process of tropical ISO is divided into eight phases using the new ISO index,the phase variation of which corresponds well with the TCs activities over the SCS.TCs generation and landing are significantly reduced during inactive period(phase 4-6) relative to that during active period(phase 7-3);(3)The composite analyses indicate distinct TCs activities over the SCS,which is consistent with the concomitant propagation of the ISO convective activity.During ISO active period,the weather situations are favorable for TCs development over the SCS,e.g.,strong convection,cyclonic shear and weak subtropical high,and vice versa;(4)The condensation heating centers,strong convection and water vapor flux divergence are well collocated with each other during ISO active period.In addition,the vertical profile of condensation heat indicates strong ascending motion and middle-level heating over the SCS during active period,and vice versa.Thus,the eastward propagation of tropical ISO is capable to modulate TCs activities by affecting the heating configuration over the SCS.
基金This study was jointly supported by the National Natural Science Foundation of China(Grant Nos.41703043 and 41673066)the Guangzhou Marine Geological Survey(Grant Nos.DD20189310,DD20190230,and 42000–41090063)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.19lgpy91)the State Key Laboratory of Organic Geochemistry,GIG-CAS(Grant Nos.SKLOG201903)。
文摘Methane hydrate in the South China Sea (SCS) has extensively been considered to be biogenic on the basis of its δ13C andδD values.Although previous efforts have greatly been made,the contribution of thermogenic oil/gas has still been underestimated.In this study,biomarkers and porewater geochemical parameters in hydrate-free and hydrate-bearing sediments in the Taixinan Basin,the SCS have been measured for evaluating the contribution of petroleum hydrocarbons to the formation of hydrate deposits via a comparative study of their source inputs of organic matters,environmental conditions,and microbial activities.The results reveal the occurrence of C_(14)–C_(16) branched saturated fatty acids (bSFAs) with relatively high concentrations from sulfate-reducing bacteria(SRBs) in hydrate-bearing sediments in comparison with hydrate-free sediments,which is in accord with the positive δ^(13)C values of dissolved inorganic carbon (DIC),increasing methane concentrations,decreasing alkalinity,and concentration fluctuation of ions (Cl^(-),Br^(-),SO_(4)^(2-),Ca^(2+),and Mg^(2+)).These data indicate the relatively active microbial activities in hydrate-bearing sediments and coincident variations of environmental conditions.Carbon isotope compositions of b SFAs (-34.0‰to -21.2‰),n-alkanes (-34.5‰to-29.3‰),and methane(-70.7‰to -69.9‰) jointly demonstrate that SRBs might thrive on a different type of organic carbon rather than methane.Combining with numerous gas/oil reservoirs and hydrocarbon migration channels in the SCS,the occurrence of unresolved complex mixtures (UCMs),odd-even predominance (OEP) values (about 1.0),and biomarker patterns suggest that petroleum hydrocarbons from deep oil/gas reservoirs are the most probable carbon source.Our new results provide significant evidence that the deep oil/gas reservoirs may make a contribution to the formation of methane hydrate deposits in the SCS.
基金Supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(No.SML2021SP102)the Key Laboratory of Marine Environmental Survey Technology and Application+2 种基金Ministry of Natural Resources(Nos.MESTA-2020-C003,MESTA-2020-C004)the Key Research and Development Project of Guangdong Province(No.2020B1111020003)the Science and Technology Research Project of Jiangxi Provincial Department of Education(No.GJJ200330)。
文摘Wind and wave data are essential in climatological and engineering design applications.In this study,data from 15 buoys located throughout the South China Sea(SCS)were used to evaluate the ERA5 wind and wave data.Applicability assessment are beneficial for gaining insight into the reliability of the ERA5 data in the SCS.The bias range between the ERA5 and observed wind-speed data was-0.78-0.99 m/s.The result indicates that,while the ERA5 wind-speed data underestimation was dominate,the overestimation of such data existed as well.Additionally,the ERA5 data underestimated annual maximum wind-speed by up to 38%,with a correlation coefficient>0.87.The bias between the ERA5 and observed significant wave height(SWH)data varied from-0.24 to 0.28 m.And the ERA5 data showed positive SWH bias,which implied a general underestimation at all locations,except those in the Beibu Gulf and centralwestern SCS,where overestimation was observed.Under extreme conditions,annual maximum SWH in the ERA5 data was underestimated by up to 30%.The correlation coefficients between the ERA5 and observed SWH data at all locations were greater than 0.92,except in the central-western SCS(0.84).The bias between the ERA5 and observed mean wave period(MWP)data varied from-0.74 to 0.57 s.The ERA5 data showed negative MWP biases implying a general overestimation at all locations,except for B1(the Beibu Gulf)and B7(the northeastern SCS),where underestimation was observed.The correlation coefficient between the ERA5 and observed MWP data in the Beibu Gulf was the smallest(0.56),and those of other locations fluctuated within a narrow range from 0.82 to 0.90.The intercomparison indicates that during the analyzed time-span,the ERA5 data generally underestimated wind-speed and SWH,but overestimated MWP.Under non-extreme conditions,the ERA5 wind-speed and SWH data can be used with confidence in most regions of the SCS,except in the central-western SCS.
基金Under the auspices of National Natural Science Foundation of China(No.91428203)Guangxi Scientific Projects(No.2018GXNSFAA281100)。
文摘The seasonal and interannual variabilities of sea surface wind(SSW)in the South China Sea(SCS),especially in coral reef regions such as Nansha Islands,Xisha Islands,Zhongsha Islands and Dongsha Islands were investigated in detail using the Blended Sea Winds dataset(1988-2017).Annual and monthly variations of SSW and sea surface temperature(SST)in the four zones were investigated.Empirical Orthogonal Function(EOF)analysis of wind field was performed to aid in better understanding the different spatial patterns.The results indicate that,as observed in the spatial distribution of the first mode of monthly mean wind speed anomaly,the mag-nitudes in the four island zones are all negative and are similar to each other,showing that the variations of SSW in the four island zones are consistent.In the second mode,the magnitudes in Nansha Islands are opposite to those in the other three zones.The spatial distribution of the third mode reflects regional differences.The maximum annual SSW appears in Dongsha Islands,and the minimum appears in Nansha Islands.The interannual variations of SSW in all island zones are basically concurrent.The island zones with high SSW mostly have low SST,and vice versa.There may be an inverse relationship between SSW and SST in coral reef regions in the SCS.The multiyear monthly variations of SSW in the island zones present a'W'-shaped structural variation.Each island undergoes two months of minimum SSW every year,one during March-May(MAM)and the other during September-November(SON).Both months are in mon-soon transition periods.During the months with low SSW,high SST appears.The SST peaks almost correspond to the SSW troughs.This further indicates that SSW and SST may have opposite changes in coral reef regions.Coral bleaching events often correspond to years of high SST and low SSW.
基金Supported by the National Key Research and Development Program of China(No.2022YFC3102200)the Guangdong Research Foundation(No.2019BT02H594)+3 种基金the National Natural Science Foundation of China(No.42076071)the Key Special Project for Introduced Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0204)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA22020303)the Key Research Program of the Chinese Academy of Sciences(No.ZDRW-XH-2021-2-02)。
文摘Submarine volcanism is widely developed in the South China Sea(SCS).However,the characteristics,distribution,and genesis of submarine volcanoes in the southern margin of the SCS remain obscure.In this study,we analyzed the characteristics of submarine volcanoes and identified a total of 43 submarine volcanoes in the southern margin of the SCS,based on a newly acquired 310-km seismic reflection profile,along with previous 45 multi-channel seismic(MCS)profiles,petrological results from volcanic rocks sampled by dredging and drilling,nearby ocean bottom seismometer(OBS)wide-angle seismic profiles,and gravity and magnetic data.The study ascertains that most of these volcanoes are located in fault-block belts and graben-horst zones with strong crustal stretching and thinning.These volcanoes exhibit positive high-amplitude external seismic reflections,weak and chaotic internal seismic reflections,and are accompanied by local deformation of the surrounding sedimentary strata.Meanwhile,they have higher positive gravity anomalies and higher magnetic anomalies than the background strata.The petrological dating results show that volcanic ages are primarily in the Pliocene-Pleistocene,with geochemical characteristics indicating dominance of oceanic island basalt(OIB)-type alkali-basalts.Extensional faults have obviously spatial correspondence with post-spreading volcanism,suggesting these faults may provide conduits for submarine volcanism.The high-velocity bodies(HVBs)in the lower crust and magma underplating exist in the southern SCS,which could provide a clue of genesis for submarine volcanism.The inference is that the intensity of post-spreading volcanism in the southern margin might be affected by stretching faults,crustal thinning and magma underplating.
基金Supported by the National Key Research&Development Plan of China(Nos.2016YFC1401703,2016YFC1401702,2018YFC0309803)the National Natural Science Foundation of China(Nos.41506002,41676010,41476011,41676015,41606026)+1 种基金the Institution of South China Sea Ecology and Environmental Engineering,Chinese Academy of Sciences(No.ISEE2019ZR0)the Guangzhou Science and Technology Foundation(No.201804010133)。
文摘An ensemble-based method for the observation system simulation experiment(OSSE)is employed to design optimal observation stations and assess the present observation stations in the northeastern South China Sea(SCS).We employed the 20-year(1992-2012)sea surface height(SSH)data to design an array to monitor the intraseasonal to interannual variability.The results show that the most key region was found located at the northwest of Luzon Island(LI)where the energetic Luzon cyclonic gyre(LCG)occurs;other key regions include the edge of the LCG,the northwest of the Luzon Strait(LS),and the southwest of Taiwan,China.By contrast,we found that the present observation stations might oversample at the northwest of the LS and undersample at the northwest of LI.In addition,the optimal stations perform better in a larger area than the present stations.In vertical direction,the key layer is located within the upper 200-m depth,of which the surface and subsurface layers are most valuable to the observing system.
基金Supported by the Key Projects of the Guangdong Education Department(No.2019KZDXM019)the Fund of Southern Marine Science and Engineering Guangdong Laboratory(Zhanjiang)(No.ZJW-2019-08)+1 种基金the High-level Marine Discipline Team Project of Guangdong Ocean University(No.002026002009)the“First Class”Discipline Construction Platform Project in 2019 of Guangdong Ocean University(No.231419026)。
文摘Typhoon is one of the frequent natural disasters in coastal regions of China.As shown in many studies,the impact of typhoons on the South China Sea(SCS)should not be overlooked.Super typhoon Rammasun(2014)was studied that formed in the northwestern Pacific,passed through the SCS,then landed in the Leizhou Peninsula.Remote sensing data and model products were used to analyze the spatiotemporal variations of the cold eddies,upwelling,sea surface temperature,mixed layer depth,rainfall,sea surface salinity,suspended sediment concentration,and surface-level anomaly.Results confirm the constant presence of upwelling and cold eddies in the southeast of Hainan(north of the Zhongsha Islands)and the southeast of Vietnam in July.In addition,we found the strengthening effect of super typhoon Rammasun on the upwelling and cold eddies in the SCS.The major reasons for the continuous decrease in sea surface temperature and the slow regaining of seawater temperature were the enhanced upwelling and vertical mixing caused by the typhoon.The increasing of the surface runoff in the Indochina Peninsula was mainly affected by the typhoon,with some contribution for the southeast of Vietnam’s cold eddy and upwelling.
基金Supported by the National Key Research and Development Program of China(No.2016YFA0601302)
文摘The purpose of the present paper is to study the morphological structure and variability of Azpeitia africana and to determine its geographical distribution in the surface sediments of the South China Sea(SCS). Sediment samples were collected with grabs or box corers in one cruise in 2001 and two cruises in 2007. The sampling stations were located between 3°56.61′–20°59.37′N and 108°30.68′–116°46.70′E,where the water depth ranged from 72 m to 4 238 m. The diatom was observed by phase contrast microscopy and scanning electron microscopy. Microscopical observation showed that A. africana had circular valves with the areolar lines radiating from the eccentric ring. The central rimoportula had an external tube recessed on the edge of a central ring. The marginal rimoportulae were not evenly spaced, and they were positioned more closely together in one quadrant than in the others. Azpeitia africana is the most abundant diatom species in the southern region of the SCS, and accounted for 0.9%–5.6% of all diatom species in the Xisha Islands area. Average cell density of A. africana was 1.1×10~5 valves/g. The percentage abundance of A.africana was low(0%–2.5%) in the northern regions of the SCS and the Sunda Shelf, and it was not detected in the northwestern continental shelf(shallow water area) and northern Kalimantan Island shelf. Our results suggested that A. africana is a typical warm water species and that it could be used as an indicator of the warm Paci?c Ocean water, including the Kuroshio Current, ?owing into the SCS.
基金Supported by the National Natural Science Foundation of China(No.42076016)the Fundamental Research Funds for the Central Universities(No.2019B02814)the National Key Research and Development Program of China(No.2018YFC0213104)。
文摘Sea surface wind(SSW)observations from a newly developed“Black Pearl”wave glider,the Chinese-French Oceanography Satellite(CFOSAT),the HY-2A microwave scatterometer,and a recently released high-resolution atmospheric reanalysis(ERA5)are evaluated with respect to in-situ buoy observations(115.46°E,19.85°N)from the South China Sea.Buoy observations from June to November 2019 are used to evaluate the wind estimates from the different platforms.The comparisons show that the HY-2A and CFOSAT scatterometer wind speeds have mean root mean square errors(RMSEs)of approximately 1.6 and 1.6 m/s,respectively,and the corresponding mean wind direction RMSEs are approximately 19°and 17°,which indicates that these satellite retrievals meet the requirements of design engineering missions.The wind speed and wind direction RMSEs of ERA5 are approximately 1.9 m/s and 33°,respectively.The correlation coefficients between the HY-2A,CFOSAT,and ERA5 wind speeds and the buoy observations are 0.86,0.85,and 0.84,respectively,and the corresponding coefficients of the wind direction are 0.98,0.98,and 0.93,respectively,at a 95%confidence level.However,the wind sensor in the wave glider provides relatively poor-quality observations compared with the buoy measurements and has higher wind speed and wind direction RMSEs of 2.9 m/s and 50.1°,respectively.Taylor diagrams are utilized to illustrate comprehensive wind comparisons between the multiplatform observations and buoy observations.The results help identify the basic biases in SSWs among different products and enhance confidence in the future use of SSW data for studies of upper ocean dynamics and climate analysis.Suggestions are also off ered to help improve the design of next-generation wave gliders.
基金Supported by the National Natural Science Foundation of China(Nos.91958202,41731173)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA20060502)+1 种基金the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0306)the Key Research Program of the Chinese Academy of Sciences(No.ZDRWXH-2019-2)。
文摘Ocean salinity is an essential measurable indicator of water cycle and plays a crucial role in regulating ocean and climate change.Using Simple Ocean Data Assimilation(SODA)reanalysis product,substantial decadal variability of the salinity in the upper layer of the South China Sea(SCS)from 1960 to 2010 was examined.Results show that a decadal variation of the upper layer salinity is clear.The upper layer(100 m)waters are found to freshen from 1960,become saltier during 1975 to 1995,and freshen again from 1995 to 2010.The strongest anomalies appear in the northeastern,northern,and northwestern regions in the three periods,respectively.The salinity variation trends become weaker below the upper layer,except the salinifi cation trend in the northern SCS extends to at least 300 m during the salinifi cation period.Diagnosis of the salinity budget over the top 100 m shows that during the fi rst freshening period horizontal advection,vertical advection,and surface freshwater forcing all contribute to salinity freshening,and horizontal advection is relatively larger.The contribution of horizontal advection and surface freshwater forcing to the positive salinity anomaly is comparable,while the vertical advection is the secondary factor in the salinifi cation period.Horizontal advection,especially zonal advection,plays a crucial role during the second freshening period.Moreover,horizontal advection is more important than that in the fi rst freshening period.In addition,the contribution of horizontal advection is mainly in zonal direction controlled by Kuroshio intrusion.Further analysis shows the upper-layer salinity variations have a Pacifi c Decadal Oscillation(PDO)-like signal,with freshening during the negative PDO years,and salinifi cation during the positive PDO years.PDO mainly infl uences the upper-layer salinity changes through both atmospheric bridge and oceanic bridge.
基金Supported by the National Natural Science Foundation of China(No.42075149)。
文摘Sea surface salinity(SSS)is an essential variable of ocean dynamics and climate research.The Soil Moisture and Ocean Salinity(SMOS),Aquarius,and Soil Moisture Active Passive(SMAP)satellite missions all provide SSS measurements.The European Space Agency(ESA)Climate Change Initiative Sea Surface Salinity(CCI-SSS)project merged these three satellite SSS data to produce CCI L4SSS products.We validated the accuracy of the four satellite products(CCI,SMOS,Aquarius,and SMAP)using in-situ gridded data and Argo floats in the South China Sea(SCS).Compared with in-situ gridded data,it shows that the CCI achieved the best performance(RMSD:0.365)on monthly time scales.The RMSD of SMOS,Aquarius,and SMAP(SMOS:0.389;Aquarius:0.409;SMAP:0.391)are close,and the SMOS takes a slight advantage in contrast with Aquarius and SMAP.Large discrepancies can be found near the coastline and in the shelf seas.Meanwhile,CCI with lower RMSD(0.295)perform better than single satellite data(SMOS:0.517;SMAP:0.297)on weekly time scales compared with Argo floats.Overall,the merged CCI have the smallest RMSD among the four satellite products in the SCS on both weekly time scales and monthly time scales,which illustrates the improved accuracy of merged CCI compared with the individual satellite data.
基金Supported by the Guangdong Special Support Key Team Program(No.2019BT02H594)the National Key R&D Program of China(No.2021YFF0501202)+5 种基金the Youth Innovation Promotion Association CASthe National Natural Science Foundation of China(Nos.41706045,42176191,41773039,U22A2012)the Rising Star Foundation of the Integrated Research Center for Islands and Reefs Sciences,CAS(No.ZDRW-XH-2021-2-03)the CAS Key Laboratory of Science and Technology on Operational Oceanography Open Project Funding(No.OOST2021-01)the Guangdong Natural Science Foundation(No.2017A030313237)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Nos.SKLA202007,SKLA202106)。
文摘The acoustic properties of seafloor sediment are essential parameters in the exploration of marine resources,ocean scientific research and ocean engineering.Seafloor sediment samples were collected at the southern U-boundary of the South China Sea(SCS),and the acoustic and physical properties were measured in the laboratory.The correlation between physical and sound speed ratio(SSR)was discussed,and SSR-physical property empirical regressions in the Sunda Shelf were established for the first time.Compared with the northern continental shelf of SCS,the Sunda Shelf are mainly silty and sand sediment,and the SSR ranges from 0.9949 to 1.0944,which has higher SSR than the northern continental shelf,implies that the Sunda Shelf is a high SSR area.Since the same kind of sediment has different physical properties,the single physical parameter of sediment cannot fully represent the acoustic properties of sediment,therefore,the multiple parameter prediction model should develop in the future to improve the prediction precision.
基金Supported by the National Key R&D Program of China(No.2016YFC1401008)the National Natural Science Foundation of China(No.41706203)。
文摘The relative contributions of surface temperature and salinity to steric sea-level variations are investigated using satellite observations and reanalysis datasets.By defi ning a contribution factor,the relative roles of thermal and haline steric height variations are quantifi ed over the South China Sea(SCS).The thermosteric height dominates the steric sea level variation in the northern SCS deep basin,while the contribution of the halosteric height increases southward.Further investigation reveals that this transition is related to the meridional imbalance of surface heat flux and precipitation variations.The revealed steric constitution distribution is not confi ned to the surface but extends within the upper layer to approximately 50m depth,and then the thermosteric component dominates from the depth underneath.The results of this study clarify the steric sea level constitution over the SCS,benefit the understanding of sea-level variations at the regional scale,and may further facilitate multisensor remote sensing data mining studies.
基金the NSFC (National Natural Science Foundation of China) key program (No.40136010)the NSFC programs (No.40075003 and No.90211010)
文摘This paper is devoted to the features of sea-surface heat budget during the active/break phases of the 2000 summer monsoon in the South-China Sea (SCS) by means of the observed air-sea heat fluxes and data from Xisha Weather Station and NCEP/NCAR in the same period.Results suggest that the primary factors affecting sea-surface thermal budget are solar shortwave penetrating radiation and latent heat flux.Regardless of their changes,however,the thermal gain is reduced or becomes net loss at the active stage and the thermal gain gets gradually increased in the weakening and lull periods:during the first emergence of southwest monsoon the net loss happens thanks to the dramatic diminution of penetrating radiation resulting from increased cloudiness and intense precipitation:while at the re-emergence of the wind.reduced net sea-surface thermal gain is attributed to the sharp increase in latent heat flux resulting from intense evaporation:owing to great thermal inertia of water the SST change lags behind that of heat budget over the sea surface, and the lagging is responsible for regulating the budget by affecting latent heat fluxes,which,in turn.has effect upon the change of the SST,thereby forming short-term oscillations that are in association with the active/break phases of the monsoons.Part of the conclusions have been borne out by the observational study based on 1998 and 2002 data.
基金supported by the Research Funds for the Doctoral Program of Higher Education in China(No.2000042301)the National Natural Science Foundation of China(No.40276009)The Ministry of Science and Technology of China supported this study through the South China Sea Monsoon Experiment(SCSMEX)program and the National Key Program for Developing Basic Science under contract(No.G1999043800).
文摘After reviewing the analytical theories of T S curve, some methods of T S relationship, and fuzzy sets for studying water masses, new methods of fitting the membership function of oceanic water masses are presented based on the characteristics of T S curve family of oceanic water masses. The membership functions of oceanic Subsurface Water Mass with high salinity and Intermediate Water Mass with low salinity are fitted and discussed using the new methods. The proposed methods are useful in analyzing the mixing and modifying processes of these water masses, especially in tracing their sources. The principles and formulae of the new methods and examples are given.