The nonlinear variation of wave is commonly seen in nearshore area,and the resulting seabed response and liquefaction are of high concern to coastal engineers.In this study,an analytical formula considering the nonlin...The nonlinear variation of wave is commonly seen in nearshore area,and the resulting seabed response and liquefaction are of high concern to coastal engineers.In this study,an analytical formula considering the nonlinear wave skewness and asymmetry is adopted to provide wave pressure on the seabed surface.The liquefaction depth attenuation coefficient and width growth coefficient are defined to quantitatively characterize the nonlinear effect of wave on seabed liquefaction.Based on the 2D full dynamic model of wave-induced seabed response,a detailed parametric study is carried out in order to evaluate the influence of the nonlinear variation of wave loadings on seabed liquefaction.Further,new empirical prediction formulas are proposed to fast predict the maximum liquefaction under nonlinear wave.Results indicate that(1)Due to the influence of wave nonlinearity,the vertical transmission of negative pore water pressure in the seabed is hindered,and therefore,the amplitude decreases significantly.(2)In general,with the increase of wave nonlinearity,the liquefaction depth of seabed decreases gradually.Especially under asymmetric and skewed wave loading,the attenuation of maximum seabed liquefaction depth is the most significant among all the nonlinear wave conditions.However,highly skewed wave can cause the liquefaction depth of seabed greater than that under linear wave.(3)The asymmetry of wave pressure leads to the increase of liquefaction width,whereas the influence of skewedness is not significant.(4)Compared with the nonlinear waveform,seabed liquefaction is more sensitive to the variation of nonlinear degree of wave loading.展开更多
The sloping seabed affects the bearing capacity and failure mechanism of soil,which may compromise the stability and safety of offshore structures such as jack-up platforms.This paper employs a coupled model combining...The sloping seabed affects the bearing capacity and failure mechanism of soil,which may compromise the stability and safety of offshore structures such as jack-up platforms.This paper employs a coupled model combining the material point method and finite element method(MPM-FEM)to analyze the impact of sloping seabeds on the three-dimensional soil-spudcan interaction.The MPM-FEM model implements the B¯approach to solve the challenge of volumetric locking due to the incompressibility constraints imposed by yield criterion.It is validated against the centrifuge results.The effects of sloping seabeds on penetration resistance,soil flow pattern,lateral response,stress distribution,and failure mechanism are discussed.The soil mainly undergoes overall failure when the ratio of penetration depth to spudcan diameter(i.e.D P/D)is between 0 and 0.25.As the slope angle increases,the soil on the side of lower slope is expelled further,resulting in an asymmetric stress distribution and a larger horizontal sliding force of soil.When D P/D increases to 0.75,the soil transitions to localized plastic flow failure,and the range of soil flow affected by the spudcan penetration decreases.The results show that,when the slope angle increases,the lateral displacement and stress distribution on the lower slope of a sloping seabed is significantly larger than that of a horizontal seabed,impacting the spudcan and surrounding soil behavior.The study suggests that the seabed slope significantly affects the range of soil flow and failure at shallow penetration,indicating that the slope angle should be taken into account in the design and installation of offshore jack-up rigs,particularly in areas with sloping seabeds.展开更多
Ocean mining activities have been ongoing for nearly 70 years,making great contributions to industrialization.Given the increasing demand for energy,along with the restructuring of the energy supply catalyzed by effor...Ocean mining activities have been ongoing for nearly 70 years,making great contributions to industrialization.Given the increasing demand for energy,along with the restructuring of the energy supply catalyzed by efforts to achieve a low-carbon economy,deep seabed mining will play an important role in addressing energy-and resource-related problems in the future.However,deep seabed mining remains in the exploratory stage,with many challenges presented by the high-pressure,low-temperature,and complex geologic and hydrodynamic environments in deep-sea mining areas,which are inaccessible to human activities.Thus,considerable efforts are required to ensure sustainable,economic,reliable,and safe deep seabed mining.This study reviews the latest advances in marine engineering geology and the environment related to deep-sea min-ing activities,presents a bibliometric analysis of the development of ocean mineral resources since the 1950s,summarizes the development,theory,and issues related to techniques for the three stages of ocean mining(i.e.,exploration,extraction,and closure),and discusses the engineering geology environment,geological disasters,in-situ monitoring techniques,envi-ronmental protection requirements,and environmental effects in detail.Finally,this paper gives some key conclusions and future perspectives to provide insights for subsequent studies and commercial mining operations.展开更多
Wave-induced liquefaction of the seabed is a geohazard frequently encountered in shallow waters.Although widely discussed,most studies paid attention to the seabed response under a single sequence of wave loading.Howe...Wave-induced liquefaction of the seabed is a geohazard frequently encountered in shallow waters.Although widely discussed,most studies paid attention to the seabed response under a single sequence of wave loading.However,the seabed suffers from repeated‘wave loading–dissipation’phases in a real ocean environment.In this study,a homogeneous sandy seabed model is established to investigate the mechanism of wave-induced liquefaction by considering the existence of currents.Finite element analyses are conducted by incorporating a kinematic hardening elastoplastic model into the commercial package Abaqus.The constitutive model is validated against centrifugal wave tests.Parametric studies are conducted to demonstrate the effects of relative densities,current,and wave-loading history on the seabed response.The predicted excess pore pressure,effective stress paths,and associated variation of relative density are discussed in detail.The results show that the densification of soils significantly enhances the resistance against liquefaction,which provides new insight into the mechanism of residual liquefaction during wave sequences.展开更多
Seabed sediment recognition is vital for the exploitation of marine resources.Side-scan sonar(SSS)is an excellent tool for acquiring the imagery of seafloor topography.Combined with ocean surface sampling,it provides ...Seabed sediment recognition is vital for the exploitation of marine resources.Side-scan sonar(SSS)is an excellent tool for acquiring the imagery of seafloor topography.Combined with ocean surface sampling,it provides detailed and accurate images of marine substrate features.Most of the processing of SSS imagery works around limited sampling stations and requires manual interpretation to complete the classification of seabed sediment imagery.In complex sea areas,with manual interpretation,small targets are often lost due to a large amount of information.To date,studies related to the automatic recognition of seabed sediments are still few.This paper proposes a seabed sediment recognition method based on You Only Look Once version 5 and SSS imagery to perform real-time sedi-ment classification and localization for accuracy,particularly on small targets and faster speeds.We used methods such as changing the dataset size,epoch,and optimizer and adding multiscale training to overcome the challenges of having a small sample and a low accuracy.With these methods,we improved the results on mean average precision by 8.98%and F1 score by 11.12%compared with the original method.In addition,the detection speed was approximately 100 frames per second,which is faster than that of previous methods.This speed enabled us to achieve real-time seabed sediment recognition from SSS imagery.展开更多
Many offshore marine structures are built on the seabed that are slightly or considerably sloping.To study the sloping seabed transient response during marine earthquakes,an analytical solution induced by a P-wave lin...Many offshore marine structures are built on the seabed that are slightly or considerably sloping.To study the sloping seabed transient response during marine earthquakes,an analytical solution induced by a P-wave line source embedded in the solid is presented.During the derivation,the wave fields in the fluid layer and the semi-infinite solid are firstly constructed by using the generalized ray method and the fluid-solid interface reflection and transmission coefficients.Then,the analytical solution in the transformed domain is obtained by superposing these wave fields,and the analytical solution in the time domain by applying the analytical inverse Laplace transform method.The the head wave generation conditions and arrival times at the fluid-solid interface are derived through this solution.Through the use of numerical examples,the analytical solution is proved right and the impacts of the sloping angle on the hydrodynamic pressure in the sea,the seismic wave propagation in the seabed,the head wave,and the Scholte wave at the seawater-seabed interface are also addressed.展开更多
Internal solitary wave(ISW)is often accompanied by huge energy transport,which will change the pore water pressure in the seabed.Based on the two-dimensional Biot consolidation theory,the excess pore water pressure in...Internal solitary wave(ISW)is often accompanied by huge energy transport,which will change the pore water pressure in the seabed.Based on the two-dimensional Biot consolidation theory,the excess pore water pressure in seabed was simulated,and the spatiotemporal distribution characteristics of excess pore water pressure was studied.As the parameters of both ISW and seabed can affect the excess pore water pressure,the distribution of pore water pressure showed both dissipation and phase lag.And parametric studies were done on these two phenomena.Due to influenced by the phase lag of excess pore water pressure,the penetration depth under the site of northern South China Sea with total water depth 327 m,induced by typical internal solitary wave increased by 26.19%,53.27%and 149.86%from T_(0)to T_(0.5)in sand silt,clayey silt and fine sand seabed,respectively.That means the effect of ISW on seabed will be underestimated if we only take into accout the penetration depth under ISW trough,especially for fine sand seabed.In addition,the concept of“amplitude-depth ratio”had been introduced to describe the influence of ISW on seabed dynamic response in the actual marine environment.In present study,it is negatively correlated with the excess pore water pressure,and an ISW with smaller amplitude-depth ratio can wide the range of lateral impacts.Our study results help understand the seabed damage induced by the interaction between ISW and seabed.展开更多
This paper introduces the recent highly significant activity of China Oilfield Services Ltd. (COSL) in the South China Sea, where COSL conducted pretrial drilling in June of 2008. The paper discusses some key resear...This paper introduces the recent highly significant activity of China Oilfield Services Ltd. (COSL) in the South China Sea, where COSL conducted pretrial drilling in June of 2008. The paper discusses some key research and new practices which led to the fabrication of related equipment which was evaluated in the trial. The market for deepwater drilling in the world has grown over the past 10 years but there are few drilling vessels or platforms suitable for drilling in deepwater or super deepwater. China needs equipment capable of deepwater drilling operations. COSL has some semisubmersible platforms, but they are only considered suitable for operations in water depths less than 475 m. An enabling technology, referred to as an artificial seabed, has been under development by COSL since 2004, and it applies the research results and experiences of many experts in deepwater drilling. COSL hopes this technology will allow drilling to depths of approximately 1 000-1 500m with its current platforms. The paper presents research progress and improvements in fabrication and necessary upgrades to equipment for extending deepwater drilling. The pretrial well was executed at a water depth of nearly 500m. COSL will drill the trial well around 2009 at the same location in the South China Sea.展开更多
The interaction between waves and currents in the ocean often complicates the flow field around structures.In this study,a three-dimensional integrated numerical model was established to investigate the seabed respons...The interaction between waves and currents in the ocean often complicates the flow field around structures.In this study,a three-dimensional integrated numerical model was established to investigate the seabed response and liquefaction around a mono-pile under different wave-current interaction angles.In the present model,the Reynolds-averaged Navier-Stokes equations were used to simulate the flow field,and the Biot's poro-elastic theory was adopted to calculate the seabed response caused by crossing wave-current loading.Unlike previous studies,the load on the mono-pile was considered,and the wave-current interaction angle was extended to 180°,which was more in line with practical engineering problems.The numerical results were in a good agreement with the experimental measurements.The results indicated that waves interacted with currents in a large angle could result in a large momentary liquefaction depth of the seabed.The parametric studies proved that the position of the front and two sides of the pile was relatively safer compared with that of the leeside of the pile,and the surface of the seabed downstream of the pile was liable to liquefy.展开更多
Interstitial flows in breakwater cores and seabeds are a key consideration in coastal and marine engineering designs and have a direct impact on their structural safety.In this paper,a unified fully coupled model for ...Interstitial flows in breakwater cores and seabeds are a key consideration in coastal and marine engineering designs and have a direct impact on their structural safety.In this paper,a unified fully coupled model for wave−permeable breakwater−porous seabed interactions is built based on an improved N−S equation.A numerical wave flume is constructed,and numerical studies are carried out by applying the finite difference method.In combination with a physical model test,the accuracy of the numerical simulation results is verified by comparing the calculated and measured values of wave height at measurement points and the seepage pressure within the breakwater and seabed.On this basis,the characteristics of the surrounding wave field and the internal flow field of the pore structure,as well as the evolution process of the fluctuating pore water pressure inside the breakwater and seabed,are further analyzed.The spatial distribution of the maximum fluctuating pore water pressure in the breakwater is compared between two cases by considering whether the seabed is permeable,and then the effect of seabed permeability on the dynamic pore water pressure in the breakwater is clarified.This study attempts to provide a reference for breakwater design and the protection of nearby seabeds.展开更多
Steel catenary risers (SCR) have become an enabling technology for deepwater environments. A comprehensive review was conducted on recent research that examined interactions between deepwater steel catenary risers a...Steel catenary risers (SCR) have become an enabling technology for deepwater environments. A comprehensive review was conducted on recent research that examined interactions between deepwater steel catenary risers and soft clay seabeds. This included the STRIDE (steel risers in deepwater environments) and CARISIMA (catenary riser soil interaction model for global riser analysis) joint jndustry jrogram's test data as well as information from existing papers.展开更多
Haihua Islands is a large artificial island in Danzhou, Hainan. The construction of Haihua Islands changes the hYdrodynamic environment of Yangpu waters, and further affects its morphological change. Delft3D is used t...Haihua Islands is a large artificial island in Danzhou, Hainan. The construction of Haihua Islands changes the hYdrodynamic environment of Yangpu waters, and further affects its morphological change. Delft3D is used to set up a two dimensional nested hydrodynamic and sediment model for Yangpu waters in this paper, and this paper focuses on simulating the velocity and morphological change due to the construction of Haihua Islands after the verification of the model. The seabed deposition is small because of low suspended sediment concentration and less sand source near Yangpu waters. The bed level erodes in the south area of Xiaochan Reef and the Yangpu channel due to the velocity increase in the area.展开更多
Unlike most previous studies on vortex-induced vibrations of a cylinder far from a boundary, this paper focuses on the influences of close proximity of a submarine pipeline to a rigid seabed boundary upon the dynamic ...Unlike most previous studies on vortex-induced vibrations of a cylinder far from a boundary, this paper focuses on the influences of close proximity of a submarine pipeline to a rigid seabed boundary upon the dynamic responses of the pipeline in ocean currents. The effects of gap-to-diameter ratio and those of the stability parameter on the amplitude and frequency responses of a pipeline are investigated experimentally with a novel hydro-elastic facility. A comparison is made between the present experimental results of the amplitude and frequency responses for the pipes with seabed boundary effects and those for wall-free cylinders given by Govardhan and Williamson (2000) and Anand (1985). The comparison shows that the close proximity of a pipeline to seabed has much influence on the vortex-induced vibrations of the pipeline. Both the width of the lock-in ranges in terms of Vr and the dimensionless amplitude ratio Amax/D become larger with the decrease of the gap-to-diameter ratio e/D, Moreover, the vibration of the pipeline becomes easier to occur and its amplitude response becomes more intensive with the decrease of the stability parameter, while tire pipeline frequency responses are affected slightly by the stability parameter.展开更多
A numerical model, Evolution Equation of Mild-Slope Equation (EEMSE) developed by Hsu et al. (2003), was applied to study the Bragg reflection of water waves over a series of rectangular seabed. Three key paramete...A numerical model, Evolution Equation of Mild-Slope Equation (EEMSE) developed by Hsu et al. (2003), was applied to study the Bragg reflection of water waves over a series of rectangular seabed. Three key parameters of the Bragg reflection including the peak coefficient of primary Bragg reflection, its corresponding relative wavelength, and the bandwidth, have shown to be effective in describing the characteristics of the primary Bragg reflection. The characteristics of the Bragg reflection were investigated under the various conditions comprising number, height, and spacing interval of a series of rectangular seabed. The results reveal that the peak of Bragg reflection increases with the increase of rectangular seabed height and number, the bandwidth and the shift value of the Bragg reflection depend on the increase of the rectangular seabed height as well as the decrease of rectangular seabed number, and the relative rectangular seabed spacing in the rang of 3 and 4 could produce higher Bragg reflection. Finally, a correlative and regressive analysis is performed by use of the calculated data. Based on the results of the analysis, empirical equations were established. Our study results can provide an appropriate choice of a series of rectangular seabed field for a practical design.展开更多
In marine seismic exploration, ocean-bottom cable techniques accurately record the multicomponent seismic wavefield; however, the seismic wave propagation in fluid–solid media cannot be simulated by a single wave equ...In marine seismic exploration, ocean-bottom cable techniques accurately record the multicomponent seismic wavefield; however, the seismic wave propagation in fluid–solid media cannot be simulated by a single wave equation. In addition, when the seabed interface is irregular, traditional finite-difference schemes cannot simulate the seismic wave propagation across the irregular seabed interface. Therefore, an acoustic–elastic forward modeling and vector-based P-and S-wave separation method is proposed. In this method, we divide the fluid–solid elastic media with irregular interface into orthogonal grids and map the irregular interface in the Cartesian coordinates system into a horizontal interface in the curvilinear coordinates system of the computational domain using coordinates transformation. The acoustic and elastic wave equations in the curvilinear coordinates system are applied to the fluid and solid medium, respectively. At the irregular interface, the two equations are combined into an acoustic–elastic equation in the curvilinear coordinates system. We next introduce a full staggered-grid scheme to improve the stability of the numerical simulation. Thus, separate P-and S-wave equations in the curvilinear coordinates system are derived to realize the P-and S-wave separation method.展开更多
This paper proposed a new concept of an adaptable multi-legged skid design for retro-fitting to a remotely-operated vehicle (ROV) during high tidal current underwater pipeline inspection. The sole reliance on propel...This paper proposed a new concept of an adaptable multi-legged skid design for retro-fitting to a remotely-operated vehicle (ROV) during high tidal current underwater pipeline inspection. The sole reliance on propeller-driven propulsion for ROV is replaced with a proposed low cost biomimetic solution in the form of an attachable hexapod walking skid. The advantage of this adaptable walking skid is the high stability in positioning and endurances to strong current on the seabed environment. The computer simulation flow studies using Solidworks Flow Simulation shown that the skid attachment in different compensation postures caused at least four times increase in overall drag, and negative lift forces on the seabed ROV to achieve a better maneuvering and station keeping under the high current condition (from 0.5 m/s to 5.0 m/s). A graphical user interface is designed to interact with the user during robot-in-the-loop testing and kinematics simulation in the pool.展开更多
When ocean waves propagate over the sea floor,dynamic wave pressures and bottom shear stresses exert on the surface of seabed.The bottom shear stresses provide a horizontal loading in the wave-seabed interaction syste...When ocean waves propagate over the sea floor,dynamic wave pressures and bottom shear stresses exert on the surface of seabed.The bottom shear stresses provide a horizontal loading in the wave-seabed interaction system,while dynamic wave pressures provide a vertical loading in the system.However,the bottom shear stresses have been ignored in most previous studies in the past.In this study,the effects of the bottom shear stresses on the dynamic response in a seabed of finite thickness under wave loading will be examined,based on Biot's dynamic poro-elastic theory.In the model,an "u-p" approximation will be adopted instead of quasi-static model that have been used in most previous studies.Numerical results indicate that the bottom shear stresses has certain influences on the wave-induced seabed dynamic response.Furthermore,wave and soil characteristics have considerable influences on the relative difference of seabed response between the previous model(without shear stresses) and the present model(with shear stresses).As shown in the parametric study,the relative differences between two models could up to 10% of p0,depending on the amplitude of bottom shear stresses.展开更多
The dynamic stress introduced in half elastic space by wave loading is characterized by the equation between the magnitude of half cyclic axial stress and cyclic torsion shear stress and the principal stress, whose di...The dynamic stress introduced in half elastic space by wave loading is characterized by the equation between the magnitude of half cyclic axial stress and cyclic torsion shear stress and the principal stress, whose direction rotates continuously and compression stress on seabed can be calculated by the use of small amplitude wave theory. With relationship curves of saturated silt of liquefaction cycles and cyclic stress ratios obtained by cyclic triaxial-torsional coupling shear tests and curve fitting method to different data points of relative density, it is suggested that the cyclic stress ratio corresponding to constant liquefaction impedance be taken as the critical cyclic stress ratio which implies liquefaction. There exists a linear relationship between critical cyclic stress ratio and relative density under different relative densities. Empirical formula for critical cyclic stress ratios of seabed liquefaction induced by wave loading under different relative densities is established. The possibility of seabed silt liquefaction and its influence factors are analyzed based on the small-amplitude wave theory and the data acquired in laboratory tests.展开更多
A study is presented on the dynamic analysis of a tracked vehicle for mining on the deep seabed of very soft soil. Equations for the interaction between the track and extremely soft seabed are employed to develop a tr...A study is presented on the dynamic analysis of a tracked vehicle for mining on the deep seabed of very soft soil. Equations for the interaction between the track and extremely soft seabed are employed to develop a track/soil interaction module called TVAS. The vehicle is modeled as a multibody dynamic system by the use of a multibody dynamic analysis program. The module developed is cooperated with the multibody dynamic analysis program with a user-defined subroutine. The dynamic behavior and the conceptual design of the mining vehicle on the deep seabed are investigated.展开更多
In estuarine and coastal areas, the seabed is in a constant process of dynamic change under marine conditions.Seabed sediment erosion and resuspension are important processes that safely control the geological environ...In estuarine and coastal areas, the seabed is in a constant process of dynamic change under marine conditions.Seabed sediment erosion and resuspension are important processes that safely control the geological environment. Field tripod observations conducted in the Jiaozhou Bay in China are reported, to investigate the effects of hydrodynamic conditions on the erosion and resuspension processes of the seabed. The observational results show that the maximum shear stress created by tidal currents can reach 0.35 N/m2, which is higher than the wave-induced shear stress during fair weather conditions. A seabed erosion frequently occurs during the flood tide, whereas a seabed deposition occurs during ebb tide. Waves can produce a bottom shear stress approximately equivalent to that induced by currents when the local wind reaches Force 4 with a speed of 5 m/s.When the wind reaches 7 m/s and the significant wave height reaches 26 cm, waves play a more significant role than currents in the dynamic processes of the seabed sediment resuspension and lead to a high value of turbidity that is approximately two to eight times higher than that in fair weather. These analyses clearly illustrate that periodic current-induced sediment erosion and resuspension are dominant in fair weather, whereas episodic high waves are responsible for significant sediment resuspension. Additional work is needed to establish a more thorough understanding of the mechanisms of sediment dynamics in the Jiaozhou Bay.展开更多
基金financially supported by the National Key Research and Development Program of China(Grant Nos.2021YFB2600700 and 2022YFC3102302)the Central Public-Interest Scientific Institution Basal Research Fund(Grant No.Y221007)+2 种基金the National Natural Science Foundation of China(Grant No.52271274)the Key Laboratory of Ministry of Education for Coastal Disaster and Protection,Hohai University(Grant No.202205)the Key Project of NSFC-Shandong Joint Research Funding POW3C(Grant No.U1906230).
文摘The nonlinear variation of wave is commonly seen in nearshore area,and the resulting seabed response and liquefaction are of high concern to coastal engineers.In this study,an analytical formula considering the nonlinear wave skewness and asymmetry is adopted to provide wave pressure on the seabed surface.The liquefaction depth attenuation coefficient and width growth coefficient are defined to quantitatively characterize the nonlinear effect of wave on seabed liquefaction.Based on the 2D full dynamic model of wave-induced seabed response,a detailed parametric study is carried out in order to evaluate the influence of the nonlinear variation of wave loadings on seabed liquefaction.Further,new empirical prediction formulas are proposed to fast predict the maximum liquefaction under nonlinear wave.Results indicate that(1)Due to the influence of wave nonlinearity,the vertical transmission of negative pore water pressure in the seabed is hindered,and therefore,the amplitude decreases significantly.(2)In general,with the increase of wave nonlinearity,the liquefaction depth of seabed decreases gradually.Especially under asymmetric and skewed wave loading,the attenuation of maximum seabed liquefaction depth is the most significant among all the nonlinear wave conditions.However,highly skewed wave can cause the liquefaction depth of seabed greater than that under linear wave.(3)The asymmetry of wave pressure leads to the increase of liquefaction width,whereas the influence of skewedness is not significant.(4)Compared with the nonlinear waveform,seabed liquefaction is more sensitive to the variation of nonlinear degree of wave loading.
基金supported by the start-up funding from Tsinghua University(Grant No.100005014).
文摘The sloping seabed affects the bearing capacity and failure mechanism of soil,which may compromise the stability and safety of offshore structures such as jack-up platforms.This paper employs a coupled model combining the material point method and finite element method(MPM-FEM)to analyze the impact of sloping seabeds on the three-dimensional soil-spudcan interaction.The MPM-FEM model implements the B¯approach to solve the challenge of volumetric locking due to the incompressibility constraints imposed by yield criterion.It is validated against the centrifuge results.The effects of sloping seabeds on penetration resistance,soil flow pattern,lateral response,stress distribution,and failure mechanism are discussed.The soil mainly undergoes overall failure when the ratio of penetration depth to spudcan diameter(i.e.D P/D)is between 0 and 0.25.As the slope angle increases,the soil on the side of lower slope is expelled further,resulting in an asymmetric stress distribution and a larger horizontal sliding force of soil.When D P/D increases to 0.75,the soil transitions to localized plastic flow failure,and the range of soil flow affected by the spudcan penetration decreases.The results show that,when the slope angle increases,the lateral displacement and stress distribution on the lower slope of a sloping seabed is significantly larger than that of a horizontal seabed,impacting the spudcan and surrounding soil behavior.The study suggests that the seabed slope significantly affects the range of soil flow and failure at shallow penetration,indicating that the slope angle should be taken into account in the design and installation of offshore jack-up rigs,particularly in areas with sloping seabeds.
基金Funding for this research was provided by the National Natural Science Foundation of China (42022052,42277138,and 52108337)the National Key R&D Program of China (2022YFC2803800)+1 种基金the Shandong Provincial Natural Science Foundation (ZR2020YQ29)UCL's Department of Civil,Environmental and Geomatic Engineering,and Ocean University of China.
文摘Ocean mining activities have been ongoing for nearly 70 years,making great contributions to industrialization.Given the increasing demand for energy,along with the restructuring of the energy supply catalyzed by efforts to achieve a low-carbon economy,deep seabed mining will play an important role in addressing energy-and resource-related problems in the future.However,deep seabed mining remains in the exploratory stage,with many challenges presented by the high-pressure,low-temperature,and complex geologic and hydrodynamic environments in deep-sea mining areas,which are inaccessible to human activities.Thus,considerable efforts are required to ensure sustainable,economic,reliable,and safe deep seabed mining.This study reviews the latest advances in marine engineering geology and the environment related to deep-sea min-ing activities,presents a bibliometric analysis of the development of ocean mineral resources since the 1950s,summarizes the development,theory,and issues related to techniques for the three stages of ocean mining(i.e.,exploration,extraction,and closure),and discusses the engineering geology environment,geological disasters,in-situ monitoring techniques,envi-ronmental protection requirements,and environmental effects in detail.Finally,this paper gives some key conclusions and future perspectives to provide insights for subsequent studies and commercial mining operations.
基金supported by the National Natural Science Foundation of China(Nos.U1806230 and 42025702)the Key Science and Technology Plan of PowerChina Huadong Engineering Corporation(No.KY2018-ZD-01).
文摘Wave-induced liquefaction of the seabed is a geohazard frequently encountered in shallow waters.Although widely discussed,most studies paid attention to the seabed response under a single sequence of wave loading.However,the seabed suffers from repeated‘wave loading–dissipation’phases in a real ocean environment.In this study,a homogeneous sandy seabed model is established to investigate the mechanism of wave-induced liquefaction by considering the existence of currents.Finite element analyses are conducted by incorporating a kinematic hardening elastoplastic model into the commercial package Abaqus.The constitutive model is validated against centrifugal wave tests.Parametric studies are conducted to demonstrate the effects of relative densities,current,and wave-loading history on the seabed response.The predicted excess pore pressure,effective stress paths,and associated variation of relative density are discussed in detail.The results show that the densification of soils significantly enhances the resistance against liquefaction,which provides new insight into the mechanism of residual liquefaction during wave sequences.
基金funded by the Natural Science Foundation of Fujian Province(No.2018J01063)the Project of Deep Learning Based Underwater Cultural Relics Recognization(No.38360041)the Project of the State Administration of Cultural Relics(No.2018300).
文摘Seabed sediment recognition is vital for the exploitation of marine resources.Side-scan sonar(SSS)is an excellent tool for acquiring the imagery of seafloor topography.Combined with ocean surface sampling,it provides detailed and accurate images of marine substrate features.Most of the processing of SSS imagery works around limited sampling stations and requires manual interpretation to complete the classification of seabed sediment imagery.In complex sea areas,with manual interpretation,small targets are often lost due to a large amount of information.To date,studies related to the automatic recognition of seabed sediments are still few.This paper proposes a seabed sediment recognition method based on You Only Look Once version 5 and SSS imagery to perform real-time sedi-ment classification and localization for accuracy,particularly on small targets and faster speeds.We used methods such as changing the dataset size,epoch,and optimizer and adding multiscale training to overcome the challenges of having a small sample and a low accuracy.With these methods,we improved the results on mean average precision by 8.98%and F1 score by 11.12%compared with the original method.In addition,the detection speed was approximately 100 frames per second,which is faster than that of previous methods.This speed enabled us to achieve real-time seabed sediment recognition from SSS imagery.
基金financially supported by the National Key R&D Program of China (Grant No.2021YFC3100700)the National Natural Science Foundation of China (Grant Nos.U2039209 and 41874067)the Natural Science Foundation of Heilongjiang Province,China (Grant No.YQ2021D010)。
文摘Many offshore marine structures are built on the seabed that are slightly or considerably sloping.To study the sloping seabed transient response during marine earthquakes,an analytical solution induced by a P-wave line source embedded in the solid is presented.During the derivation,the wave fields in the fluid layer and the semi-infinite solid are firstly constructed by using the generalized ray method and the fluid-solid interface reflection and transmission coefficients.Then,the analytical solution in the transformed domain is obtained by superposing these wave fields,and the analytical solution in the time domain by applying the analytical inverse Laplace transform method.The the head wave generation conditions and arrival times at the fluid-solid interface are derived through this solution.Through the use of numerical examples,the analytical solution is proved right and the impacts of the sloping angle on the hydrodynamic pressure in the sea,the seismic wave propagation in the seabed,the head wave,and the Scholte wave at the seawater-seabed interface are also addressed.
基金The Natural Science Foundation of Jiangsu Province under contract No.BK20210527the Open Research Fund of Key Laboratory of Coastal Science and Integrated Management,Ministry of Natural Resources under contract No.2021COSIMQ002the National Natural Science Foundation of China under contract No.42107158.
文摘Internal solitary wave(ISW)is often accompanied by huge energy transport,which will change the pore water pressure in the seabed.Based on the two-dimensional Biot consolidation theory,the excess pore water pressure in seabed was simulated,and the spatiotemporal distribution characteristics of excess pore water pressure was studied.As the parameters of both ISW and seabed can affect the excess pore water pressure,the distribution of pore water pressure showed both dissipation and phase lag.And parametric studies were done on these two phenomena.Due to influenced by the phase lag of excess pore water pressure,the penetration depth under the site of northern South China Sea with total water depth 327 m,induced by typical internal solitary wave increased by 26.19%,53.27%and 149.86%from T_(0)to T_(0.5)in sand silt,clayey silt and fine sand seabed,respectively.That means the effect of ISW on seabed will be underestimated if we only take into accout the penetration depth under ISW trough,especially for fine sand seabed.In addition,the concept of“amplitude-depth ratio”had been introduced to describe the influence of ISW on seabed dynamic response in the actual marine environment.In present study,it is negatively correlated with the excess pore water pressure,and an ISW with smaller amplitude-depth ratio can wide the range of lateral impacts.Our study results help understand the seabed damage induced by the interaction between ISW and seabed.
文摘This paper introduces the recent highly significant activity of China Oilfield Services Ltd. (COSL) in the South China Sea, where COSL conducted pretrial drilling in June of 2008. The paper discusses some key research and new practices which led to the fabrication of related equipment which was evaluated in the trial. The market for deepwater drilling in the world has grown over the past 10 years but there are few drilling vessels or platforms suitable for drilling in deepwater or super deepwater. China needs equipment capable of deepwater drilling operations. COSL has some semisubmersible platforms, but they are only considered suitable for operations in water depths less than 475 m. An enabling technology, referred to as an artificial seabed, has been under development by COSL since 2004, and it applies the research results and experiences of many experts in deepwater drilling. COSL hopes this technology will allow drilling to depths of approximately 1 000-1 500m with its current platforms. The paper presents research progress and improvements in fabrication and necessary upgrades to equipment for extending deepwater drilling. The pretrial well was executed at a water depth of nearly 500m. COSL will drill the trial well around 2009 at the same location in the South China Sea.
基金supported by the Key Project of NSFC-Shangdong Joint Research Funding POW3C(Grant No.U1906230).
文摘The interaction between waves and currents in the ocean often complicates the flow field around structures.In this study,a three-dimensional integrated numerical model was established to investigate the seabed response and liquefaction around a mono-pile under different wave-current interaction angles.In the present model,the Reynolds-averaged Navier-Stokes equations were used to simulate the flow field,and the Biot's poro-elastic theory was adopted to calculate the seabed response caused by crossing wave-current loading.Unlike previous studies,the load on the mono-pile was considered,and the wave-current interaction angle was extended to 180°,which was more in line with practical engineering problems.The numerical results were in a good agreement with the experimental measurements.The results indicated that waves interacted with currents in a large angle could result in a large momentary liquefaction depth of the seabed.The parametric studies proved that the position of the front and two sides of the pile was relatively safer compared with that of the leeside of the pile,and the surface of the seabed downstream of the pile was liable to liquefy.
基金supported by the National Key R&D Program of China(Grant No.2019YFB1600702)the Scientific Research Project of Yangtze-to-Huaihe Water Diversion Project(Grant No.YJJH-YJJC-ZX-20191106220)+1 种基金the Nanjing Hydraulic Research Institute Special Fund for Basic Scientific Research of Central Public Research Institutes(Grant Nos.Y220002 and Y220013)the Water Conservancy Science and Technology Project of Jiangsu Province(Grant No.2019009).
文摘Interstitial flows in breakwater cores and seabeds are a key consideration in coastal and marine engineering designs and have a direct impact on their structural safety.In this paper,a unified fully coupled model for wave−permeable breakwater−porous seabed interactions is built based on an improved N−S equation.A numerical wave flume is constructed,and numerical studies are carried out by applying the finite difference method.In combination with a physical model test,the accuracy of the numerical simulation results is verified by comparing the calculated and measured values of wave height at measurement points and the seepage pressure within the breakwater and seabed.On this basis,the characteristics of the surrounding wave field and the internal flow field of the pore structure,as well as the evolution process of the fluctuating pore water pressure inside the breakwater and seabed,are further analyzed.The spatial distribution of the maximum fluctuating pore water pressure in the breakwater is compared between two cases by considering whether the seabed is permeable,and then the effect of seabed permeability on the dynamic pore water pressure in the breakwater is clarified.This study attempts to provide a reference for breakwater design and the protection of nearby seabeds.
文摘Steel catenary risers (SCR) have become an enabling technology for deepwater environments. A comprehensive review was conducted on recent research that examined interactions between deepwater steel catenary risers and soft clay seabeds. This included the STRIDE (steel risers in deepwater environments) and CARISIMA (catenary riser soil interaction model for global riser analysis) joint jndustry jrogram's test data as well as information from existing papers.
文摘Haihua Islands is a large artificial island in Danzhou, Hainan. The construction of Haihua Islands changes the hYdrodynamic environment of Yangpu waters, and further affects its morphological change. Delft3D is used to set up a two dimensional nested hydrodynamic and sediment model for Yangpu waters in this paper, and this paper focuses on simulating the velocity and morphological change due to the construction of Haihua Islands after the verification of the model. The seabed deposition is small because of low suspended sediment concentration and less sand source near Yangpu waters. The bed level erodes in the south area of Xiaochan Reef and the Yangpu channel due to the velocity increase in the area.
基金The project was financially supported bythe Tenth Five-Year Plan of the Chinese Academy of Sciences (Grant No.KJCX2-SW-L03) .
文摘Unlike most previous studies on vortex-induced vibrations of a cylinder far from a boundary, this paper focuses on the influences of close proximity of a submarine pipeline to a rigid seabed boundary upon the dynamic responses of the pipeline in ocean currents. The effects of gap-to-diameter ratio and those of the stability parameter on the amplitude and frequency responses of a pipeline are investigated experimentally with a novel hydro-elastic facility. A comparison is made between the present experimental results of the amplitude and frequency responses for the pipes with seabed boundary effects and those for wall-free cylinders given by Govardhan and Williamson (2000) and Anand (1985). The comparison shows that the close proximity of a pipeline to seabed has much influence on the vortex-induced vibrations of the pipeline. Both the width of the lock-in ranges in terms of Vr and the dimensionless amplitude ratio Amax/D become larger with the decrease of the gap-to-diameter ratio e/D, Moreover, the vibration of the pipeline becomes easier to occur and its amplitude response becomes more intensive with the decrease of the stability parameter, while tire pipeline frequency responses are affected slightly by the stability parameter.
基金This researchis supported by the Science Council of Taiwan (Grant No. NSC94-2611-E-172-001)
文摘A numerical model, Evolution Equation of Mild-Slope Equation (EEMSE) developed by Hsu et al. (2003), was applied to study the Bragg reflection of water waves over a series of rectangular seabed. Three key parameters of the Bragg reflection including the peak coefficient of primary Bragg reflection, its corresponding relative wavelength, and the bandwidth, have shown to be effective in describing the characteristics of the primary Bragg reflection. The characteristics of the Bragg reflection were investigated under the various conditions comprising number, height, and spacing interval of a series of rectangular seabed. The results reveal that the peak of Bragg reflection increases with the increase of rectangular seabed height and number, the bandwidth and the shift value of the Bragg reflection depend on the increase of the rectangular seabed height as well as the decrease of rectangular seabed number, and the relative rectangular seabed spacing in the rang of 3 and 4 could produce higher Bragg reflection. Finally, a correlative and regressive analysis is performed by use of the calculated data. Based on the results of the analysis, empirical equations were established. Our study results can provide an appropriate choice of a series of rectangular seabed field for a practical design.
基金financially supported by the Natural Science Foundation of China(No.41774133)the Open Funds of SINOPEC Key Laboratory of Geophysics(No.wtyjy-wx2017-01-04)National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2016ZX05024-003-011)
文摘In marine seismic exploration, ocean-bottom cable techniques accurately record the multicomponent seismic wavefield; however, the seismic wave propagation in fluid–solid media cannot be simulated by a single wave equation. In addition, when the seabed interface is irregular, traditional finite-difference schemes cannot simulate the seismic wave propagation across the irregular seabed interface. Therefore, an acoustic–elastic forward modeling and vector-based P-and S-wave separation method is proposed. In this method, we divide the fluid–solid elastic media with irregular interface into orthogonal grids and map the irregular interface in the Cartesian coordinates system into a horizontal interface in the curvilinear coordinates system of the computational domain using coordinates transformation. The acoustic and elastic wave equations in the curvilinear coordinates system are applied to the fluid and solid medium, respectively. At the irregular interface, the two equations are combined into an acoustic–elastic equation in the curvilinear coordinates system. We next introduce a full staggered-grid scheme to improve the stability of the numerical simulation. Thus, separate P-and S-wave equations in the curvilinear coordinates system are derived to realize the P-and S-wave separation method.
基金Suuported by Newcastle University in United Kingdom(Project account number:C0570D2330)
文摘This paper proposed a new concept of an adaptable multi-legged skid design for retro-fitting to a remotely-operated vehicle (ROV) during high tidal current underwater pipeline inspection. The sole reliance on propeller-driven propulsion for ROV is replaced with a proposed low cost biomimetic solution in the form of an attachable hexapod walking skid. The advantage of this adaptable walking skid is the high stability in positioning and endurances to strong current on the seabed environment. The computer simulation flow studies using Solidworks Flow Simulation shown that the skid attachment in different compensation postures caused at least four times increase in overall drag, and negative lift forces on the seabed ROV to achieve a better maneuvering and station keeping under the high current condition (from 0.5 m/s to 5.0 m/s). A graphical user interface is designed to interact with the user during robot-in-the-loop testing and kinematics simulation in the pool.
基金supported by State Key Laboratory of Ocean Engineering Self-Development (GKZD010053-3) and EPSRC (EP/G006482/1)
文摘When ocean waves propagate over the sea floor,dynamic wave pressures and bottom shear stresses exert on the surface of seabed.The bottom shear stresses provide a horizontal loading in the wave-seabed interaction system,while dynamic wave pressures provide a vertical loading in the system.However,the bottom shear stresses have been ignored in most previous studies in the past.In this study,the effects of the bottom shear stresses on the dynamic response in a seabed of finite thickness under wave loading will be examined,based on Biot's dynamic poro-elastic theory.In the model,an "u-p" approximation will be adopted instead of quasi-static model that have been used in most previous studies.Numerical results indicate that the bottom shear stresses has certain influences on the wave-induced seabed dynamic response.Furthermore,wave and soil characteristics have considerable influences on the relative difference of seabed response between the previous model(without shear stresses) and the present model(with shear stresses).As shown in the parametric study,the relative differences between two models could up to 10% of p0,depending on the amplitude of bottom shear stresses.
基金supported by the National Natural Science Foundation of China(Grant Nos.50639010 and 50909039)the Fundamental Research Funds for the Central Universities(Grant No. 2010B04514)
文摘The dynamic stress introduced in half elastic space by wave loading is characterized by the equation between the magnitude of half cyclic axial stress and cyclic torsion shear stress and the principal stress, whose direction rotates continuously and compression stress on seabed can be calculated by the use of small amplitude wave theory. With relationship curves of saturated silt of liquefaction cycles and cyclic stress ratios obtained by cyclic triaxial-torsional coupling shear tests and curve fitting method to different data points of relative density, it is suggested that the cyclic stress ratio corresponding to constant liquefaction impedance be taken as the critical cyclic stress ratio which implies liquefaction. There exists a linear relationship between critical cyclic stress ratio and relative density under different relative densities. Empirical formula for critical cyclic stress ratios of seabed liquefaction induced by wave loading under different relative densities is established. The possibility of seabed silt liquefaction and its influence factors are analyzed based on the small-amplitude wave theory and the data acquired in laboratory tests.
文摘A study is presented on the dynamic analysis of a tracked vehicle for mining on the deep seabed of very soft soil. Equations for the interaction between the track and extremely soft seabed are employed to develop a track/soil interaction module called TVAS. The vehicle is modeled as a multibody dynamic system by the use of a multibody dynamic analysis program. The module developed is cooperated with the multibody dynamic analysis program with a user-defined subroutine. The dynamic behavior and the conceptual design of the mining vehicle on the deep seabed are investigated.
基金The National Natural Science Foundation of China under contract Nos 41402253,41427803 and 41372287the Project of Qingdao National Laboratory for Marine Science and Technology under contract No.QNLM2016ORP0110
文摘In estuarine and coastal areas, the seabed is in a constant process of dynamic change under marine conditions.Seabed sediment erosion and resuspension are important processes that safely control the geological environment. Field tripod observations conducted in the Jiaozhou Bay in China are reported, to investigate the effects of hydrodynamic conditions on the erosion and resuspension processes of the seabed. The observational results show that the maximum shear stress created by tidal currents can reach 0.35 N/m2, which is higher than the wave-induced shear stress during fair weather conditions. A seabed erosion frequently occurs during the flood tide, whereas a seabed deposition occurs during ebb tide. Waves can produce a bottom shear stress approximately equivalent to that induced by currents when the local wind reaches Force 4 with a speed of 5 m/s.When the wind reaches 7 m/s and the significant wave height reaches 26 cm, waves play a more significant role than currents in the dynamic processes of the seabed sediment resuspension and lead to a high value of turbidity that is approximately two to eight times higher than that in fair weather. These analyses clearly illustrate that periodic current-induced sediment erosion and resuspension are dominant in fair weather, whereas episodic high waves are responsible for significant sediment resuspension. Additional work is needed to establish a more thorough understanding of the mechanisms of sediment dynamics in the Jiaozhou Bay.