期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Life-Cycle Cost Analysis of an Installed Multiunit Seasonal Thermal Energy Store
1
作者 Shane Colelough Neil J. Hewitt Philip Griffiths 《Journal of Energy and Power Engineering》 2017年第7期439-445,共7页
The financial viability of a solar STES (seasonal thermal energy store) installed in a mixed commercial and residential multiunit development of low-energy buildings located in Lysekil, Sweden, a maritime Scandinavi... The financial viability of a solar STES (seasonal thermal energy store) installed in a mixed commercial and residential multiunit development of low-energy buildings located in Lysekil, Sweden, a maritime Scandinavian Climate has been investigated. Using recorded figures for the installation costs and performance, a financial life cycle analysis has been undertaken to determine the cost effectiveness of the system. The time value of money is considered and an LCC (life cycle cost) analysis undertaken to identify the cost-effectiveness of the solution. It shows that while a direct heating and hot water system incorporating STES can be economically viable in a Swedish maritime climate in the long term, assistance such as that provided by government incentives is required to assist with the high capital cost of the initial investment. 展开更多
关键词 STES passive house fmancial analysis nZEB passivhaus seasonal thermal energy storage STORAGE LCC analysis
下载PDF
Seasonal thermal energy storage using natural structures:GIS-based potential assessment for northern China
2
作者 Yichi Zhang Jianjun Xia 《Building Simulation》 SCIE EI CSCD 2024年第4期561-574,共14页
Seasonal thermal energy storage(STES)allows storing heat for long-term and thus promotes the shifting of waste heat resources from summer to winter to decarbonize the district heating(DH)systems.Despite being a promis... Seasonal thermal energy storage(STES)allows storing heat for long-term and thus promotes the shifting of waste heat resources from summer to winter to decarbonize the district heating(DH)systems.Despite being a promising solution for sustainable energy system,large-scale STES for urban regions is lacking due to the relatively high initial investment and extensive land use.To close the gap,this study assesses the potentials of using two naturally available structures for STES,namely valley and ground pit sites.Based on geographical information system(GIS)methods,the available locations are searched from digital elevation model and selected considering several criteria from land uses and construction difficulties.The costs of dams to impound the reservoir and the yielded storage capacities are then quantified to guide the choice of suitable sites.The assessment is conducted for the northern China where DH systems and significant seasonal differences of energy demand exist.In total,2,273 valley sites and 75 ground pit sites are finally identified with the energy storage capacity of 15.2 billion GJ,which is much larger than the existing DH demand in northern China.The results also prove that 682 valley sites can be achieved with a dam cost lower than 20 CNY/m^(3).By conducting sensitivity analysis on the design dam wall height and elevations,the choices of available natural structures are expanded but practical issues about water pressures and constructions are also found.Furthermore,the identified sites are geographically mapped with nearest urban regions to reveal their roles in the DH systems.In general,560 urban regions are found with potential STES units and most of them have STES storage capacities larger than their own DH demand.The novel planning methodology of this study and publicly available datasets create possibilities for the implementations of large-scale STES in urban DH systems. 展开更多
关键词 seasonal thermal energy storage geographical information system district heating water reservoir
原文传递
Possibilities of Reducing Energy Consumption by Optimization of Ground Source Heat Pump Systems in Babylon, Iraq
3
作者 Jenny Lindblom Nadhir Al-Ansari Qais Al-Madhlom 《Engineering(科研)》 2016年第3期130-139,共10页
Iraq is located in the Middle East with an area that reaches 437,072 km2 and a population of about 36 million. This country is suffering from severe electricity shortage problems which are expected to increase with ti... Iraq is located in the Middle East with an area that reaches 437,072 km2 and a population of about 36 million. This country is suffering from severe electricity shortage problems which are expected to increase with time. In this research, an attempt is made to minimize this problem by combining the borehole thermal energy storage (BTES) with a heat pump, the indoor temperature of a residential building or other facility may be increased or reduced beyond the temperature interval of the heat carrier fluid. Due to the relatively high ground temperature in Middle Eastern countries, the seasonal thermal energy storages (STES) and ground source heat pump (GSHP) systems have a remarkable potential, partly because the reduced thermal losses from the underground storage and the expected high COP (ratio of thermal energy gain to required driving energy (electricity)) of a heat pump, partly because of the potential for using STES directly for heating and cooling. In this research, groundwater conditions of Babylon city in Iraq were investigated to evaluate the possibility of using GSHP to reduce energy consumption. It is believed that such system will reduce consumed energy by about 60%. 展开更多
关键词 Ground Source Heat Pump seasonal thermal energy storages energy Saving BABYLON Iraq
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部