In this study,a two-dimensional hydrodynamic and sediment transport model is established to quantify the influences of sea level rise on sediment transport in the Yangtze River Estuary(YRE).After validation,the model ...In this study,a two-dimensional hydrodynamic and sediment transport model is established to quantify the influences of sea level rise on sediment transport in the Yangtze River Estuary(YRE).After validation,the model was employed to investigate the sediment transport and seabed evolution under four different scenarios of sea level rise,specifically,0,0.5,1 and 1.5 m.The results reveal that there exists a‘transition point(TP)'of SSC in each main channel of YRE.Upstream of the transition point,the suspended sediment concentration(SSC)increases along with the rise in sea level,while downstream of the transition point,SSC decreases as sea level rises.Similarly,there are also transition points for topography evolution.The maximum scouring rate upstream of the transition points exceeds 4.32% for a 1.5 m rise in sea level,while the maximum deposition rate downstream of the transition points is 2.48%.The sediment fluxes from upstream to downstream in the branches of YRE are enhanced by the rise in sea level.The direction of sediment flux in the North Branch reverses downstream as sea level rises.The sediment flux from the North Channel towards downstream increases significantly,while there is no significant change in sediment flux for South Channel.Sediment deposition in the North Passage is also accelerated by sea level rise.In addition,the sediment flux from YRE to northern Jiangsu and Hangzhou Bay is also weakened by the rise in sea level.展开更多
Gamma-ray spectroscopy based on a 100% efficiency hyper-pure germanium detector was used to evaluate the activity concentrations of <sup>226</sup>Ra, <sup>232</sup>Th, and <sup>40</sup...Gamma-ray spectroscopy based on a 100% efficiency hyper-pure germanium detector was used to evaluate the activity concentrations of <sup>226</sup>Ra, <sup>232</sup>Th, and <sup>40</sup>K natural radionuclides in sedimentary, conglomerate, igneous and sedi-ments rock samples collected from four different locations in Eastern desert in Egypt. The obtained activity concentrations are used to evaluate the radi-ological hazards indices, absorbed dose rate, annual effective dose equivalent in air, radium equivalent, external and internal hazard index, radiation level index, annual gonadal dose equivalent, excess lifetime cancer risk and expo-sure rate. The results show that 1) the absorbed dose rate depends on the rock type, 2) the annual effective dose equivalent in air in 71% of sample below 20 mSvy<sup>-1</sup> (permissible limit for workers), 3) the conglomerate rocks show low radioactivity level, 4) sedimentary rocks are rich in radium while igneous rocks are rich in thorium and the sediments rocks are rich in both radium and thorium.展开更多
The present study examines the morphological, physicochemical, and mineralogical specificity of clay sediments in the Hamakoussou Basin with the objective of exploring their potential applications. Field data collecti...The present study examines the morphological, physicochemical, and mineralogical specificity of clay sediments in the Hamakoussou Basin with the objective of exploring their potential applications. Field data collection was followed by a series of physicochemical and mineralogical tests on the clay samples. Results show that the clay layers, which range in thickness from 11 - 120 cm, exhibit gray, yellowish, or greenish colors. From a physicochemical perspective, these clay layers are found to be basic with a pH ranging from 8.5 for the higher Hama2 layer to 7.6 for the lower Hama1 layer. The sum of exchangeable bases (S) is medium to high with higher values in the Hama1 layer (53.45 meq/100g) and lower values in the Hama3 layer (17.09 meq/100g). Similarly, the cation exchange capacity (CEC) varies from 62.32 meq/100g for the higher Hama1N4 clay layer to 35.6 meq/100g for the lower Hama1N3 clay layer. Mineralogically, the clay materials are primarily composed of smectites, with illite, kaolinite, calcite, quartz, feldspar, hematite, and goethite also present. This study emphasizes the versatility of clay in various industries and scientific domains. It is known for its impermeability, plasticity, and fossil-preserving capabilities, making it a valuable material for economic, practical, and academic applications.展开更多
Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S...Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S_(h))models for reservoir evaluation and monitoring.The electrical properties of tetrahydrofuran-hydrate-bearing sediments with montmorillonite are characterized by complex conductivity at frequencies from 0.01 Hz to 1 kHz.The effects of clay and Sh on the complex conductivity were analyzed.A decrease and increase in electrical conductance result from the clay-swelling-induced blockage and ion migration in the electrical double layer(EDL),respectively.The quadrature conductivity increases with the clay content up to 10%because of the increased surface site density of counterions in EDL.Both the in-phase conductivity and quadrature conductivity decrease consistently with increasing Sh from 0.50 to 0.90.Three sets of models for Sh evaluation were developed.The model based on the Simandoux equation outperforms Archie’s formula,with a root-mean-square error(E_(RMS))of 1.8%and 3.9%,respectively,highlighting the clay effects on the in-phase conductivity.The fre-quency effect correlations based on in-phase and quadrature conductivities exhibit inferior performance(E_(RMS)=11.6%and 13.2%,re-spectively)due to the challenge of choosing an appropriate pair of frequencies and intrinsic uncertainties from two measurements.The second-order Cole-Cole formula can be used to fit the complex-conductivity spectra.One pair of inverted Cole-Cole parameters,i.e.,characteristic time and chargeability,is employed to predict S_(h) with an E_(RMS) of 5.05%and 9.05%,respectively.展开更多
The grain-size distribution of surface sediments in the Bohai Sea(BS) and the northern Yellow Sea(NYS), and its relationship with sediment supply and hydrodynamic environment were investigated based on grain-size comp...The grain-size distribution of surface sediments in the Bohai Sea(BS) and the northern Yellow Sea(NYS), and its relationship with sediment supply and hydrodynamic environment were investigated based on grain-size compositions of surface sediments and modern sedimentation rates. The results showed that the surface sediments in the BS and the NYS were primarily composed of silty sand and clayey silt with a dominant size of silt. In addition, the Yellow River delivered high amount of water and sediments to the BS, and they are dominated in surface sediments(mainly silt) in the Bohai Bay, the Yellow River mouth, the center of the BS, and the north coast of Shandong Peninsula. The coarse-grained sediments were mainly deposited at the river mouth due to the estuarine filtration and physical sorting. Meanwhile, there was a significant relationship among the modern sedimentation rate, the surface sediment grain size distribution and sediment transport pattern. The areas with coarser surface sediments generally corresponded low sedimentation rates because of strong erosion;whereas the sedimentation rate was relatively high at the place that the surface sediments were fine-grained. Furthermore, the grain-size trend analysis showed that the areas with fine-grained surface sediments such as the mud area in the central BS and the upper Liaodong Bay were the convergent centers of surface sediments, except for the Bohai Bay and the subaqueous Yellow River Delta where offshore sediment transport was evident.展开更多
The sandstones of the Late miocene–Pliocene Dibdibba Formation in the Najaf–Karbala Plateau and Basra were examined to determine their source rocks and origin. The rare earth elements(REE) and trace elements(Sc, Co,...The sandstones of the Late miocene–Pliocene Dibdibba Formation in the Najaf–Karbala Plateau and Basra were examined to determine their source rocks and origin. The rare earth elements(REE) and trace elements(Sc, Co, V, and Th) concentrations in these sandstones revealed that they likely derived from a single source. The steep light rare earth elements(LREE) and flat, heavy rare earth element(HREE) patterns, negative Eu anomaly, and high ΣREE contents in sandstones suggest its derivation from a suggests that a passive continental margin environment and originated from felsic source rocks. The average concentration of ΣREE is 93.5 ppm, which is lower than that of the average crustal compositions like Upper Continental Crust and Post Archean Australian Shale. The higher proportion of LREE compared to HREE implies that these sandstones were recycled and derived from a distal source. The Th/Co, Th/Sc, La/Sc, La/Co, Eu/Eu*and(La/Lu)cn elemental ratios indicated that these Late Miocene–Pliocene sandstones were derived from felsic rocks located in the marginal region of the Arabian Shield.展开更多
Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in ...Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.展开更多
For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In t...For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area.展开更多
The rotary ring flume is used to study the silty sand movement in a periodic alternating current.Characteristics of sediment movement of different coasts in the tidal current are summarized.More detailed analysis of e...The rotary ring flume is used to study the silty sand movement in a periodic alternating current.Characteristics of sediment movement of different coasts in the tidal current are summarized.More detailed analysis of erosion-sedimentation function in a numerical simulation is made.The equilibrium sediment concentration is advanced.Based on the equilibrium sediment concentration,the seabed erosion-sedimentation index is derived and the seabed erosion-sedimentation calculation is analyzed.The seabed erosion-sedimentation index is used to calculate the seabed evolution of Yangshan sea area and a good agreement with field measurements is obtained.展开更多
The Yellow River sediment(YRS)is an important potential soil resource for the mine land reclamation and ecological restoration in the arid regions of northern China.However,it has the shortcomings of poor water-holdin...The Yellow River sediment(YRS)is an important potential soil resource for the mine land reclamation and ecological restoration in the arid regions of northern China.However,it has the shortcomings of poor water-holding capacity and needs to be modified urgently.Therefore,two types of biochar,namely rice husk biochar(RHB)and coconut shell biochar(CSB),were utilized in this study to modify the YRS and compared with rice husk ash(RHA).Some engineering properties of the modified YRS(MYRS),including pore structure,water retention,permeability,and vegetation performance,were investigated by considering the effects of biochar types and dosages.Results showed that the addition of the three materials decreased the bulk density of the YRS and increased the volume of extremely micro pore(d<0.3µm),as well as the effective porosity and capillary porosity,thus contributed to an increase in the water-holding capacity of the sediment.Among the three conditioners,RHB is optimal choice for improving the water-holding capacity of YRS.Furthermore,the effect becomes more pronounced with increasing application rates.With the addition of the three materials,the permeability coefficients of MYRS gradually decreased,while the water retention rate during evaporation significantly increased.The pot experiment showed that the three conditioners all had significant promoting effect on the growth of oats.In particular,compared to plain soil,the total biomass of oats grown for 21 days increased by 17.46%,32.14%,and 49.60%after adding 2%,4%,and 8%RHB,respectively.This study introduces a new approach for using YRS as planting soil in arid and semi-arid areas of China to facilitate mine ecological restoration.展开更多
Freshwater microplastic pollution is an urgent issue of global concern,and research on the distribution in reservoirs is lacking.We investigated the microplastic pollution levels in wet sediments collected from the Th...Freshwater microplastic pollution is an urgent issue of global concern,and research on the distribution in reservoirs is lacking.We investigated the microplastic pollution levels in wet sediments collected from the Three Gorges Reservoir,the largest reservoir of China.Results show that microplastics were ubiquitous in the sediments of the Three Gorges Reservoir,and their abundance ranged from 59 to 276 pp/kg(plastic particles per kg,dry weight).Economic development and total population were important factors affecting the spatial heterogeneity of microplastic abundance,and the contribution of large cities along the reservoir to microplastic pollution should be paid with more attention.Fibrous microplastics were the most abundant type of microplastic particles in reservoir sediments,whereas polystyrene,polypropylene,and polyamide were the main types of polymers.The apparent spatial heterogeneity in morphology and color of microplastics is attributed to different anthropogenic or landbased pollution sources.Moreover,the accumulation of microplastics near the inlet of tributaries reflects the role of potential contributors of tributaries.More importantly,multiple bisphenols(BPs)and heavy metals detected at the microplastic surfaces indicate that microplastics can act as carriers of these pollutants in the environment in the same way as sediments did,which may alter the environmental fate and toxicity of these pollutants.Therefore,we conclude that the Three Gorges Reservoir had been contaminated with microplastics,which posed a stress risk for organisms who ingest them along with their associated pollutants(BPs,heavy metals).展开更多
Solar-driven interfacial evaporation from seawater is considered an effective way to alleviate the emerging freshwater crisis because of its green and environmentally friendly characteristics.However,developing an eva...Solar-driven interfacial evaporation from seawater is considered an effective way to alleviate the emerging freshwater crisis because of its green and environmentally friendly characteristics.However,developing an evaporator with high efficiency,stability,and salt resistance remains a key challenge.MXene,with an internal photothermal conversion efficiency of 100%,has received tremendous research interest as a photothermal material.However,the process to prepare the MXene with monolayer is inefficient and generates a large amount of“waste”MXene sediments(MS).Here,MXene sediments is selected as the photothermal material,and a three-dimensional MXene sediments/poly(vinyl alcohol)/sodium alginate aerogel evaporator with vertically aligned pores by directional freezing method is innovatively designed.The vertical porous structure enables the evaporator to improve water transport,light capture,and high evaporation rate.Cotton swabs and polypropylene are used as the water channel and support,respectively,thus fabricating a self-floating evaporator.The evaporator exhibits an evaporation rate of 3.6 kg m^(-2)h^(-1)under one-sun illumination,and 18.37 kg m^(-2)of freshwater is collected in the condensation collection device after 7 h of outdoor sun irradiation.The evaporator also displays excellent oil and salt resistance.This research fully utilizes“waste”MS,enabling a self-floating evaporation device for freshwater collection.展开更多
Complete and comprehensive information about sediment dynamic and identification of hotspots of sediment production and transport are necessary for understanding the erosion processes and increasing the efficiency of ...Complete and comprehensive information about sediment dynamic and identification of hotspots of sediment production and transport are necessary for understanding the erosion processes and increasing the efficiency of soil and water conservation practices.Numerous studies used the sediment fingerprint techniques to investigate the contribution of different sources in suspended and bed sediment yield of the watersheds.However,the contribution of various land use/land covers in suspended and bed sediment yield for the great Caspian Sea basin is in an aura of ambiguity and the present study was conducted to gather information about an important part of this area in northern Iran,where rangelands are located upstream of Hyrcanian forests and dense agricultural lands are located downstream.The surface soil of different land use/land covers including forest,rangeland,agriculture and streambank lands were sampled in 30 points.Suspended and bed sediments were sampled in the watershed outlet in two high and low water periods.Geochemical characteristics of soil and sediment samples containing 59 elements were measured using ICP-OES GBC Integra.The reliable and suitable tracers from 59 elements were then selected using Range test,Kruskal-Wallis and Discriminant Function Analysis,respectively,in FingerPro package of R software.The results showed that for suspended sediment,streambank and rangeland had the highest contributions of 86.2%and 47.5%,respectively,in two high and low water periods.For bed sediment,in two high and low water periods,rangeland and streambank had the highest contributions of 73.8%and 84.4%,respectively.Land use change and especially human activities such as agriculture,road construction and development of residential areas along the main river riparian zone has led to a significant increase in suspended and bed sediments.展开更多
This study investigated the distribution of microplastics and heavy metals,along with the interaction between the two in the sediments of urban rivers in China.Results showed that the abundance of microplastics ranged...This study investigated the distribution of microplastics and heavy metals,along with the interaction between the two in the sediments of urban rivers in China.Results showed that the abundance of microplastics ranged from 2412±187.5 to 7638±1312items kg^(-1)dry sediment across different survey stations,with an average abundance at(4388±713)items kg^(-1)dry sediment.Upon further categorization,it was found that transparent fragments were the primary color and type of microplastics present.The potential ecological risk index(RI)of heavy metals in sediments suggested a low level of ecological risk within a majority of the urban rivers studied.Cd was identified as the main potential ecological risk factor in the sediments of the studied areas.There was a relatively good significant linear relationship between the RI of heavy metals and the abundance of microplastics,bolstering the linkage between these two environmental pollutants.However,the concentrations of heavy metals in microplastics were not dependent on their corresponding contents in sediments.In fact,the concentration of Cu,Cd,and As in microplastics were higher than those in the sediments.This finding confirmed that microplastics could serve as carriers of heavy metals and introduce potential risks to aquatic wildlife and human through the food chain.展开更多
The research on the thermal property of the hydrate has recently made great progress,including the understanding of hydrate thermal conductivity and effective thermal conductivity(ETC)of hydratebearing sediment.The th...The research on the thermal property of the hydrate has recently made great progress,including the understanding of hydrate thermal conductivity and effective thermal conductivity(ETC)of hydratebearing sediment.The thermal conductivity of hydrate is of great significance for the hydrate-related field,such as the natural gas hydrate exploitation and prevention of the hydrate plugging in oil or gas pipelines.In order to obtain a comprehensive understanding of the research progress of the hydrate thermal conductivity and the ETC of hydrate-bearing sediment,the literature on the studies of the thermal conductivity of hydrate and the ETC of hydrate-bearing sediment were summarized and reviewed in this study.Firstly,experimental studies of the reported measured values and the temperature dependence of the thermal conductivity of hydrate were discussed and reviewed.Secondly,the studies of the experimental measurements of the ETC of hydrate-bearing sediment and the effects of temperature,porosity,hydrate saturation,water saturation,thermal conductivity of porous medium,phase change,and other factors on the ETC of hydrate-bearing sediment were discussed and reviewed.Thirdly,the research progress of modeling on the ETC of the hydrate-bearing sediment was reviewed.The thermal conductivity determines the heat transfer capacity of the hydrate reservoir and directly affects the hydrate exploitation efficiency.Future efforts need to be devoted to obtain experimental data of the ETC of hydrate reservoirs and establish models to accurately predict the ETC of hydrate-bearing sediment.展开更多
Sediment constitutes the fundamental basis for forming and evolving aeolian geomorphology.The characteristics of sediment particle size offer insights into the development and evolution of sandy terrain,making their s...Sediment constitutes the fundamental basis for forming and evolving aeolian geomorphology.The characteristics of sediment particle size offer insights into the development and evolution of sandy terrain,making their study critical to understanding aeolian geomorphology and sand control.In this study,we combined high-density collection of surface sediments in the Uzhumqin sand dunes and GIS spatial analysis to analyze the particle size parameters and changes in the spatial distribution of surface sediments in this region.In addition,we used an end-member analysis to identify the potential sources of the sediments.The results showed that surface sediments in the Uzhumqin sand dunes had distinct spatial distributions.Medium and coarse grain sands dominated the sediments in the dunes,and the mean grain size and the sorting coefficient generally increased along the prevailing wind direction,with high values in individual areas related to factors such as material sources and vegetation cover.Skewness was strongly influenced by factors such as landform change and human activity,and spatial variability became more complex.Kurtosis and the soil fractal dimension showed generally decreasing trends along the prevailing wind direction.With dune fixation,the contents of clay and powder particles in the soil increased;the mean particle size,the sorting coefficient,and the fractal dimension of the soil gradually increased,and the skewness and kurtosis gradually decreased.The end-member analysis results indicated the existence of five end-members(EM)in the dune sediments.EM 1 was a mixed component of wind-deposited fine sands and nearby fluvial sediments.EM 2 was the main component of sediments in the study area and was the result of sorting lake sediments by wind action and by the local topography.EM 3 may be a product of river flood deposition.EM 4 and EM 5 had coarser grain sizes.EM 4 was a lake-phase sediment product influenced by topographic and vegetation cover factors,and EM 5 was primarily a river and lake sediment product modified by weathering.The sediment particle size results from the study area indicate that the sediment in the sandy region is generally coarse due to multiple factors,including topography,climate,hydrology,and human activity.Sandy material in the study area originated from nearby,with very little sand being transported from long distances.展开更多
Comprehensive research has been implemented to raise the efficiency of the geochemical survey of stream sediments(SSs)that formed under the cryolithogenesis conditions.The authors analysed the composition,structure an...Comprehensive research has been implemented to raise the efficiency of the geochemical survey of stream sediments(SSs)that formed under the cryolithogenesis conditions.The authors analysed the composition,structure and specific features of the formation of exogenous anomalous geochemical fields(AGFs)identified through SSs of large river valleys of IV order.In our case,these were the valleys of Maly Ken,Ken and Tap Rivers.These rivers are located in the central and southern parts of the Balygychan-Sugoy trough enclosed in the Magadan region,North-East of Russia.The authors proposed a new technique to sample loose alluvium of SSs in the large river valleys along the profiles.The profiles were located across the valleys.The AGFs of Au,Ag,Pb,Zn,Sn,Bi,Mo and W were studied.Correlations between elements have been established.These elements are the main indicator elements of Au-Ag,Ag-Pb,Sn-Ag,Mo-W and Sn-W mineralization occurring on the sites under study.The results obtained were compared with the results of geochemical surveys of SSs.It is concluded that the AGFs recognized along the profiles reflect the composition and structure of eroded and drained ore zones,uncover completely and precisely the pattern of element distribution in loose sediments of large water flows.The alluvium fraction<0.25 mm seems to be most significant in a practical sense,as it concentrated numerous ore elements.Sampling of this fraction in the river valleys of IV order does not cause any difficulty,for this kind of material is plentiful.The developed technique of alluvium sampling within large river valleys is efficient in searching for diverse mineralization at all stages of prognostic prospecting.It is applicable for geochemical survey of SSs performed at different scales both in the North-East of Russia,as well as other regions with similar climatic conditions,where the SSs are formed under the cryolithogenesis conditions.展开更多
Deep-sea sediment disturbance may occur when collecting polymetallic nodules,resulting in the creation of plumes that could have a negative impact on the ecological environment.This study aims to investigate the poten...Deep-sea sediment disturbance may occur when collecting polymetallic nodules,resulting in the creation of plumes that could have a negative impact on the ecological environment.This study aims to investigate the potential solution of using polyaluminum chloride(PAC)in the water jet.The effects of PAC are examined through a self-designed simulation system for deep-sea polymetallic nodule collection and sediment samples from a potential deep-sea mining area.The experimental results showed that the optimal PAC dose was found to be 0.75 g/L.Compared with the test conditions without the addition of PAC,the presence of PAC leads to a reduction in volume,lower characteristic turbidity,smaller diffusion velocity,and shorter settling time of the plume.This indicates that PAC inhibits the entire development process of the plume.The addition of PAC leads to the flocculation of mm-sized particles,resulting in the formation of cm-sized flocs.The flocculation of particles decreases the rate of erosion on the seabed by around 30%.This reduction in erosion helps to decrease the formation of plumes.Additionally,when the size of suspended particles increases,it reduces the scale at which they diffuse.Furthermore,the settling velocity of flocs(around 10^(-2) m/s)is much higher that of compared to sediment particles(around 10^(-5) m/s),which effectively reduces the amount of time the plume remains in suspension.展开更多
Long-chain alkenones(LCAs)have been widely used as important biomarkers in palaeoceanographic studies.However,the commonly used LCAs proxies are mainly based on C_(37) alkenones,and it is still lack of the studies abo...Long-chain alkenones(LCAs)have been widely used as important biomarkers in palaeoceanographic studies.However,the commonly used LCAs proxies are mainly based on C_(37) alkenones,and it is still lack of the studies about the distribution and in-dications of LCAs with different chain lengths other than C_(37) alkenones.Here,the composition and distribution of LCAs were ana-lyzed in surface sediments from the southern Yellow Sea(SYS)and a sedimentary core(A02-C)from the central Yellow Sea(YS)mud area.The results showed that C_(37),C_(38) and C_(39) alkenones were the major LCAs in surface sediments of the SYS,and the relative contents of C_(38:2)Et,C_(37:2)Me,C_(37:3)Me,C_(38:2)Me,C_(38:3)Et,C_(38:3)Me,C_(39:2)Et and C_(39:3)Et were 18.3%-59.8%,22.6%-41.2%,7.4%-23.0%,6.6%-15.4%,3.8%-13.3%,3.6%-8.7%,2.8%-6.0% and 0.7%-3.0%,respectively.Then the relationships of U_(38Me)^(K)-U_(38Et)^(K) and U_(37)^(K')-U_(38Et)^(K) indicate that LCAs are mainly derived from Emiliania huxleyi(E.huxleyi).High ratios of total C_(37) alkenones to total C_(38) alkenones(K_(37)/K_(38))(1-1.2)were found in the central SYS,corresponding to the relatively high abundance of E.huxleyi;while low ratios of K_(37)/K_(38)(0.7-0.9)were observed at nearshore area of the SYS where Gephyrocapsa oceanica(G.oceanica)has rela-tively high abundance.The spatial distribution of K_(37)/K_(38) ratio is also consistent with that of coccolithophores nannofossil in the sediments.In addition,K_(37)/K_(38) ratio in core A02-C varied from 0.7 to 1.1 with a gradual decreasing trend during the past 5.5 kyr.This suggests that the relative abundance of E.huxleyi decreased gradually,caused by the changes in the Yellow Sea Warm Current(YSWC)and the East Asian Winter Monsoon(EAWM)during this period.展开更多
Nowadays,biopolymer stabilization as a promising eco-friendly approach in soft ground improvement has attracted wide attentions.However,the feasibility of using biopolymer as a green additive of cementstabilized dredg...Nowadays,biopolymer stabilization as a promising eco-friendly approach in soft ground improvement has attracted wide attentions.However,the feasibility of using biopolymer as a green additive of cementstabilized dredged sediment(CDS)with high water content is still unknown.In this study,guar gum(GG)and xanthan gum(XG)were adopted as typical biopolymers,and a series of unconfined compressive strength(UCS),splitting tensile strength(STS)and scanning electron microscopy(SEM)tests were performed to evaluate the mechanical and microstructural properties of XG-and GG-modified CDSs considering several factors including biopolymer modification,binderesoil ratio and wateresolid ratio.Furthermore,the micro-mechanisms revealing the evolutions of mechanical properties of biopolymermodified CDS were analyzed.The results indicate that the addition of XG can effectively improve the strength of CDS,while the GG has a side effect.The XG content of 9%was recommended,which can improve the 7 d-and 28 d-UCSs by 196%and 51.8%,together with the 7 d-and 28 d-STSs by 118.3%and 42.2%,respectively.Increasing the binderesoil ratio or decreasing the wateresolid ratio significantly improved the strength gaining but aggravated the brittleness characteristics of CDS.Adding XG to CDS contributed to the formation of microstructure with more compactness and higher cementation degrees of ordinary Portland cement(OPC)-XG-stabilized DS(CXDS).The micro-mechanism models revealing the interactions of multiple media including OPC cementation,biopolymer film bonding and bridging effects inside CXDS were proposed.The key findings confirm the feasibility of XG modification as a green and high-efficiency mean for improving the mechanical properties of CDS.展开更多
基金funded by the Key Laboratory of Ocean Space Resource Management Technology,MNR(No.KF-2021-106)the National Natural Science Foundation of China(No.42006143)+1 种基金the Natural Science Foundation of Zhejiang Province(No.LY22E090011)the Open Research Fund Program of Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province(No.HBMESO2312)。
文摘In this study,a two-dimensional hydrodynamic and sediment transport model is established to quantify the influences of sea level rise on sediment transport in the Yangtze River Estuary(YRE).After validation,the model was employed to investigate the sediment transport and seabed evolution under four different scenarios of sea level rise,specifically,0,0.5,1 and 1.5 m.The results reveal that there exists a‘transition point(TP)'of SSC in each main channel of YRE.Upstream of the transition point,the suspended sediment concentration(SSC)increases along with the rise in sea level,while downstream of the transition point,SSC decreases as sea level rises.Similarly,there are also transition points for topography evolution.The maximum scouring rate upstream of the transition points exceeds 4.32% for a 1.5 m rise in sea level,while the maximum deposition rate downstream of the transition points is 2.48%.The sediment fluxes from upstream to downstream in the branches of YRE are enhanced by the rise in sea level.The direction of sediment flux in the North Branch reverses downstream as sea level rises.The sediment flux from the North Channel towards downstream increases significantly,while there is no significant change in sediment flux for South Channel.Sediment deposition in the North Passage is also accelerated by sea level rise.In addition,the sediment flux from YRE to northern Jiangsu and Hangzhou Bay is also weakened by the rise in sea level.
文摘Gamma-ray spectroscopy based on a 100% efficiency hyper-pure germanium detector was used to evaluate the activity concentrations of <sup>226</sup>Ra, <sup>232</sup>Th, and <sup>40</sup>K natural radionuclides in sedimentary, conglomerate, igneous and sedi-ments rock samples collected from four different locations in Eastern desert in Egypt. The obtained activity concentrations are used to evaluate the radi-ological hazards indices, absorbed dose rate, annual effective dose equivalent in air, radium equivalent, external and internal hazard index, radiation level index, annual gonadal dose equivalent, excess lifetime cancer risk and expo-sure rate. The results show that 1) the absorbed dose rate depends on the rock type, 2) the annual effective dose equivalent in air in 71% of sample below 20 mSvy<sup>-1</sup> (permissible limit for workers), 3) the conglomerate rocks show low radioactivity level, 4) sedimentary rocks are rich in radium while igneous rocks are rich in thorium and the sediments rocks are rich in both radium and thorium.
文摘The present study examines the morphological, physicochemical, and mineralogical specificity of clay sediments in the Hamakoussou Basin with the objective of exploring their potential applications. Field data collection was followed by a series of physicochemical and mineralogical tests on the clay samples. Results show that the clay layers, which range in thickness from 11 - 120 cm, exhibit gray, yellowish, or greenish colors. From a physicochemical perspective, these clay layers are found to be basic with a pH ranging from 8.5 for the higher Hama2 layer to 7.6 for the lower Hama1 layer. The sum of exchangeable bases (S) is medium to high with higher values in the Hama1 layer (53.45 meq/100g) and lower values in the Hama3 layer (17.09 meq/100g). Similarly, the cation exchange capacity (CEC) varies from 62.32 meq/100g for the higher Hama1N4 clay layer to 35.6 meq/100g for the lower Hama1N3 clay layer. Mineralogically, the clay materials are primarily composed of smectites, with illite, kaolinite, calcite, quartz, feldspar, hematite, and goethite also present. This study emphasizes the versatility of clay in various industries and scientific domains. It is known for its impermeability, plasticity, and fossil-preserving capabilities, making it a valuable material for economic, practical, and academic applications.
基金supported by the Fundamental Research Funds for the Central Universities(No.20CX05005A)the Major Scientific and Technological Projects of CNPC(No.ZD2019-184-001)+2 种基金the PetroChina Innovation Foundation(No.2018D-5007-0214)the Shandong Provincial Natural Science Foundation(No.ZR2019MEE095)the National Natural Science Foundation of China(No.42174141).
文摘Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S_(h))models for reservoir evaluation and monitoring.The electrical properties of tetrahydrofuran-hydrate-bearing sediments with montmorillonite are characterized by complex conductivity at frequencies from 0.01 Hz to 1 kHz.The effects of clay and Sh on the complex conductivity were analyzed.A decrease and increase in electrical conductance result from the clay-swelling-induced blockage and ion migration in the electrical double layer(EDL),respectively.The quadrature conductivity increases with the clay content up to 10%because of the increased surface site density of counterions in EDL.Both the in-phase conductivity and quadrature conductivity decrease consistently with increasing Sh from 0.50 to 0.90.Three sets of models for Sh evaluation were developed.The model based on the Simandoux equation outperforms Archie’s formula,with a root-mean-square error(E_(RMS))of 1.8%and 3.9%,respectively,highlighting the clay effects on the in-phase conductivity.The fre-quency effect correlations based on in-phase and quadrature conductivities exhibit inferior performance(E_(RMS)=11.6%and 13.2%,re-spectively)due to the challenge of choosing an appropriate pair of frequencies and intrinsic uncertainties from two measurements.The second-order Cole-Cole formula can be used to fit the complex-conductivity spectra.One pair of inverted Cole-Cole parameters,i.e.,characteristic time and chargeability,is employed to predict S_(h) with an E_(RMS) of 5.05%and 9.05%,respectively.
基金supported by the National Natural Science Foundation of China (No.41525021)the Ministry of Science and Technology of People's Republic of China (Nos.2016YFA0600903 and 2017YFC0405502)。
文摘The grain-size distribution of surface sediments in the Bohai Sea(BS) and the northern Yellow Sea(NYS), and its relationship with sediment supply and hydrodynamic environment were investigated based on grain-size compositions of surface sediments and modern sedimentation rates. The results showed that the surface sediments in the BS and the NYS were primarily composed of silty sand and clayey silt with a dominant size of silt. In addition, the Yellow River delivered high amount of water and sediments to the BS, and they are dominated in surface sediments(mainly silt) in the Bohai Bay, the Yellow River mouth, the center of the BS, and the north coast of Shandong Peninsula. The coarse-grained sediments were mainly deposited at the river mouth due to the estuarine filtration and physical sorting. Meanwhile, there was a significant relationship among the modern sedimentation rate, the surface sediment grain size distribution and sediment transport pattern. The areas with coarser surface sediments generally corresponded low sedimentation rates because of strong erosion;whereas the sedimentation rate was relatively high at the place that the surface sediments were fine-grained. Furthermore, the grain-size trend analysis showed that the areas with fine-grained surface sediments such as the mud area in the central BS and the upper Liaodong Bay were the convergent centers of surface sediments, except for the Bohai Bay and the subaqueous Yellow River Delta where offshore sediment transport was evident.
文摘The sandstones of the Late miocene–Pliocene Dibdibba Formation in the Najaf–Karbala Plateau and Basra were examined to determine their source rocks and origin. The rare earth elements(REE) and trace elements(Sc, Co, V, and Th) concentrations in these sandstones revealed that they likely derived from a single source. The steep light rare earth elements(LREE) and flat, heavy rare earth element(HREE) patterns, negative Eu anomaly, and high ΣREE contents in sandstones suggest its derivation from a suggests that a passive continental margin environment and originated from felsic source rocks. The average concentration of ΣREE is 93.5 ppm, which is lower than that of the average crustal compositions like Upper Continental Crust and Post Archean Australian Shale. The higher proportion of LREE compared to HREE implies that these sandstones were recycled and derived from a distal source. The Th/Co, Th/Sc, La/Sc, La/Co, Eu/Eu*and(La/Lu)cn elemental ratios indicated that these Late Miocene–Pliocene sandstones were derived from felsic rocks located in the marginal region of the Arabian Shield.
基金supported by the National Key Research and Development Program of China(2021YFB3702005)the National Natural Science Foundation of China(52304352)+3 种基金the Central Government Guides Local Science and Technology Development Fund Projects(2023JH6/100100046)2022"Chunhui Program"Collaborative Scientific Research Project(202200042)the Doctoral Start-up Foundation of Liaoning Province(2023-BS-182)the Technology Development Project of State Key Laboratory of Metal Material for Marine Equipment and Application[HGSKL-USTLN(2022)01].
文摘Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.
基金financially supported by the Natural Science Foundation of Gansu Province,China(22JR5RA050,20JR10RA231)the fellowship of the China Postdoctoral Science Foundation(2021M703466)the Basic Research Innovation Group Project of Gansu Province,China(21JR7RA347).
文摘For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area.
基金The Public Science and Technology Research Funds Projects of Ocean under contract Nos 200905001 and 201005019UNESCO-IHE Partnership Research Fund (UPaRF) under contract No.60038881the National Natural Science Foundation of China under contract No.50939003
文摘The rotary ring flume is used to study the silty sand movement in a periodic alternating current.Characteristics of sediment movement of different coasts in the tidal current are summarized.More detailed analysis of erosion-sedimentation function in a numerical simulation is made.The equilibrium sediment concentration is advanced.Based on the equilibrium sediment concentration,the seabed erosion-sedimentation index is derived and the seabed erosion-sedimentation calculation is analyzed.The seabed erosion-sedimentation index is used to calculate the seabed evolution of Yangshan sea area and a good agreement with field measurements is obtained.
基金supported by the Major Science And Technology Program of Inner Mongolia(Grant No.2021ZD0007)National Natural Science Foundation of China(Grant Nos.52209134 and 52322810)+1 种基金Natural Science Foundation of Hubei Province for Distinguished Young Scholars(No.2023AFA080)Youth Science Foundation of Jiangsu Province of China(Grant No.BK20220230).
文摘The Yellow River sediment(YRS)is an important potential soil resource for the mine land reclamation and ecological restoration in the arid regions of northern China.However,it has the shortcomings of poor water-holding capacity and needs to be modified urgently.Therefore,two types of biochar,namely rice husk biochar(RHB)and coconut shell biochar(CSB),were utilized in this study to modify the YRS and compared with rice husk ash(RHA).Some engineering properties of the modified YRS(MYRS),including pore structure,water retention,permeability,and vegetation performance,were investigated by considering the effects of biochar types and dosages.Results showed that the addition of the three materials decreased the bulk density of the YRS and increased the volume of extremely micro pore(d<0.3µm),as well as the effective porosity and capillary porosity,thus contributed to an increase in the water-holding capacity of the sediment.Among the three conditioners,RHB is optimal choice for improving the water-holding capacity of YRS.Furthermore,the effect becomes more pronounced with increasing application rates.With the addition of the three materials,the permeability coefficients of MYRS gradually decreased,while the water retention rate during evaporation significantly increased.The pot experiment showed that the three conditioners all had significant promoting effect on the growth of oats.In particular,compared to plain soil,the total biomass of oats grown for 21 days increased by 17.46%,32.14%,and 49.60%after adding 2%,4%,and 8%RHB,respectively.This study introduces a new approach for using YRS as planting soil in arid and semi-arid areas of China to facilitate mine ecological restoration.
基金the Natural Science Foundation of Chongqing,China(No.cstc2020jcyj-msxmX0763)。
文摘Freshwater microplastic pollution is an urgent issue of global concern,and research on the distribution in reservoirs is lacking.We investigated the microplastic pollution levels in wet sediments collected from the Three Gorges Reservoir,the largest reservoir of China.Results show that microplastics were ubiquitous in the sediments of the Three Gorges Reservoir,and their abundance ranged from 59 to 276 pp/kg(plastic particles per kg,dry weight).Economic development and total population were important factors affecting the spatial heterogeneity of microplastic abundance,and the contribution of large cities along the reservoir to microplastic pollution should be paid with more attention.Fibrous microplastics were the most abundant type of microplastic particles in reservoir sediments,whereas polystyrene,polypropylene,and polyamide were the main types of polymers.The apparent spatial heterogeneity in morphology and color of microplastics is attributed to different anthropogenic or landbased pollution sources.Moreover,the accumulation of microplastics near the inlet of tributaries reflects the role of potential contributors of tributaries.More importantly,multiple bisphenols(BPs)and heavy metals detected at the microplastic surfaces indicate that microplastics can act as carriers of these pollutants in the environment in the same way as sediments did,which may alter the environmental fate and toxicity of these pollutants.Therefore,we conclude that the Three Gorges Reservoir had been contaminated with microplastics,which posed a stress risk for organisms who ingest them along with their associated pollutants(BPs,heavy metals).
基金supported by the National Natural Science Foundation of China(No.52003131)China Postdoctoral Science Foundation(No.2023M731838)Taishan Scholar Program of Shandong Province in China(tsqn202211116).
文摘Solar-driven interfacial evaporation from seawater is considered an effective way to alleviate the emerging freshwater crisis because of its green and environmentally friendly characteristics.However,developing an evaporator with high efficiency,stability,and salt resistance remains a key challenge.MXene,with an internal photothermal conversion efficiency of 100%,has received tremendous research interest as a photothermal material.However,the process to prepare the MXene with monolayer is inefficient and generates a large amount of“waste”MXene sediments(MS).Here,MXene sediments is selected as the photothermal material,and a three-dimensional MXene sediments/poly(vinyl alcohol)/sodium alginate aerogel evaporator with vertically aligned pores by directional freezing method is innovatively designed.The vertical porous structure enables the evaporator to improve water transport,light capture,and high evaporation rate.Cotton swabs and polypropylene are used as the water channel and support,respectively,thus fabricating a self-floating evaporator.The evaporator exhibits an evaporation rate of 3.6 kg m^(-2)h^(-1)under one-sun illumination,and 18.37 kg m^(-2)of freshwater is collected in the condensation collection device after 7 h of outdoor sun irradiation.The evaporator also displays excellent oil and salt resistance.This research fully utilizes“waste”MS,enabling a self-floating evaporation device for freshwater collection.
基金the doctoral dissertation of Nabiyeh Karimi with the financial support of Sari University of Agricultural Sciences and Natural Resources, Iran
文摘Complete and comprehensive information about sediment dynamic and identification of hotspots of sediment production and transport are necessary for understanding the erosion processes and increasing the efficiency of soil and water conservation practices.Numerous studies used the sediment fingerprint techniques to investigate the contribution of different sources in suspended and bed sediment yield of the watersheds.However,the contribution of various land use/land covers in suspended and bed sediment yield for the great Caspian Sea basin is in an aura of ambiguity and the present study was conducted to gather information about an important part of this area in northern Iran,where rangelands are located upstream of Hyrcanian forests and dense agricultural lands are located downstream.The surface soil of different land use/land covers including forest,rangeland,agriculture and streambank lands were sampled in 30 points.Suspended and bed sediments were sampled in the watershed outlet in two high and low water periods.Geochemical characteristics of soil and sediment samples containing 59 elements were measured using ICP-OES GBC Integra.The reliable and suitable tracers from 59 elements were then selected using Range test,Kruskal-Wallis and Discriminant Function Analysis,respectively,in FingerPro package of R software.The results showed that for suspended sediment,streambank and rangeland had the highest contributions of 86.2%and 47.5%,respectively,in two high and low water periods.For bed sediment,in two high and low water periods,rangeland and streambank had the highest contributions of 73.8%and 84.4%,respectively.Land use change and especially human activities such as agriculture,road construction and development of residential areas along the main river riparian zone has led to a significant increase in suspended and bed sediments.
基金supported by the Key Research and Development Program (Scientific and Technological Project)of Henan Province (Nos.212102310080,222102320294,and 232102231062)the Fundamental Research Funds for the Central Universities (No.220602024)the Major Focus Project of Henan Academy of Sciences (No.220102002)。
文摘This study investigated the distribution of microplastics and heavy metals,along with the interaction between the two in the sediments of urban rivers in China.Results showed that the abundance of microplastics ranged from 2412±187.5 to 7638±1312items kg^(-1)dry sediment across different survey stations,with an average abundance at(4388±713)items kg^(-1)dry sediment.Upon further categorization,it was found that transparent fragments were the primary color and type of microplastics present.The potential ecological risk index(RI)of heavy metals in sediments suggested a low level of ecological risk within a majority of the urban rivers studied.Cd was identified as the main potential ecological risk factor in the sediments of the studied areas.There was a relatively good significant linear relationship between the RI of heavy metals and the abundance of microplastics,bolstering the linkage between these two environmental pollutants.However,the concentrations of heavy metals in microplastics were not dependent on their corresponding contents in sediments.In fact,the concentration of Cu,Cd,and As in microplastics were higher than those in the sediments.This finding confirmed that microplastics could serve as carriers of heavy metals and introduce potential risks to aquatic wildlife and human through the food chain.
基金supported by the National Natural Science Foundation of China(U19B2005,21808238,U20B6005,22127812)the State Key Laboratory of Heavy Oil Processing,China University of Petroleumthe National Key Research and Development Program of China(2021YFC2800902)
文摘The research on the thermal property of the hydrate has recently made great progress,including the understanding of hydrate thermal conductivity and effective thermal conductivity(ETC)of hydratebearing sediment.The thermal conductivity of hydrate is of great significance for the hydrate-related field,such as the natural gas hydrate exploitation and prevention of the hydrate plugging in oil or gas pipelines.In order to obtain a comprehensive understanding of the research progress of the hydrate thermal conductivity and the ETC of hydrate-bearing sediment,the literature on the studies of the thermal conductivity of hydrate and the ETC of hydrate-bearing sediment were summarized and reviewed in this study.Firstly,experimental studies of the reported measured values and the temperature dependence of the thermal conductivity of hydrate were discussed and reviewed.Secondly,the studies of the experimental measurements of the ETC of hydrate-bearing sediment and the effects of temperature,porosity,hydrate saturation,water saturation,thermal conductivity of porous medium,phase change,and other factors on the ETC of hydrate-bearing sediment were discussed and reviewed.Thirdly,the research progress of modeling on the ETC of the hydrate-bearing sediment was reviewed.The thermal conductivity determines the heat transfer capacity of the hydrate reservoir and directly affects the hydrate exploitation efficiency.Future efforts need to be devoted to obtain experimental data of the ETC of hydrate reservoirs and establish models to accurately predict the ETC of hydrate-bearing sediment.
基金This research was supported by the project"Research on Vegetation Restoration and Reconstruction Technology in the Ecologically Fragile Areas of Uzhumqin Sand Dunes"of the Science and Technology Program of Inner Mongolia Autonomous Region(2020GG0077).We are grateful to the Key Laboratory of Wind and Sand Physics and Sand Control Engineering of Inner Mongolia Autonomous Region for providing us with experimental equipment and space.We thank LetPub(www.letpub.com)for its linguistic assistance during the preparation of this manuscript.
文摘Sediment constitutes the fundamental basis for forming and evolving aeolian geomorphology.The characteristics of sediment particle size offer insights into the development and evolution of sandy terrain,making their study critical to understanding aeolian geomorphology and sand control.In this study,we combined high-density collection of surface sediments in the Uzhumqin sand dunes and GIS spatial analysis to analyze the particle size parameters and changes in the spatial distribution of surface sediments in this region.In addition,we used an end-member analysis to identify the potential sources of the sediments.The results showed that surface sediments in the Uzhumqin sand dunes had distinct spatial distributions.Medium and coarse grain sands dominated the sediments in the dunes,and the mean grain size and the sorting coefficient generally increased along the prevailing wind direction,with high values in individual areas related to factors such as material sources and vegetation cover.Skewness was strongly influenced by factors such as landform change and human activity,and spatial variability became more complex.Kurtosis and the soil fractal dimension showed generally decreasing trends along the prevailing wind direction.With dune fixation,the contents of clay and powder particles in the soil increased;the mean particle size,the sorting coefficient,and the fractal dimension of the soil gradually increased,and the skewness and kurtosis gradually decreased.The end-member analysis results indicated the existence of five end-members(EM)in the dune sediments.EM 1 was a mixed component of wind-deposited fine sands and nearby fluvial sediments.EM 2 was the main component of sediments in the study area and was the result of sorting lake sediments by wind action and by the local topography.EM 3 may be a product of river flood deposition.EM 4 and EM 5 had coarser grain sizes.EM 4 was a lake-phase sediment product influenced by topographic and vegetation cover factors,and EM 5 was primarily a river and lake sediment product modified by weathering.The sediment particle size results from the study area indicate that the sediment in the sandy region is generally coarse due to multiple factors,including topography,climate,hydrology,and human activity.Sandy material in the study area originated from nearby,with very little sand being transported from long distances.
基金was performed within the framework of the State Assignment Projects No.0284–2021-0002.
文摘Comprehensive research has been implemented to raise the efficiency of the geochemical survey of stream sediments(SSs)that formed under the cryolithogenesis conditions.The authors analysed the composition,structure and specific features of the formation of exogenous anomalous geochemical fields(AGFs)identified through SSs of large river valleys of IV order.In our case,these were the valleys of Maly Ken,Ken and Tap Rivers.These rivers are located in the central and southern parts of the Balygychan-Sugoy trough enclosed in the Magadan region,North-East of Russia.The authors proposed a new technique to sample loose alluvium of SSs in the large river valleys along the profiles.The profiles were located across the valleys.The AGFs of Au,Ag,Pb,Zn,Sn,Bi,Mo and W were studied.Correlations between elements have been established.These elements are the main indicator elements of Au-Ag,Ag-Pb,Sn-Ag,Mo-W and Sn-W mineralization occurring on the sites under study.The results obtained were compared with the results of geochemical surveys of SSs.It is concluded that the AGFs recognized along the profiles reflect the composition and structure of eroded and drained ore zones,uncover completely and precisely the pattern of element distribution in loose sediments of large water flows.The alluvium fraction<0.25 mm seems to be most significant in a practical sense,as it concentrated numerous ore elements.Sampling of this fraction in the river valleys of IV order does not cause any difficulty,for this kind of material is plentiful.The developed technique of alluvium sampling within large river valleys is efficient in searching for diverse mineralization at all stages of prognostic prospecting.It is applicable for geochemical survey of SSs performed at different scales both in the North-East of Russia,as well as other regions with similar climatic conditions,where the SSs are formed under the cryolithogenesis conditions.
基金supported by the National Natural Science Foundation of China(Nos.52225107,U2106224,U1906234,51822904,and U1706223)the Fundamental Research Funds for the Central Universities(No.202041004)
文摘Deep-sea sediment disturbance may occur when collecting polymetallic nodules,resulting in the creation of plumes that could have a negative impact on the ecological environment.This study aims to investigate the potential solution of using polyaluminum chloride(PAC)in the water jet.The effects of PAC are examined through a self-designed simulation system for deep-sea polymetallic nodule collection and sediment samples from a potential deep-sea mining area.The experimental results showed that the optimal PAC dose was found to be 0.75 g/L.Compared with the test conditions without the addition of PAC,the presence of PAC leads to a reduction in volume,lower characteristic turbidity,smaller diffusion velocity,and shorter settling time of the plume.This indicates that PAC inhibits the entire development process of the plume.The addition of PAC leads to the flocculation of mm-sized particles,resulting in the formation of cm-sized flocs.The flocculation of particles decreases the rate of erosion on the seabed by around 30%.This reduction in erosion helps to decrease the formation of plumes.Additionally,when the size of suspended particles increases,it reduces the scale at which they diffuse.Furthermore,the settling velocity of flocs(around 10^(-2) m/s)is much higher that of compared to sediment particles(around 10^(-5) m/s),which effectively reduces the amount of time the plume remains in suspension.
基金funded by the National Natural Science Foundation of China(Nos.41876073,92058207)the National Basic Research Program of China(973 Program No.2010CB428901).
文摘Long-chain alkenones(LCAs)have been widely used as important biomarkers in palaeoceanographic studies.However,the commonly used LCAs proxies are mainly based on C_(37) alkenones,and it is still lack of the studies about the distribution and in-dications of LCAs with different chain lengths other than C_(37) alkenones.Here,the composition and distribution of LCAs were ana-lyzed in surface sediments from the southern Yellow Sea(SYS)and a sedimentary core(A02-C)from the central Yellow Sea(YS)mud area.The results showed that C_(37),C_(38) and C_(39) alkenones were the major LCAs in surface sediments of the SYS,and the relative contents of C_(38:2)Et,C_(37:2)Me,C_(37:3)Me,C_(38:2)Me,C_(38:3)Et,C_(38:3)Me,C_(39:2)Et and C_(39:3)Et were 18.3%-59.8%,22.6%-41.2%,7.4%-23.0%,6.6%-15.4%,3.8%-13.3%,3.6%-8.7%,2.8%-6.0% and 0.7%-3.0%,respectively.Then the relationships of U_(38Me)^(K)-U_(38Et)^(K) and U_(37)^(K')-U_(38Et)^(K) indicate that LCAs are mainly derived from Emiliania huxleyi(E.huxleyi).High ratios of total C_(37) alkenones to total C_(38) alkenones(K_(37)/K_(38))(1-1.2)were found in the central SYS,corresponding to the relatively high abundance of E.huxleyi;while low ratios of K_(37)/K_(38)(0.7-0.9)were observed at nearshore area of the SYS where Gephyrocapsa oceanica(G.oceanica)has rela-tively high abundance.The spatial distribution of K_(37)/K_(38) ratio is also consistent with that of coccolithophores nannofossil in the sediments.In addition,K_(37)/K_(38) ratio in core A02-C varied from 0.7 to 1.1 with a gradual decreasing trend during the past 5.5 kyr.This suggests that the relative abundance of E.huxleyi decreased gradually,caused by the changes in the Yellow Sea Warm Current(YSWC)and the East Asian Winter Monsoon(EAWM)during this period.
基金supported by the National Key R&D Program of China(Grant No.2020YFC1908703)Funds for International Cooperation and Exchange of the National Natural Science Foundation of China(Grant No.51861165104)China Postdoctoral Science Foundation(Grant No.2022M723347).
文摘Nowadays,biopolymer stabilization as a promising eco-friendly approach in soft ground improvement has attracted wide attentions.However,the feasibility of using biopolymer as a green additive of cementstabilized dredged sediment(CDS)with high water content is still unknown.In this study,guar gum(GG)and xanthan gum(XG)were adopted as typical biopolymers,and a series of unconfined compressive strength(UCS),splitting tensile strength(STS)and scanning electron microscopy(SEM)tests were performed to evaluate the mechanical and microstructural properties of XG-and GG-modified CDSs considering several factors including biopolymer modification,binderesoil ratio and wateresolid ratio.Furthermore,the micro-mechanisms revealing the evolutions of mechanical properties of biopolymermodified CDS were analyzed.The results indicate that the addition of XG can effectively improve the strength of CDS,while the GG has a side effect.The XG content of 9%was recommended,which can improve the 7 d-and 28 d-UCSs by 196%and 51.8%,together with the 7 d-and 28 d-STSs by 118.3%and 42.2%,respectively.Increasing the binderesoil ratio or decreasing the wateresolid ratio significantly improved the strength gaining but aggravated the brittleness characteristics of CDS.Adding XG to CDS contributed to the formation of microstructure with more compactness and higher cementation degrees of ordinary Portland cement(OPC)-XG-stabilized DS(CXDS).The micro-mechanism models revealing the interactions of multiple media including OPC cementation,biopolymer film bonding and bridging effects inside CXDS were proposed.The key findings confirm the feasibility of XG modification as a green and high-efficiency mean for improving the mechanical properties of CDS.