In0.3Ga0.7N metal-insulator-semiconductor (MIS) and metal-semiconductor (MS) surface barrier photodetectors have been fabricated. The In0.3Ga0.7N epilayers were grown on sapphire by metalorganic chemical vapour de...In0.3Ga0.7N metal-insulator-semiconductor (MIS) and metal-semiconductor (MS) surface barrier photodetectors have been fabricated. The In0.3Ga0.7N epilayers were grown on sapphire by metalorganic chemical vapour deposition (MOCVD). The photoresponse and reverse current-voltage characteristics of the In0.3Ga0.7N MIS and MS photodetectors were measured. A best zero bias responsivity of 0.18 A/W at 450 nm is obtained for the In0.3Ga0.7N MIS photodetector with 10 nm Si3N4 insulator layer, which is more than ten times higher than the In0.3Ga0.7N MS photodetector. The reason is attributed to the decrease of the interface states and increase of surface barrier height by the inserted insulator. The influence of the thickness of the Si3N4 insulator layer on the photoresponsivity of the MIS photodetector is also discussed.展开更多
Small-molecule organic semiconductor crystals(SMOSCs) combine broadband light absorption(ultraviolet–visible–near infrared) with long exciton diffusion length and high charge carrier mobility. Therefore, they are pr...Small-molecule organic semiconductor crystals(SMOSCs) combine broadband light absorption(ultraviolet–visible–near infrared) with long exciton diffusion length and high charge carrier mobility. Therefore, they are promising candidates for realizing high-performance photodetectors. Here, after a brief resume of photodetector performance parameters and operation mechanisms, we review the recent advancements in application of SMOSCs as photodetectors, including photoconductors, phototransistors, and photodiodes. More importantly, the SMOSC-based photodetectors are further categorized according to their detection regions that cover a wide range from ultraviolet to near infrared. Finally, challenges and outlooks of SMOSC-based photodetectors are provided.展开更多
Ultraviolet(UV) photodetectors have attracted more and more attention due to their great potential applications in missile tracking, flame detecting, pollution monitoring, ozone layer monitoring, and so on. Owing to t...Ultraviolet(UV) photodetectors have attracted more and more attention due to their great potential applications in missile tracking, flame detecting, pollution monitoring, ozone layer monitoring, and so on. Owing to the special characteristics of large bandgap, solution processable, low cost, environmentally friendly, etc., wide bandgap oxide semiconductor materials, such as ZnO, ZnMgO, Ga_2O_3, TiO_2, and Ni O, have gradually become a series of star materials in the field of semiconductor UV detection. In this paper, a review is presented on the development of UV photodetectors based on wide bandgap oxide semiconductor films.展开更多
In this paper,an InGaN metal-insulator-semiconductor(MIS) photodetector with an ultra-thin Al2O3 insulation layer deposited by atomic layer deposition(ALD) was studied.A high photoelectric responsivity of 0.25 A/W and...In this paper,an InGaN metal-insulator-semiconductor(MIS) photodetector with an ultra-thin Al2O3 insulation layer deposited by atomic layer deposition(ALD) was studied.A high photoelectric responsivity of 0.25 A/W and a spectral responsivity rejection ratio of about three orders of magnitude at 1 V reverse bias were achieved for this MIS photodetector.The dominant carrier transport mechanism in the InGaN MIS photodetectors is submitted to the space charge limited current(SCLC) mechanism at high field and exhibits an Ohmic-like conduction at low electric field.The results indicate that the ultra-thin Al2O3 film deposited by the ALD technique can act as an excellent insulation dielectric for the InGaN photodetectors.展开更多
A complete model of Metal-Semiconductor-Metal Photodetector(MSM-PD) is presented. It can be used in any circuit simulators. Simulated DC characteristics for a GaAs MSM-PD are in good agreement with reported results.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No 2006CB6049), the National Natural Science Foundation of China (Grant No 60476030), and the Natural Science Foundation of Jiangsu Province of China (Grant No BK2006126).Acknowledgment The authors gratefully acknowledge Nanjing Institute of Electronic Devices for fabricating the insulator layers of the photodetectors.
文摘In0.3Ga0.7N metal-insulator-semiconductor (MIS) and metal-semiconductor (MS) surface barrier photodetectors have been fabricated. The In0.3Ga0.7N epilayers were grown on sapphire by metalorganic chemical vapour deposition (MOCVD). The photoresponse and reverse current-voltage characteristics of the In0.3Ga0.7N MIS and MS photodetectors were measured. A best zero bias responsivity of 0.18 A/W at 450 nm is obtained for the In0.3Ga0.7N MIS photodetector with 10 nm Si3N4 insulator layer, which is more than ten times higher than the In0.3Ga0.7N MS photodetector. The reason is attributed to the decrease of the interface states and increase of surface barrier height by the inserted insulator. The influence of the thickness of the Si3N4 insulator layer on the photoresponsivity of the MIS photodetector is also discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.51672180,51622306,and 21673151)Collaborative Innovation Center of Suzhou Nano Science&Technology+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the 111 Project,Joint International Research Laboratory of Carbon-Based Functional Materials and Devices
文摘Small-molecule organic semiconductor crystals(SMOSCs) combine broadband light absorption(ultraviolet–visible–near infrared) with long exciton diffusion length and high charge carrier mobility. Therefore, they are promising candidates for realizing high-performance photodetectors. Here, after a brief resume of photodetector performance parameters and operation mechanisms, we review the recent advancements in application of SMOSCs as photodetectors, including photoconductors, phototransistors, and photodiodes. More importantly, the SMOSC-based photodetectors are further categorized according to their detection regions that cover a wide range from ultraviolet to near infrared. Finally, challenges and outlooks of SMOSC-based photodetectors are provided.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61475153 and 61605200)the Jilin Province Young and Middle-aged Science and Technology Innovation Leaders and Team Project,China(Grant No.20180519023JH)+1 种基金the 100 Talents Program of the Chinese Academy of Sciencesthe Science Fund for Excellent Young Scholars of Jilin Province,China(Grant No.20180520173JH)
文摘Ultraviolet(UV) photodetectors have attracted more and more attention due to their great potential applications in missile tracking, flame detecting, pollution monitoring, ozone layer monitoring, and so on. Owing to the special characteristics of large bandgap, solution processable, low cost, environmentally friendly, etc., wide bandgap oxide semiconductor materials, such as ZnO, ZnMgO, Ga_2O_3, TiO_2, and Ni O, have gradually become a series of star materials in the field of semiconductor UV detection. In this paper, a review is presented on the development of UV photodetectors based on wide bandgap oxide semiconductor films.
基金supported by the National Natural Science Foundation of China (Grant No. 51141002)the Fundamental Research Funds for the Central Universities (B1020270)Natural Science Foundation of Jiangsu Province of China (Grant No. BK2010521)
文摘In this paper,an InGaN metal-insulator-semiconductor(MIS) photodetector with an ultra-thin Al2O3 insulation layer deposited by atomic layer deposition(ALD) was studied.A high photoelectric responsivity of 0.25 A/W and a spectral responsivity rejection ratio of about three orders of magnitude at 1 V reverse bias were achieved for this MIS photodetector.The dominant carrier transport mechanism in the InGaN MIS photodetectors is submitted to the space charge limited current(SCLC) mechanism at high field and exhibits an Ohmic-like conduction at low electric field.The results indicate that the ultra-thin Al2O3 film deposited by the ALD technique can act as an excellent insulation dielectric for the InGaN photodetectors.
文摘A complete model of Metal-Semiconductor-Metal Photodetector(MSM-PD) is presented. It can be used in any circuit simulators. Simulated DC characteristics for a GaAs MSM-PD are in good agreement with reported results.
文摘在稳态条件下金属 -半导体 -金属 (MSM)光探测器的光电流一维模型可以通过求解电流连续方程和传输方程来建立并求解 .在这种条件下 ,器件内部的载流子分布情况和总体光电流可以得到解析解而不用数值方法求解 .本文从电流连续方程和传输方程出发详细推导了这一过程 ,并将这一结果应用于具体的 In Ga As MSM光探测器的直流等效电路模型上 。