In this study,a zwitterionic polymer/liquid crystals composite film with programming shape-morphing behavior and humidityresponsive self-healing performance was prepared by blending a zwitterionic polymer and liquid c...In this study,a zwitterionic polymer/liquid crystals composite film with programming shape-morphing behavior and humidityresponsive self-healing performance was prepared by blending a zwitterionic polymer and liquid crystalline azobenzene compound in solution,followed by film-forming in a mold without tedious or multistep synthetic route.The as-obtained zwitterionic polymer/liquid crystal composite film exhibited programming shape-morphing behavior under different stimuli.In this process,the temporary shape of the composite film was memorized after the removal of the stimuli.Such characteristics would fit the requirements of intelligence and energy-saving for stimuliresponsive shape-changing materials.Moreover,the composite film showed humidity-responsive self-healing performances under wet conditions at room temperature.In summary,the simple design and preparation route of the zwitterionic polymer/liquid crystal composite film with programming shape-morphing behavior and mild condition-responsive self-healing performance look promising for the fabrication and practical application of novel photo-driven devices and soft robotics.展开更多
Miniature devices comprising stimulus-responsive hydrogels with high environmental adaptability are now considered competitive candidates in the fields of biomedicine,precise sensors,and tunable optics.Reliable and ad...Miniature devices comprising stimulus-responsive hydrogels with high environmental adaptability are now considered competitive candidates in the fields of biomedicine,precise sensors,and tunable optics.Reliable and advanced fabricationmethods are critical formaximizing the application capabilities ofminiature devices.Light-based three-dimensional(3D)printing technology offers the advantages of a wide range of applicable materials,high processing accuracy,and strong 3D fabrication capability,which is suitable for the development of miniature devices with various functions.This paper summarizes and highlights the recent advances in light-based 3D-printed miniaturized devices,with a focus on the latest breakthroughs in lightbased fabrication technologies,smart stimulus-responsive hydrogels,and tunable miniature devices for the fields of miniature cargo manipulation,targeted drug and cell delivery,active scaffolds,environmental sensing,and optical imaging.Finally,the challenges in the transition of tunable miniaturized devices from the laboratory to practical engineering applications are presented.Future opportunities that will promote the development of tunable microdevices are elaborated,contributing to their improved understanding of these miniature devices and further realizing their practical applications in various fields.展开更多
Formation of graded biomaterials to render shape-morphing scaffolds for 4D biofabrication holds great promise in fabrication of complex structures and the recapitulation of critical dynamics for tissue/organ regenerat...Formation of graded biomaterials to render shape-morphing scaffolds for 4D biofabrication holds great promise in fabrication of complex structures and the recapitulation of critical dynamics for tissue/organ regeneration.Here we describe a facile generation of an adjustable and robust gradient using a single-or multi-material one-step fabrication strategy for 4D biofabrication.By simply photocrosslinking a mixed solution of a photocrosslinkable polymer macromer,photoinitiator(PI),UV absorber and live cells,a cell-laden gradient hydrogel with pre-programmable deformation can be generated.Gradient formation was demonstrated in various polymers including poly(ethylene glycol)(PEG),alginate,and gelatin derivatives using various UV absorbers that present overlap in UV spectrum with that of the PI UV absorbance spectrum.Moreover,this simple and effective method was used as a universal platform to integrate with other hydrogel-engineering techniques such as photomask-aided microfabrication,photo-patterning,ion-transfer printing,and 3D bioprinting to fabricate more advanced cell-laden scaffold structures.Lastly,proof-of-concept 4D tissue engineering was demonstrated in a study of 4D bone-like tissue formation.The strategy’s simplicity along with its versatility paves a new way in solving the hurdle of achieving temporal shape changes in cell-laden single-component hydrogel scaffolds and may expedite the development of 4D biofabricated constructs for biological applications.展开更多
Artificial soft actuators,featured with non-equilibrium internal circumstance and fast,programmable shape transformations,have attracted strong research interest recently due to their flexibility,highly controllable,a...Artificial soft actuators,featured with non-equilibrium internal circumstance and fast,programmable shape transformations,have attracted strong research interest recently due to their flexibility,highly controllable,and designability.However,wireless soft actuators,achieving the locomotion on different large slopes with multiple energy conversion,have been rarely reported.Herein,we create a asymmetric bilayer strategy to construct autonomous soft crawler via“breathing”moisture to motivate the mechanical deformation.The soft crawlers present conspicuous performances including periodic tumbler locomotion predicted via improved Timoshenko’s equation,multiple reversible shape-morphing(circle,helix,despiralization,etc.)determined by their fiber orientation,controlled drive mode(front drive and rear drive)and rapid climb speed(4.76 cm/min)at wide slope angles.Through architecture design,they can be series-wound or shunt-wound to construct multijoint complex actuators.Besides climbing,a intelligent soft ring-pull with admirable cycle performance for preventing overheating or something untouchable,has been proposed.The soft crawlers also realize multiple energy conversion to be actuated by light irradiation.We envision that this soft crawler system has an enormous potential in intelligent machine,microscopic diagnosis and treatment,biosensing,energy harvesting and conversion.展开更多
基金the National Natural Science Foundation of China(Nos.51773120 and 51802201)the Guangdong Basic and Applied Basic Research Foundation(No.2022A1515011985)+1 种基金the Shenzhen Science and Technology Planning Project(Nos.JCYJ20190808115609663 and JCYJ20190808123207674)the Scientific Research Project of Guangdong Provincial Department of Education(No.2020ZDZX2040).
文摘In this study,a zwitterionic polymer/liquid crystals composite film with programming shape-morphing behavior and humidityresponsive self-healing performance was prepared by blending a zwitterionic polymer and liquid crystalline azobenzene compound in solution,followed by film-forming in a mold without tedious or multistep synthetic route.The as-obtained zwitterionic polymer/liquid crystal composite film exhibited programming shape-morphing behavior under different stimuli.In this process,the temporary shape of the composite film was memorized after the removal of the stimuli.Such characteristics would fit the requirements of intelligence and energy-saving for stimuliresponsive shape-changing materials.Moreover,the composite film showed humidity-responsive self-healing performances under wet conditions at room temperature.In summary,the simple design and preparation route of the zwitterionic polymer/liquid crystal composite film with programming shape-morphing behavior and mild condition-responsive self-healing performance look promising for the fabrication and practical application of novel photo-driven devices and soft robotics.
基金financially supported by the Research Impact Fund (project no. R4015-21)Research Fellow Scheme (project no. RFS2122-4S03)+3 种基金Strategic Topics Grant (project no. STG1/E-401/23- N) from the Hong Kong Research Grants Council (RGC)the CUHK internal grantsthe support from Multi-Scale Medical Robotics Centre (MRC),InnoHK, at the Hong Kong Science Parkthe SIAT–CUHK Joint Laboratory of Robotics and Intelligent Systems
文摘Miniature devices comprising stimulus-responsive hydrogels with high environmental adaptability are now considered competitive candidates in the fields of biomedicine,precise sensors,and tunable optics.Reliable and advanced fabricationmethods are critical formaximizing the application capabilities ofminiature devices.Light-based three-dimensional(3D)printing technology offers the advantages of a wide range of applicable materials,high processing accuracy,and strong 3D fabrication capability,which is suitable for the development of miniature devices with various functions.This paper summarizes and highlights the recent advances in light-based 3D-printed miniaturized devices,with a focus on the latest breakthroughs in lightbased fabrication technologies,smart stimulus-responsive hydrogels,and tunable miniature devices for the fields of miniature cargo manipulation,targeted drug and cell delivery,active scaffolds,environmental sensing,and optical imaging.Finally,the challenges in the transition of tunable miniaturized devices from the laboratory to practical engineering applications are presented.Future opportunities that will promote the development of tunable microdevices are elaborated,contributing to their improved understanding of these miniature devices and further realizing their practical applications in various fields.
基金The authors gratefully acknowledge funding from the National Institutes of Health’s National Institute of Arthritis and Musculoskeletal and Skin Diseases(R01AR069564,and R01AR066193E.A.)+4 种基金National Institute of Biomedical Imaging and Bioengineering(R01EB023907E.A.)and National Heart,Lung,and Blood Institute(T32HL007829R.T.)The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health.The authors also thank Susan R.Ross at University of Illinois at Chicago for generously providing the NIH3T3 cells.
文摘Formation of graded biomaterials to render shape-morphing scaffolds for 4D biofabrication holds great promise in fabrication of complex structures and the recapitulation of critical dynamics for tissue/organ regeneration.Here we describe a facile generation of an adjustable and robust gradient using a single-or multi-material one-step fabrication strategy for 4D biofabrication.By simply photocrosslinking a mixed solution of a photocrosslinkable polymer macromer,photoinitiator(PI),UV absorber and live cells,a cell-laden gradient hydrogel with pre-programmable deformation can be generated.Gradient formation was demonstrated in various polymers including poly(ethylene glycol)(PEG),alginate,and gelatin derivatives using various UV absorbers that present overlap in UV spectrum with that of the PI UV absorbance spectrum.Moreover,this simple and effective method was used as a universal platform to integrate with other hydrogel-engineering techniques such as photomask-aided microfabrication,photo-patterning,ion-transfer printing,and 3D bioprinting to fabricate more advanced cell-laden scaffold structures.Lastly,proof-of-concept 4D tissue engineering was demonstrated in a study of 4D bone-like tissue formation.The strategy’s simplicity along with its versatility paves a new way in solving the hurdle of achieving temporal shape changes in cell-laden single-component hydrogel scaffolds and may expedite the development of 4D biofabricated constructs for biological applications.
基金financially supported by the National Natural Science Foundation of China(Nos.22001175,51973118,22175121 and 52003160)Key-Area Research and Development Program of Guangdong Province(Nos.2019B010929002 and 2019B010941001)+3 种基金the Natural Science Foundation of Guangdong Province(No.2020A1515010644)the Program for Guangdong Introducing Innovative and Enterpreneurial Teams(No.2019ZT08C642)Shenzhen Science and Technology Program(Nos.JCYJ20210324095412035,JCYJ20190808113005643,JCYJ20170818093832350 and JCYJ20180507184711069)the start-up fund of Shenzhen University(No.000002110820)。
文摘Artificial soft actuators,featured with non-equilibrium internal circumstance and fast,programmable shape transformations,have attracted strong research interest recently due to their flexibility,highly controllable,and designability.However,wireless soft actuators,achieving the locomotion on different large slopes with multiple energy conversion,have been rarely reported.Herein,we create a asymmetric bilayer strategy to construct autonomous soft crawler via“breathing”moisture to motivate the mechanical deformation.The soft crawlers present conspicuous performances including periodic tumbler locomotion predicted via improved Timoshenko’s equation,multiple reversible shape-morphing(circle,helix,despiralization,etc.)determined by their fiber orientation,controlled drive mode(front drive and rear drive)and rapid climb speed(4.76 cm/min)at wide slope angles.Through architecture design,they can be series-wound or shunt-wound to construct multijoint complex actuators.Besides climbing,a intelligent soft ring-pull with admirable cycle performance for preventing overheating or something untouchable,has been proposed.The soft crawlers also realize multiple energy conversion to be actuated by light irradiation.We envision that this soft crawler system has an enormous potential in intelligent machine,microscopic diagnosis and treatment,biosensing,energy harvesting and conversion.