The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direc...The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direction of the basic flows.By defining an energy functional,it is proven that plane parallel shear flows are unconditionally nonlinearly exponentially stable for tilted streamwise perturbation when the Reynolds number is below a certain critical value and the boundary conditions are either rigid or stress-free.In the case of stress-free boundaries,by taking advantage of the poloidal-toroidal decomposition of a solenoidal field to define energy functionals,it can be even shown that plane parallel shear flows are unconditionally nonlinearly exponentially stable for all Reynolds numbers,where the tilted perturbation can be either spanwise or streamwise.展开更多
A series of fully three-dimensional(3 D) numerical simulations of flow past a free-to-oscillate curved flexible riser in shear flow were conducted at Reynolds number of 185–1015. The numerical results obtained by the...A series of fully three-dimensional(3 D) numerical simulations of flow past a free-to-oscillate curved flexible riser in shear flow were conducted at Reynolds number of 185–1015. The numerical results obtained by the two-way fluid–structure interaction(FSI) simulations are in good agreement with the experimental results reported in the earlier study. It is further found that the frequency transition is out of phase not only in the inline(IL) and crossflow(CF) directions but also along the span direction. The mode competition leads to the non-zero nodes of the rootmean-square(RMS) amplitude and the relatively chaotic trajectories. The fluid–structure interaction is to some extent reflected by the transverse velocity of the ambient fluid, which reaches the maximum value when the riser reaches the equilibrium position. Moreover, the local maximum transverse velocities occur at the peak CF amplitudes, and the values are relatively large when the vibration is in the resonance regions. The 3 D vortex columns are shed nearly parallel to the axis of the curved flexible riser. As the local Reynolds number increases from 0 at the bottom of the riser to the maximum value at the top, the wake undergoes a transition from a two-dimensional structure to a 3 D one. More irregular small-scale vortices appeared at the wake region of the riser, undergoing large amplitude responses.展开更多
A time domain model is presented to study the vibrations of long slender cylinders placed in shear flow. Long slender cylinders such as risers and tension legs are widely used in the field of ocean engineering. They a...A time domain model is presented to study the vibrations of long slender cylinders placed in shear flow. Long slender cylinders such as risers and tension legs are widely used in the field of ocean engineering. They are subjected to vortex-induced vibrations(VIV) when placed within a transverse incident flow. A three dimensional model coupled with wake oscillators is formulated to describe the response of the slender cylinder in cross-flow and in-line directions. The wake oscillators are distributed along the cylinder and the vortex-shedding frequency is derived from the local current velocity. A non-linear fiuid force model is accounted for the coupled effect between cross-flow and in-line vibrations. The comparisons with the published experimental data show that the dynamic features of VIV of long slender cylinder placed in shear flow can be obtained by the proposed model,such as the spanwise average displacement,vibration frequency,dominant mode and the combination of standing and traveling waves. The simulation in a uniform flow is also conducted and the result is compared with the case of nonuniform flow. It is concluded that the flow shear characteristic has significantly changed the cylinder vibration behavior.展开更多
An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS...An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS equations and physical analysis and relevant discussions are then presented.展开更多
We compare the space-time correlations calculated from direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulent channel flows. It is found from the comparisons that the LES with an eddy-visco...We compare the space-time correlations calculated from direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulent channel flows. It is found from the comparisons that the LES with an eddy-viscosity subgrid scale (SGS) model over-predicts the space-time corre- lations than the DNS. The overpredictions are further quantified by the integral scales of directional correlations and convection velocities. A physical argument for the overpre- diction is provided that the eddy-viscosity SGS model alone does not includes the backscatter effects although it correctly represents the energy dissipations of SGS motions. This argument is confirmed by the recently developed elliptic model for space-time correlations in turbulent shear flows. It suggests that enstrophy is crucial to the LES prediction of spacetime correlations. The random forcing models and stochastic SGS models are proposed to overcome the overpredictions on space-time correlations.展开更多
This work presents a numerical investigation on steady internal, external and surface flows of a liquid sphere immersed in a simple shear flow at low and intermediate Reynolds numbers. The control volume formulation i...This work presents a numerical investigation on steady internal, external and surface flows of a liquid sphere immersed in a simple shear flow at low and intermediate Reynolds numbers. The control volume formulation is adopted to solve the governing equations of two-phase flow in a 3-D spherical coordinate system. Numerical results show that the streamlines for Re = 0 are closed Jeffery orbits on the surface of the liquid sphere, and also closed curves outside and inside the liquid sphere. However, the streamlines have intricate and non-closed structures for Re ≠ 0. The flow structure is dependent on the values of Reynolds number and interior-to-exterior viscosity ratio.展开更多
The experimental results of the deformation and breakup of a single drop immersed in a Newtonian liq-uid and subjected to a constant shear rate which generated by counter rotating Couette apparatus were presented in t...The experimental results of the deformation and breakup of a single drop immersed in a Newtonian liq-uid and subjected to a constant shear rate which generated by counter rotating Couette apparatus were presented in this paper. From experimental observations, the breakup occurred by three mechanisms, namely, necking, end pinching, and capillary instability. Quantitative results for the deformation and breakup of drop are presented. The maximum diameter and Sauter mean diameter of daughter drops and capillary thread radius are linearly related to the inverse shear rate and independent of the initial drop size, the dimensionless wavelength which is the wave-length divided by the thread width at breakup is independent of the shear rate and initial drop size, and the deforma-tion of threads follows a pseudo-affine deformation for Cai/Cac larger than 2.展开更多
The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhanc...The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhancement and oscillatory suppression for the flow over a bluff body. The electro-magnetic control of vortex-induced vibration (VIV) of a circular cylinder in the shear flow was investigated numerically in the exponential-polar coordinates attached on the moving cylinder for Re=150. With the effect of background vorticity, the vortex street of VIV cylinder was composed of two parallel rows with an opposite sign of the vortices which inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex. The lift force vibrated periodically with the effect of vortex shedding and the mean value was negative due to the background vorticity. The Lorentz force for controlling the VIV cylinder was classified into the field Lorentz force and the wall Lorentz force. The field Lorentz force suppresses the lift oscillation, and in turn, suppresses the VIV, whereas the wall Lorentz force increases the lift.展开更多
The coherent structures and the chaotic phenomena in the transition of the axisymmetric countercurrent mixing shear flow were investigated experimentally. Two kinds of self-excited oscillation modes could exist in the...The coherent structures and the chaotic phenomena in the transition of the axisymmetric countercurrent mixing shear flow were investigated experimentally. Two kinds of self-excited oscillation modes could exist in the axisymmetric countercurrent mixing shear flow. One is the shear layer self-excited oscillation mode corresponding to the high Reynolds number regime and the other is the jet column self-excited oscillation mode corresponding to the low Reynolds number regime in the case of the velocity ratio ranging from I to 1.5. Analyzing the auto-power spectrum, self-correlation-function and three dimensional reconstructed phase trajectory, the route to chaos through three Hopf bifurcations intercepted by an intermittence of the dynamical system corresponding to the axisymmetric countercurrent mixing shear flow was discovered when the velocity ratio is equal to 1.32.展开更多
The structure and dynamics of confined single polymer chain in a dilute solution, either in equilibrium or at different shear rates in the uniform shear flow fields, were investigated by means of dissipative particle ...The structure and dynamics of confined single polymer chain in a dilute solution, either in equilibrium or at different shear rates in the uniform shear flow fields, were investigated by means of dissipative particle dynamics simulations. The no-slip boundary condition without density fluctuation near the wall was taken into account to mimic the environment of a nanochannel. The dependences of the radius of gyration, especially in three different di- rections, and the density profile of the chain mass center on the strength of the confinement and the Weissenberg number(Wn) was studied. The effect of the interaction between polymer and solvent on the density profile was also investigated in the cases of moderate and strong Wn. In the high shear flow, the polymer migrates to the center of the channel with increasing Wn. There is only one density profile peak in the channel center in the uniform shear flow, which is in agreement with the results of the experiments and theory.展开更多
Gao's viscous/in-viscid interacting shear flows (ISF) theory, proposed by professor Gao Zhi in Institute of Mechanics, China Academy of Science, and its inferences and their applications in computational fluid dyna...Gao's viscous/in-viscid interacting shear flows (ISF) theory, proposed by professor Gao Zhi in Institute of Mechanics, China Academy of Science, and its inferences and their applications in computational fluid dynamics (CFD) are reviewed and some subjects worthy to be studied are pro- posed in this paper. The flow-field and motion law of ISF, mathematics definition of strong viscous shear layer flow in ISF, ISF equations, wall-surface compatibility criteria (Gao's criteria ), space scale variety law of strong viscous shear layer reveals flow mechanism and local space small scale triggered by strong interaction that cause some abnormal severe local pneumatic heating phenomenon in hypersonic flow. Gao's ISF theory was used in near wall flow, free ISF flow simulation and design of computing grids, Gao's wall-surface criteria were used to verify calculation reliability and accuracy of near wall flows, ISF theory approximate analytical result of shock waves-boundary layer interac- tion and ISF equations were used to obtain the numerical exact solution of local area flow ( such as stationary point flow). Some new subjects, such as, improving near-wall turbulent models according to the turbulent flow simulation satisfying the wall-criteria and illustrating relation between grid-con- vergence based on the wall criteria and other convergence tactics, are suggested. The necessity of applying Gao's ISF theory and wall criteria is revealed. Difficulties and importance of hypersonic vis- cous/in-viscid interaction phenomenon were also emphasized.展开更多
Considering that the fluid is inviscid and incompressible and the flow is irrotational in a fixed frame of reference and using the multiple scale analysis method, we derive a nonlinear Schrodinger equation(NLSE) descr...Considering that the fluid is inviscid and incompressible and the flow is irrotational in a fixed frame of reference and using the multiple scale analysis method, we derive a nonlinear Schrodinger equation(NLSE) describing the evolution dynamics of gravity-capillary wavetrains in arbitrary constant depth. The gravity-capillary waves(GCWs) are influenced by a linear shear flow(LSF) which consists of a uniform flow and a shear flow with constant vorticity. The modulational instability(MI) of GCWs with the LSF is analyzed using the NLSE. The MI is effectively modified by the LSF. In infinite depth, there are four asymptotes which are the boundaries between MI and modulational stability(MS) in the instability diagram. In addition, the dimensionless free surface elevation as a function of time for different dimensionless water depth,surface tension, uniform flow and vorticity is exhibited. It is found that the decay of free surface elevation and the steepness of free surface amplitude change over time, which are greatly affected by the water depth, surface tension, uniform flow and vorticity.展开更多
Experimental and numerical studies have shown similarities between localized turbulence in channel and pipe flows.By scaling analysis of a disturbed-flow model,this paper proposes a local Reynolds number Re M to chara...Experimental and numerical studies have shown similarities between localized turbulence in channel and pipe flows.By scaling analysis of a disturbed-flow model,this paper proposes a local Reynolds number Re M to characterize the threshold of transition triggered by finite-amplitude disturbances.The Re M represents the maximum contribution of the basic flow to the momentum ratio between the nonlinear convection and the viscous diffusion.The lower critical Re M observed in experiments of plane Poiseuille flow,pipe Poiseuille flow and plane Couette flow are all close to 323,indicating the uniformity of mechanism governing the transition to localized turbulence.展开更多
Two flow cases for scaled high speed train models with different length are numerically analyzed in the framework of the improved delayed detachededdy simulation model.Specific attention is paid to the shear flows and...Two flow cases for scaled high speed train models with different length are numerically analyzed in the framework of the improved delayed detachededdy simulation model.Specific attention is paid to the shear flows and related mechanisms in the near turbulent wake created by these moving models.In particular,a comparative analysis is made on the distributions of turbulent kinetic energy(TKE)and turbulence production(TP)in planes perpendicular to the streamwise direction.The numerical results suggest that,in the wake region very close to the tail,significant TKE and TP can be ascribed to the dynamic interaction between powerful eddies and strong shear,which explain why these quantities are sensitive to the shear strength.The shear flows are essentially governed by the boundary layers developing along the streamwise direction on the train surfaces,especially from the under-body region and the side walls.For other positions located in the downstream direction away from the tail,the interaction of vortices with the non-slip ground serves as a mechanism to promote transfer of energy from weak eddies to turbulence through the shear present in planes parallel to the ground.展开更多
Blood cell aggregation and adhesion to endothelial cells under shear flow are crucial to many biological processes such as thrombi formation, inflammatory cascade, and tumor metastasis, in which these cellular interac...Blood cell aggregation and adhesion to endothelial cells under shear flow are crucial to many biological processes such as thrombi formation, inflammatory cascade, and tumor metastasis, in which these cellular interactions are mainly mediated by the underlying receptor-ligand bindings. While theoretical modeling of aggregation dynamics and adhesion kinetics of interacting cells have been well studied separately, how to couple these two processes remains unclear. Here we develop a combined model that couples cellular aggregation dynamics and adhesion kinetics under shear flow. The impacts of shear rate (or shear stress) and molecular binding affinity were elucidated. This study provides a unified model where the action of a fluid flow drives cell aggregation and adhesion under the modulations of the mechanical shear flow and receptor-ligand interaction kinetics. It offers an insight into understanding the relevant biological processes and functions.展开更多
In this paper,modified Korteweg-de Vries (mKdV) equations for the amplitude of solitary Rossby waves in stratified fluids with a zonal shear flow are derived by using a weakly nonlinear method.It is found that the coe...In this paper,modified Korteweg-de Vries (mKdV) equations for the amplitude of solitary Rossby waves in stratified fluids with a zonal shear flow are derived by using a weakly nonlinear method.It is found that the coefficients of mKdV equations depend not only on the β effect and the Visl-Brunt frequency,but also on the basic shear flow.展开更多
For the instability problem of density stratified shear flows in sea straits with variable cross sections, a new semielliptical instability region is found. Rurthermore, the instability of the bounded shear layer is s...For the instability problem of density stratified shear flows in sea straits with variable cross sections, a new semielliptical instability region is found. Rurthermore, the instability of the bounded shear layer is studied in two cases: (i) the density which takes two different constant values in two layers and (ii) the density which takes three different constant values in three layers. In both cases, the dispersion relation is found to be a quartic equation in the complex phase velocity. It is found that there are two unstable modes in a range of the wave numbers in the first case, whereas there is only one unstable mode in the second case.展开更多
A combined experimental and numerical study is undertaken to investigate the hydrodynamic characteristics of singlephase droplet collision in a shear flow. The passing-over motion of interactive droplets is observed, ...A combined experimental and numerical study is undertaken to investigate the hydrodynamic characteristics of singlephase droplet collision in a shear flow. The passing-over motion of interactive droplets is observed, and the underlying hydrodynamic mechanisms are elucidated by the analysis of the motion trajectory, transient droplet deformation and detailed hydrodynamic information(e.g., pressure and flow fields). The results indicate that the hydrodynamic interaction process under shear could be divided into three stages: approaching, colliding, and separating. With the increasing confinement, the interaction time for the passing-over process is shorter and the droplet processes one higher curvature tip and more stretched profile. Furthermore, the lateral separation ?;/R;exhibits larger decrease in the approaching stage and the thickness of the lubrication film is decreased during the interaction. As the initial lateral separation increases, the maximum trajectory shift by the collision interaction is getting smaller. During the collision between two droplets with different sizes, the amplitude of the deformation oscillation of the larger droplet is decreased by reducing the size ratio of the smaller droplet to the bigger one.展开更多
The axisymmetric acoustic wave propagating in a perfect gas with a shear pipeline flow confined by a circular rigid wail is investigated. The governing equations of non-isentropic and isentropic acoustic assumptions a...The axisymmetric acoustic wave propagating in a perfect gas with a shear pipeline flow confined by a circular rigid wail is investigated. The governing equations of non-isentropic and isentropic acoustic assumptions are mathematically deduced while the constraint of Zwikker and Kosten is relaxed. An iterative method based on the Fourier-Bessel theory is proposed to semi-anaiyticaily solve the proposed models. A comparison of numerical results with literature contributions validates the present contribution. Meanwhile, the features of some high-order transverse modes, which cannot be analyzed based on the Zwikker and Kosten theory, are anaiyzed展开更多
基金supported by the National Natural Science Foundation of China(21627813)。
文摘The nonlinear stability of plane parallel shear flows with respect to tilted perturbations is studied by energy methods.Tilted perturbation refers to the fact that perturbations form an angleθ∈(0,π/2)with the direction of the basic flows.By defining an energy functional,it is proven that plane parallel shear flows are unconditionally nonlinearly exponentially stable for tilted streamwise perturbation when the Reynolds number is below a certain critical value and the boundary conditions are either rigid or stress-free.In the case of stress-free boundaries,by taking advantage of the poloidal-toroidal decomposition of a solenoidal field to define energy functionals,it can be even shown that plane parallel shear flows are unconditionally nonlinearly exponentially stable for all Reynolds numbers,where the tilted perturbation can be either spanwise or streamwise.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.11502220 and51479126)the Youth Science and Technology Foundation of Sichuan Province(Grant No.2017JQ0055)the Youth Scientific and Technological Innovation Team of the Safety of Deep-Water Pipe Strings of Southwest Petroleum University(Grant No.2017CXTD06)
文摘A series of fully three-dimensional(3 D) numerical simulations of flow past a free-to-oscillate curved flexible riser in shear flow were conducted at Reynolds number of 185–1015. The numerical results obtained by the two-way fluid–structure interaction(FSI) simulations are in good agreement with the experimental results reported in the earlier study. It is further found that the frequency transition is out of phase not only in the inline(IL) and crossflow(CF) directions but also along the span direction. The mode competition leads to the non-zero nodes of the rootmean-square(RMS) amplitude and the relatively chaotic trajectories. The fluid–structure interaction is to some extent reflected by the transverse velocity of the ambient fluid, which reaches the maximum value when the riser reaches the equilibrium position. Moreover, the local maximum transverse velocities occur at the peak CF amplitudes, and the values are relatively large when the vibration is in the resonance regions. The 3 D vortex columns are shed nearly parallel to the axis of the curved flexible riser. As the local Reynolds number increases from 0 at the bottom of the riser to the maximum value at the top, the wake undergoes a transition from a two-dimensional structure to a 3 D one. More irregular small-scale vortices appeared at the wake region of the riser, undergoing large amplitude responses.
基金supported by the National Natural Science Foundation of China (10532070)the Knowledge Innovation Program of Chinese Academy of Sciences (KJCX2-YW-L07)the LNM Initial Funding for Young Investigators
文摘A time domain model is presented to study the vibrations of long slender cylinders placed in shear flow. Long slender cylinders such as risers and tension legs are widely used in the field of ocean engineering. They are subjected to vortex-induced vibrations(VIV) when placed within a transverse incident flow. A three dimensional model coupled with wake oscillators is formulated to describe the response of the slender cylinder in cross-flow and in-line directions. The wake oscillators are distributed along the cylinder and the vortex-shedding frequency is derived from the local current velocity. A non-linear fiuid force model is accounted for the coupled effect between cross-flow and in-line vibrations. The comparisons with the published experimental data show that the dynamic features of VIV of long slender cylinder placed in shear flow can be obtained by the proposed model,such as the spanwise average displacement,vibration frequency,dominant mode and the combination of standing and traveling waves. The simulation in a uniform flow is also conducted and the result is compared with the case of nonuniform flow. It is concluded that the flow shear characteristic has significantly changed the cylinder vibration behavior.
文摘An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS equations and physical analysis and relevant discussions are then presented.
基金supported by the National Basic Research Program of China (973 Program) (2007CB814800)the National Natural Science Foundation of China (10325211 and 10628206)
文摘We compare the space-time correlations calculated from direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulent channel flows. It is found from the comparisons that the LES with an eddy-viscosity subgrid scale (SGS) model over-predicts the space-time corre- lations than the DNS. The overpredictions are further quantified by the integral scales of directional correlations and convection velocities. A physical argument for the overpre- diction is provided that the eddy-viscosity SGS model alone does not includes the backscatter effects although it correctly represents the energy dissipations of SGS motions. This argument is confirmed by the recently developed elliptic model for space-time correlations in turbulent shear flows. It suggests that enstrophy is crucial to the LES prediction of spacetime correlations. The random forcing models and stochastic SGS models are proposed to overcome the overpredictions on space-time correlations.
基金Supported by the National Basic Research Program of China(2013CB632601)the National Science Fund for Distinguished Young Scholars(21025627)+1 种基金the National Natural Science Foundation of China(21276256,21106150)the National High Technology Research and Development Program of China(2012AA03A606)
文摘This work presents a numerical investigation on steady internal, external and surface flows of a liquid sphere immersed in a simple shear flow at low and intermediate Reynolds numbers. The control volume formulation is adopted to solve the governing equations of two-phase flow in a 3-D spherical coordinate system. Numerical results show that the streamlines for Re = 0 are closed Jeffery orbits on the surface of the liquid sphere, and also closed curves outside and inside the liquid sphere. However, the streamlines have intricate and non-closed structures for Re ≠ 0. The flow structure is dependent on the values of Reynolds number and interior-to-exterior viscosity ratio.
基金Supported by the National Natural Science Foundation of China (No.50536020 and No.10172069).
文摘The experimental results of the deformation and breakup of a single drop immersed in a Newtonian liq-uid and subjected to a constant shear rate which generated by counter rotating Couette apparatus were presented in this paper. From experimental observations, the breakup occurred by three mechanisms, namely, necking, end pinching, and capillary instability. Quantitative results for the deformation and breakup of drop are presented. The maximum diameter and Sauter mean diameter of daughter drops and capillary thread radius are linearly related to the inverse shear rate and independent of the initial drop size, the dimensionless wavelength which is the wave-length divided by the thread width at breakup is independent of the shear rate and initial drop size, and the deforma-tion of threads follows a pseudo-affine deformation for Cai/Cac larger than 2.
基金Sponsored by the National Nature Science Foundation of China (11202102,11172140)
文摘The flow of the weak electrolyte solution can be controlled by Lorentz force achieved with the suitable magnetic and electric fields, and it has the advantages of vortex street suppression, drag reduction, lift enhancement and oscillatory suppression for the flow over a bluff body. The electro-magnetic control of vortex-induced vibration (VIV) of a circular cylinder in the shear flow was investigated numerically in the exponential-polar coordinates attached on the moving cylinder for Re=150. With the effect of background vorticity, the vortex street of VIV cylinder was composed of two parallel rows with an opposite sign of the vortices which inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex. The lift force vibrated periodically with the effect of vortex shedding and the mean value was negative due to the background vorticity. The Lorentz force for controlling the VIV cylinder was classified into the field Lorentz force and the wall Lorentz force. The field Lorentz force suppresses the lift oscillation, and in turn, suppresses the VIV, whereas the wall Lorentz force increases the lift.
文摘The coherent structures and the chaotic phenomena in the transition of the axisymmetric countercurrent mixing shear flow were investigated experimentally. Two kinds of self-excited oscillation modes could exist in the axisymmetric countercurrent mixing shear flow. One is the shear layer self-excited oscillation mode corresponding to the high Reynolds number regime and the other is the jet column self-excited oscillation mode corresponding to the low Reynolds number regime in the case of the velocity ratio ranging from I to 1.5. Analyzing the auto-power spectrum, self-correlation-function and three dimensional reconstructed phase trajectory, the route to chaos through three Hopf bifurcations intercepted by an intermittence of the dynamical system corresponding to the axisymmetric countercurrent mixing shear flow was discovered when the velocity ratio is equal to 1.32.
基金Supported by the National Natural Science Foundation of China(No.20774036)Fok Ying Tung Education Foundation (No.114008)
文摘The structure and dynamics of confined single polymer chain in a dilute solution, either in equilibrium or at different shear rates in the uniform shear flow fields, were investigated by means of dissipative particle dynamics simulations. The no-slip boundary condition without density fluctuation near the wall was taken into account to mimic the environment of a nanochannel. The dependences of the radius of gyration, especially in three different di- rections, and the density profile of the chain mass center on the strength of the confinement and the Weissenberg number(Wn) was studied. The effect of the interaction between polymer and solvent on the density profile was also investigated in the cases of moderate and strong Wn. In the high shear flow, the polymer migrates to the center of the channel with increasing Wn. There is only one density profile peak in the channel center in the uniform shear flow, which is in agreement with the results of the experiments and theory.
基金Supported by the National Natural Science Foundation(10702009)
文摘Gao's viscous/in-viscid interacting shear flows (ISF) theory, proposed by professor Gao Zhi in Institute of Mechanics, China Academy of Science, and its inferences and their applications in computational fluid dynamics (CFD) are reviewed and some subjects worthy to be studied are pro- posed in this paper. The flow-field and motion law of ISF, mathematics definition of strong viscous shear layer flow in ISF, ISF equations, wall-surface compatibility criteria (Gao's criteria ), space scale variety law of strong viscous shear layer reveals flow mechanism and local space small scale triggered by strong interaction that cause some abnormal severe local pneumatic heating phenomenon in hypersonic flow. Gao's ISF theory was used in near wall flow, free ISF flow simulation and design of computing grids, Gao's wall-surface criteria were used to verify calculation reliability and accuracy of near wall flows, ISF theory approximate analytical result of shock waves-boundary layer interac- tion and ISF equations were used to obtain the numerical exact solution of local area flow ( such as stationary point flow). Some new subjects, such as, improving near-wall turbulent models according to the turbulent flow simulation satisfying the wall-criteria and illustrating relation between grid-con- vergence based on the wall criteria and other convergence tactics, are suggested. The necessity of applying Gao's ISF theory and wall criteria is revealed. Difficulties and importance of hypersonic vis- cous/in-viscid interaction phenomenon were also emphasized.
基金Project supported by the National Natural Science Foundation of China(Grant No.41830533)the National Key Research and Development Program of China(Grant Nos.2016YFC1401404 and 2017YFA0604102).
文摘Considering that the fluid is inviscid and incompressible and the flow is irrotational in a fixed frame of reference and using the multiple scale analysis method, we derive a nonlinear Schrodinger equation(NLSE) describing the evolution dynamics of gravity-capillary wavetrains in arbitrary constant depth. The gravity-capillary waves(GCWs) are influenced by a linear shear flow(LSF) which consists of a uniform flow and a shear flow with constant vorticity. The modulational instability(MI) of GCWs with the LSF is analyzed using the NLSE. The MI is effectively modified by the LSF. In infinite depth, there are four asymptotes which are the boundaries between MI and modulational stability(MS) in the instability diagram. In addition, the dimensionless free surface elevation as a function of time for different dimensionless water depth,surface tension, uniform flow and vorticity is exhibited. It is found that the decay of free surface elevation and the steepness of free surface amplitude change over time, which are greatly affected by the water depth, surface tension, uniform flow and vorticity.
基金supported by the NSFC (10972007,10921202 and 2009CB724100)
文摘Experimental and numerical studies have shown similarities between localized turbulence in channel and pipe flows.By scaling analysis of a disturbed-flow model,this paper proposes a local Reynolds number Re M to characterize the threshold of transition triggered by finite-amplitude disturbances.The Re M represents the maximum contribution of the basic flow to the momentum ratio between the nonlinear convection and the viscous diffusion.The lower critical Re M observed in experiments of plane Poiseuille flow,pipe Poiseuille flow and plane Couette flow are all close to 323,indicating the uniformity of mechanism governing the transition to localized turbulence.
基金supported by the China Academy of Railway Sciences Corporation Limited Research Project(2019YJ165).
文摘Two flow cases for scaled high speed train models with different length are numerically analyzed in the framework of the improved delayed detachededdy simulation model.Specific attention is paid to the shear flows and related mechanisms in the near turbulent wake created by these moving models.In particular,a comparative analysis is made on the distributions of turbulent kinetic energy(TKE)and turbulence production(TP)in planes perpendicular to the streamwise direction.The numerical results suggest that,in the wake region very close to the tail,significant TKE and TP can be ascribed to the dynamic interaction between powerful eddies and strong shear,which explain why these quantities are sensitive to the shear strength.The shear flows are essentially governed by the boundary layers developing along the streamwise direction on the train surfaces,especially from the under-body region and the side walls.For other positions located in the downstream direction away from the tail,the interaction of vortices with the non-slip ground serves as a mechanism to promote transfer of energy from weak eddies to turbulence through the shear present in planes parallel to the ground.
基金supported by National Natural Science Foundation of China (grants 31230027, 31110103918 and 11172207)National Key Basic Research Foundation of China (grant 2011CB710904)Strategic Priority Research Program (grants XDA01030102 and XDA04020219)
文摘Blood cell aggregation and adhesion to endothelial cells under shear flow are crucial to many biological processes such as thrombi formation, inflammatory cascade, and tumor metastasis, in which these cellular interactions are mainly mediated by the underlying receptor-ligand bindings. While theoretical modeling of aggregation dynamics and adhesion kinetics of interacting cells have been well studied separately, how to couple these two processes remains unclear. Here we develop a combined model that couples cellular aggregation dynamics and adhesion kinetics under shear flow. The impacts of shear rate (or shear stress) and molecular binding affinity were elucidated. This study provides a unified model where the action of a fluid flow drives cell aggregation and adhesion under the modulations of the mechanical shear flow and receptor-ligand interaction kinetics. It offers an insight into understanding the relevant biological processes and functions.
基金supported by the Scientific Research Foundation for the Returned Over-seas Chinese Scholarthe Natural Science Foundation of the Inner Mongolia(No.20040802112)
文摘In this paper,modified Korteweg-de Vries (mKdV) equations for the amplitude of solitary Rossby waves in stratified fluids with a zonal shear flow are derived by using a weakly nonlinear method.It is found that the coefficients of mKdV equations depend not only on the β effect and the Visl-Brunt frequency,but also on the basic shear flow.
基金supported by University Grants Commission-Junior Research Fellowship, Government of India
文摘For the instability problem of density stratified shear flows in sea straits with variable cross sections, a new semielliptical instability region is found. Rurthermore, the instability of the bounded shear layer is studied in two cases: (i) the density which takes two different constant values in two layers and (ii) the density which takes three different constant values in three layers. In both cases, the dispersion relation is found to be a quartic equation in the complex phase velocity. It is found that there are two unstable modes in a range of the wave numbers in the first case, whereas there is only one unstable mode in the second case.
基金supported by the NSAF(Grants No.U1530260)the National Natural Science Foundation of China(Grant No.51306158)+1 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20130621)the Special Program for Applied Research on Super Computation of the NSFC–Guangdong Joint Fund(the second phase)
文摘A combined experimental and numerical study is undertaken to investigate the hydrodynamic characteristics of singlephase droplet collision in a shear flow. The passing-over motion of interactive droplets is observed, and the underlying hydrodynamic mechanisms are elucidated by the analysis of the motion trajectory, transient droplet deformation and detailed hydrodynamic information(e.g., pressure and flow fields). The results indicate that the hydrodynamic interaction process under shear could be divided into three stages: approaching, colliding, and separating. With the increasing confinement, the interaction time for the passing-over process is shorter and the droplet processes one higher curvature tip and more stretched profile. Furthermore, the lateral separation ?;/R;exhibits larger decrease in the approaching stage and the thickness of the lubrication film is decreased during the interaction. As the initial lateral separation increases, the maximum trajectory shift by the collision interaction is getting smaller. During the collision between two droplets with different sizes, the amplitude of the deformation oscillation of the larger droplet is decreased by reducing the size ratio of the smaller droplet to the bigger one.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11404405,91216201,51205403,and 11302253)
文摘The axisymmetric acoustic wave propagating in a perfect gas with a shear pipeline flow confined by a circular rigid wail is investigated. The governing equations of non-isentropic and isentropic acoustic assumptions are mathematically deduced while the constraint of Zwikker and Kosten is relaxed. An iterative method based on the Fourier-Bessel theory is proposed to semi-anaiyticaily solve the proposed models. A comparison of numerical results with literature contributions validates the present contribution. Meanwhile, the features of some high-order transverse modes, which cannot be analyzed based on the Zwikker and Kosten theory, are anaiyzed