Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. I...Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. In service environments, CMCs exhibit complex damage mechanisms and failure modes, which are affected by constituent materials, meso-architecture and inhere defects. In this paper, the in-plane tensile mechanical behavior of a plain-woven SiCf/SiC composite at room and elevated temperatures was investigated, and the factors affecting the tensile strength of the material were discussed in depth. The results show that the tensile modulus and strength of SiCf/SiC composites at high temperature are lower, but the fracture strain increases and the toughness of the composites is enhanced;the stitching holes significantly weaken the tensile strength of the material, resulting in the material is easy to break at the cross-section with stitching holes.展开更多
The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C...The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C composites were investigated in the frequency range of 8.2-12.4 GHz. Both the real and imaginary parts of the complex permittivity decreased after thermal oxidation. The composites after 100 h thermal oxidation showed that reflection loss exceeded-10 d B in the frequency of 9.7-11.9 GHz and the minimum value was-11.4 d B at 11.0 GHz. The flexural strength of composites decreased but fracture behavior was improved obviously after thermal oxidation. These results indicate that the SiCf/SiC composites containing PyC interphase after thermal oxidation possess good microwave absorbing property and fracture behavior.展开更多
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr...Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures.展开更多
Three-dimensional finite element physical models considering the layered distribution of materials at the interface were developed to study the effect of the coating system on distributions of thermal residual stresse...Three-dimensional finite element physical models considering the layered distribution of materials at the interface were developed to study the effect of the coating system on distributions of thermal residual stresses in SiCf/Ti2AlNb composites.Two coating systems were comparatively studied,namely C coating and C/Mo duplex-coating.The thermal residual stresses after 1 080 ℃/1 h solution treatment and 800 ℃/20 h ageing treatment in the composites were also analyzed.The experimental results show that Mo coating can decrease thermal residual stress magnitude in the matrix.However,it would increase the thermal residual stresses in the interfacial reaction layer of TiC.The change of radial thermal residual stress in TiC layer is inconspicuous after solid solution and ageing treatment,but the hoop and axial thermal residual stresses increase obviously.However,the heat treatment can obviously reduce hoop and axial thermal residual stresses of the matrix,which is benefit to restrain the initiation and propagation of cracks in the matrix.展开更多
BN interphase was successfully synthesized on SiC fiber fabrics by dip-coating process using boric acid and urea as precursors under N2 atmosphere. The morphology of BN interphase was observed by SEM, and the structur...BN interphase was successfully synthesized on SiC fiber fabrics by dip-coating process using boric acid and urea as precursors under N2 atmosphere. The morphology of BN interphase was observed by SEM, and the structure was characterized by XRD and FT-IR spectra. The SiCf/SiC composites with dip-coated BN interphase were fabricated by chemical vapor infiltration (CVI) process, and the effects ofBN interphase on the mechanical properties of composites were investigated. The results show that the SiC fibers are fully covered by BN interphase with smooth surface and turbostratic structure (t-BN), and the thickness is about 0.4 μm. The flexural strengths of SiCf/SiC composites with and without BN interphase are about 180 and 95 MPa, respectively. Compared with the as-received SiCf/SiC composites, the composites with BN interphase exhibit an obvious toughened fracture behavior. From the microstructural analysis, it can be confirmed that the BN interphase plays a key part in protecting the fibers from chemical attack during matrix infiltration and weakening interfacial bonding, which can improve the mechanical properties of SiCf/SiC composites remarkably.展开更多
To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB...To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB2-MoSi2 was prepared by slurry painting.The phase compositions and microstructures of the coating were characterized by XRD and SEM,respectively.The preparation and the high temperature oxidation property of the coated composites were investigated.The results show that the outer coating of carbon/carbon composites is composed of ZrB2,MoSi2 and SiC phases.The mass losses of the ZrB2-MoSi2/SiC coated samples with SiC nano-whiskers after 30 h and 10 h of oxidation at 1 273 K and 1 773 K were,respectively,5.3% and 3.0%.The ZrB2-MoSi2/SiC coated samples exhibit self-sealing performance and good oxidation resistance at high temperature.展开更多
C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the...C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating.展开更多
To improve the oxidation resistance of C/C composites, a double SiC protective coating was prepared by a two-step technique. Firstly, the inner SiC layer was prepared by a pack cementation technique, and then an outer...To improve the oxidation resistance of C/C composites, a double SiC protective coating was prepared by a two-step technique. Firstly, the inner SiC layer was prepared by a pack cementation technique, and then an outer uniform and compact SiC coating was obtained by low pressure chemical vapor deposition. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD analyses. Oxidation behaviour of the SiC coated C/C composites was also investigated. It was found that the double SiC coating could protect C/C composites against oxidation at 1773 K in air for 178 h with a mass loss of 1.25%. The coated samples also underwent thermal shocks between 1773 K and room temperature 16 times. The mass loss of the coated C/C composites was only 2.74%. Double SiC layer structures were uniform and dense, and can suppress the generation of thermal stresses, facilitating an excellent anti-oxidation coating.展开更多
The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk dur...The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk during emergency braking at a speed of 300 km/h considering airflow cooling were investigated using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) were analyzed along with the design features of the brake assembly and their interfaces. The results suggested that the higher convection coefficients achieved with airflow cooling will not only reduce the maximum temperature in the braking but also reduce the thermal gradients, since heat will be removed faster from hotter parts of the disk. Airflow cooling should be effective to reduce the risk of hot spot formation and disc thermal distortion. The highest temperature after emergency braking was 461 °C and 359 °C without and with considering airflow cooling, respectively. The equivalent stress could reach 269 MPa and 164 MPa without and with considering airflow cooling, respectively. However, the maximum surface stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk without cooling. The simulation results are consistent with the experimental results well.展开更多
Al?50%SiC (volume fraction) composites containing different sizesofSiC particles (average sizesof 23, 38 and 75 μm) were prepared by powder metallurgy. The influences of SiC particle sizes and annealing on the p...Al?50%SiC (volume fraction) composites containing different sizesofSiC particles (average sizesof 23, 38 and 75 μm) were prepared by powder metallurgy. The influences of SiC particle sizes and annealing on the propertiesof the compositeswere investigated. The results show that SiC particles are distributed uniformly in the Al matrix. The coarse SiC particles result in higher coefficient of thermal expansion (CTE) and higher thermal conductivity (TC), while fine SiC particles decrease CTE and improve flexural strength of the composites. The morphology and size of SiC particles in the composite are not influenced by the annealing treatment at 400℃for 6h. However, the CTE and the flexural strength of annealed composites are decreased slightly, and the TCis improved. The TC, CTE and flexural strength of the Al/SiC composite with averageSiC particlesize of75 μm are 156 W/(m·K), 11.6×10^-6K^-1 and 229 MPa, respectively.展开更多
C/C-ZrC-SiC composites with different ZrC-SiC contents were fabricated by precursor infiltration and pyrolysis. The effect of ceramic content on the microstructure and ablation resistance was investigated. Both the C/...C/C-ZrC-SiC composites with different ZrC-SiC contents were fabricated by precursor infiltration and pyrolysis. The effect of ceramic content on the microstructure and ablation resistance was investigated. Both the C/C-SiC and C/C-ZrC-SiC composites exhibited good ablation resistance under the plasma flame above 2300℃. Withtheincreaseof ZrC content, a continuous oxide layer and a solid Zr-Si-O mesophase were formed during the ablation. And the structure of the formed oxides layer closely linked with the contents of ZrC-SiC ceramics. The solid ZrO2-ZrC and Zr-Si-O mesophase could increase the viscosity of SiO2 moderately and improve the anti-scouring ability. The continuous SiO2-ZrO2-ZrC-SiC layer would serve as a thermal and oxygen barrier for preventing the substratefrom further ablation. The C/C-ZrC-SiC composites with 27.2%ZrC and 7.56%SiC shows superior ablation resistance, and the mass and linear ablation rates are-3.51 mg/s and-1.88 μm/s, respectively.展开更多
C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl com...C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.展开更多
The thermophysical properties of the SiC /Al composites mixed with diamond(SiC-Dia/Al) were studied through theoretical calculation and experiments. The thermal conductivity and the thermal expansion coefficient of ...The thermophysical properties of the SiC /Al composites mixed with diamond(SiC-Dia/Al) were studied through theoretical calculation and experiments. The thermal conductivity and the thermal expansion coefficient of the SiC-Dia/Al were calculated by differential effective medium(DEM) theoretical model and extended Turner model, respectively. The microstructure of the SiC-Dia/Al shows that the combination between SiC particles and Al is close, while that between diamond particles and Al is not close. The experimental results of the thermophysical properties of the SiC-Dia/Al are consistent with the calculated ones. The calculation results show that when the volume ratio of the diamond particles to the SiC particles is 3:7, the thermal conductivity and the thermal expansion coefficient can be improved by 39% and 30% compared to SiC/Al composites, respectively. In other words, by adding a small amount of diamond particles, the thermophysical properties of the composites can be improved effectively, while the cost increases little.展开更多
The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,wh...The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,which have the similar size with silicon particles(average 13 μm),were added to replace silicon particles of same volume fraction,and microstructure and properties of the composites were investigated.The results show that reinforcing particles are distributed uniformly and no apparent pores are observed in the composites.It is also observed that higher thermal conductivity(TC) and flexural strength will be obtained with the addition of SiC particles.Meanwhile,coefficient of thermal expansion(CTE) changes smaller than TC.Models for predicting thermal properties were also discussed.Equivalent effective conductivity(EEC) was proposed to make H-J model suitable for hybrid particles and multimodal particle size distribution.展开更多
SiC nanowires were prepared on C/C composite surface without catalyst by chemical vapor deposition(CVD) using CH3 SiCl3 as precursor.SEM images of the CVD-product reveal that some long nanowires have grown to tens o...SiC nanowires were prepared on C/C composite surface without catalyst by chemical vapor deposition(CVD) using CH3 SiCl3 as precursor.SEM images of the CVD-product reveal that some long nanowires have grown to tens of micrometers with some gathered as a ball.Some short nanowires agglomerate like chestnut shell with many thorns accompanied by some deposited nano-particles.XRD,Raman-spectrum and FTIR patterns indicate that the product is a typical β-SiC.TEM images show that the nanowires have a wide diameter range from 10 to 100 nm,and some thin nanowires are bonded to the thick one by amorphous CVD-SiC.A SiC branch generates from an amorphous section of a thick one with an angle of 70° between them,which is consistent with the [111] axis stacking angle of the crystal.SAED and fast Fourier transform(FFT) patterns reveal that the nanowires can grow along with different axes,and the bamboo-nodes section is full of stacking faults and twin crystal.The twisted SiC lattice planes reveal that the screw dislocation growth is the main mechanism for the CVD-SiC nanowires.展开更多
The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the...The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.展开更多
Superplasticity of AZ 31 magnesium matrix composites reinforced with 10 vol% SiC(2 μm) particulate i s investigated at temperature range from 365℃ to 565℃ and strain rate from 2.0 8×10<sup>-3</sup&g...Superplasticity of AZ 31 magnesium matrix composites reinforced with 10 vol% SiC(2 μm) particulate i s investigated at temperature range from 365℃ to 565℃ and strain rate from 2.0 8×10<sup>-3</sup> to 5.21×10<sup>-1</sup> s<sup>-1</sup>. The maximum total elongation of 228 % is obtained at a strain rate of 2.08×10<sup>-1</sup> s<sup>-1</sup>. The strain rate se nsitivity exponent (m) higher than 0.3, is observed when the strain rate is high er than 10<sup>-1</sup> s<sup>-1</sup> at 525℃. Increasing the test temperature to 540℃, the maximum total elongation exceeding 195% is achieved at a higher strain rate of 5.21×10<sup>-1</sup> s<sup>-1</sup> than that at 525℃. SiC in AZ31/SiCp composite ca n fine the matrix grain size. Filament is observed on the fracture surface of th e specimens showing superplasticity.展开更多
A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock r...A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.展开更多
Yttrium silicate (Y2Si2O7) coating was fabricated on C/SiC composites through dip-coating with silicone resin + Y2O3 powder slurry as raw materials. The synthesis, microstructure and oxidation resistance and the an...Yttrium silicate (Y2Si2O7) coating was fabricated on C/SiC composites through dip-coating with silicone resin + Y2O3 powder slurry as raw materials. The synthesis, microstructure and oxidation resistance and the anti-oxidation mechanism of Y2Si2O7 coating were investigated. Y2Si2O7 can be synthesized by the pyrolysis of Y2O3 powder filled silicone resin at mass ratio of 54.2:45.8 and 800 °C in air and then heat treated at 1400 °C under Ar. The as-fabricated coating shows high density and favorable bonding to C/SiC composites. After oxidation in air at 1400, 1500 and 1600 °C for 30 min, the coating-containing composites possess 130%-140% of original flexural strength. The desirable thermal stability and the further densification of coating during oxidation are responsible for the excellent oxidation resistance. In addition, the formation of eutectic Y-Si-Al-O glassy phase between Y2Si2O7 and Al2O3 sample bracket at 1500 °C is discovered.展开更多
The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-...The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-2.5 MPa. The experimental result reveals that the characteristic of two body abrasive wear and oxidation wear mechanisms are present for SiCn/2618 Al composite under higher load and sliding speed. SiC ceramic continuous network as the reinforcement can avoid composite from the third body wear that usually occurs in traditional particle reinforced composite. The mechanically mixed layer (MML) controls greatly the wear rate and friction coefficient of the composites. The composites tested at higher sliding speed exhibit higher value of friction coefficient and fluctuation, which is associated with the intermittent formation and removal of the MML. The wear and stress—strain behaviors of SiCn/Fe–40Cr against SiCn/Al 2168 at 30-105 m/s under 1.0-2.5 MPa were analyzed by finite element method with the software Solidwork2012 Simulation, respectively. The wear and stress–strain behavior of the composite predicted by the FEM correlated well with the experimental results.展开更多
文摘Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. In service environments, CMCs exhibit complex damage mechanisms and failure modes, which are affected by constituent materials, meso-architecture and inhere defects. In this paper, the in-plane tensile mechanical behavior of a plain-woven SiCf/SiC composite at room and elevated temperatures was investigated, and the factors affecting the tensile strength of the material were discussed in depth. The results show that the tensile modulus and strength of SiCf/SiC composites at high temperature are lower, but the fracture strain increases and the toughness of the composites is enhanced;the stitching holes significantly weaken the tensile strength of the material, resulting in the material is easy to break at the cross-section with stitching holes.
基金Project(51072165)supported by the National Natural Science Foundation of ChinaProject(201305)supported by the Fund of State Key Laboratory of Solidification Processing,ChinaProjects(2013JK0921,2013JK0922)supported by Shaanxi Provincial Education Department of China
文摘The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C composites were investigated in the frequency range of 8.2-12.4 GHz. Both the real and imaginary parts of the complex permittivity decreased after thermal oxidation. The composites after 100 h thermal oxidation showed that reflection loss exceeded-10 d B in the frequency of 9.7-11.9 GHz and the minimum value was-11.4 d B at 11.0 GHz. The flexural strength of composites decreased but fracture behavior was improved obviously after thermal oxidation. These results indicate that the SiCf/SiC composites containing PyC interphase after thermal oxidation possess good microwave absorbing property and fracture behavior.
基金Supported by Science Center for Gas Turbine Project of China (Grant No.P2022-B-IV-014-001)Frontier Leading Technology Basic Research Special Project of Jiangsu Province of China (Grant No.BK20212007)the BIT Research and Innovation Promoting Project of China (Grant No.2022YCXZ019)。
文摘Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures.
基金Funded by the National Natural Science Foundation of China (No. 51201134)the Key Research Foundation of Yiwu Industrial and Commercial College (No. ZD2020CS414-01)。
文摘Three-dimensional finite element physical models considering the layered distribution of materials at the interface were developed to study the effect of the coating system on distributions of thermal residual stresses in SiCf/Ti2AlNb composites.Two coating systems were comparatively studied,namely C coating and C/Mo duplex-coating.The thermal residual stresses after 1 080 ℃/1 h solution treatment and 800 ℃/20 h ageing treatment in the composites were also analyzed.The experimental results show that Mo coating can decrease thermal residual stress magnitude in the matrix.However,it would increase the thermal residual stresses in the interfacial reaction layer of TiC.The change of radial thermal residual stress in TiC layer is inconspicuous after solid solution and ageing treatment,but the hoop and axial thermal residual stresses increase obviously.However,the heat treatment can obviously reduce hoop and axial thermal residual stresses of the matrix,which is benefit to restrain the initiation and propagation of cracks in the matrix.
基金Project(51072165)supported by the National Natural Science Foundation of ChinaProject(KP201307)supported by the Fund of the State Key Laboratory of Solidification Processing in NWPU
文摘BN interphase was successfully synthesized on SiC fiber fabrics by dip-coating process using boric acid and urea as precursors under N2 atmosphere. The morphology of BN interphase was observed by SEM, and the structure was characterized by XRD and FT-IR spectra. The SiCf/SiC composites with dip-coated BN interphase were fabricated by chemical vapor infiltration (CVI) process, and the effects ofBN interphase on the mechanical properties of composites were investigated. The results show that the SiC fibers are fully covered by BN interphase with smooth surface and turbostratic structure (t-BN), and the thickness is about 0.4 μm. The flexural strengths of SiCf/SiC composites with and without BN interphase are about 180 and 95 MPa, respectively. Compared with the as-received SiCf/SiC composites, the composites with BN interphase exhibit an obvious toughened fracture behavior. From the microstructural analysis, it can be confirmed that the BN interphase plays a key part in protecting the fibers from chemical attack during matrix infiltration and weakening interfacial bonding, which can improve the mechanical properties of SiCf/SiC composites remarkably.
基金Project(50721003) supported by the Innovation Community Foundation of National Natural Science of ChinaProject(2011CB605805) supported by the National Basic Research Program of China
文摘To improve the oxidation resistance of carbon/carbon composites,ZrB2-MoSi2/SiC coating on the carbon/carbon substrate was prepared.The inner coating of SiC was prepared by pack cementation and the outer coating of ZrB2-MoSi2 was prepared by slurry painting.The phase compositions and microstructures of the coating were characterized by XRD and SEM,respectively.The preparation and the high temperature oxidation property of the coated composites were investigated.The results show that the outer coating of carbon/carbon composites is composed of ZrB2,MoSi2 and SiC phases.The mass losses of the ZrB2-MoSi2/SiC coated samples with SiC nano-whiskers after 30 h and 10 h of oxidation at 1 273 K and 1 773 K were,respectively,5.3% and 3.0%.The ZrB2-MoSi2/SiC coated samples exhibit self-sealing performance and good oxidation resistance at high temperature.
基金Projects(51272213,51221001)supported by the National Natural Science Foundation of ChinaProject(73-QP-2010)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU)Project(B08040)supported by Program of Introducing Talents of Discipline to Universities,China
文摘C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating.
基金Projects(51221001,51222207)supported by the National Natural Science Foundation of ChinaProject(090677)supported by the Program for New Century Excellent Talents in University of Ministry of Education of ChinaProject(B08040)supported by the Program of Introducing Talents of Discipline to Universities (111 Project) of China
文摘To improve the oxidation resistance of C/C composites, a double SiC protective coating was prepared by a two-step technique. Firstly, the inner SiC layer was prepared by a pack cementation technique, and then an outer uniform and compact SiC coating was obtained by low pressure chemical vapor deposition. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD analyses. Oxidation behaviour of the SiC coated C/C composites was also investigated. It was found that the double SiC coating could protect C/C composites against oxidation at 1773 K in air for 178 h with a mass loss of 1.25%. The coated samples also underwent thermal shocks between 1773 K and room temperature 16 times. The mass loss of the coated C/C composites was only 2.74%. Double SiC layer structures were uniform and dense, and can suppress the generation of thermal stresses, facilitating an excellent anti-oxidation coating.
基金Projects (50872018, 50902018) supported by the National Natural Science Foundation of ChinaProject (1099043) supported by the Science and Technology in Guangxi Province, ChinaProject (090302005) supported by the Basic Research Fund for Northeastern University, China
文摘The mass of high-speed trains can be reduced using the brake disk prepared with SiC network ceramic frame reinforced 6061 aluminum alloy composite (SiCn/Al). The thermal and stress analyses of SiCn/Al brake disk during emergency braking at a speed of 300 km/h considering airflow cooling were investigated using finite element (FE) and computational fluid dynamics (CFD) methods. All three modes of heat transfer (conduction, convection and radiation) were analyzed along with the design features of the brake assembly and their interfaces. The results suggested that the higher convection coefficients achieved with airflow cooling will not only reduce the maximum temperature in the braking but also reduce the thermal gradients, since heat will be removed faster from hotter parts of the disk. Airflow cooling should be effective to reduce the risk of hot spot formation and disc thermal distortion. The highest temperature after emergency braking was 461 °C and 359 °C without and with considering airflow cooling, respectively. The equivalent stress could reach 269 MPa and 164 MPa without and with considering airflow cooling, respectively. However, the maximum surface stress may exceed the material yield strength during an emergency braking, which may cause a plastic damage accumulation in a brake disk without cooling. The simulation results are consistent with the experimental results well.
基金Project support by the 2015 Shandong Province Project for Outstanding Subject Talent Group,China
文摘Al?50%SiC (volume fraction) composites containing different sizesofSiC particles (average sizesof 23, 38 and 75 μm) were prepared by powder metallurgy. The influences of SiC particle sizes and annealing on the propertiesof the compositeswere investigated. The results show that SiC particles are distributed uniformly in the Al matrix. The coarse SiC particles result in higher coefficient of thermal expansion (CTE) and higher thermal conductivity (TC), while fine SiC particles decrease CTE and improve flexural strength of the composites. The morphology and size of SiC particles in the composite are not influenced by the annealing treatment at 400℃for 6h. However, the CTE and the flexural strength of annealed composites are decreased slightly, and the TCis improved. The TC, CTE and flexural strength of the Al/SiC composite with averageSiC particlesize of75 μm are 156 W/(m·K), 11.6×10^-6K^-1 and 229 MPa, respectively.
基金Project(2011CB605801)supported by the National Basic Research Program of ChinaProject(51304249)supported by the National Natural Science Foundation of China+1 种基金Project(2013BAE04B02)supported by the National Key Technology Support Program of ChinaProject(14JJ3023)supported by the Hunan Provincial Science Foundation of China
文摘C/C-ZrC-SiC composites with different ZrC-SiC contents were fabricated by precursor infiltration and pyrolysis. The effect of ceramic content on the microstructure and ablation resistance was investigated. Both the C/C-SiC and C/C-ZrC-SiC composites exhibited good ablation resistance under the plasma flame above 2300℃. Withtheincreaseof ZrC content, a continuous oxide layer and a solid Zr-Si-O mesophase were formed during the ablation. And the structure of the formed oxides layer closely linked with the contents of ZrC-SiC ceramics. The solid ZrO2-ZrC and Zr-Si-O mesophase could increase the viscosity of SiO2 moderately and improve the anti-scouring ability. The continuous SiO2-ZrO2-ZrC-SiC layer would serve as a thermal and oxygen barrier for preventing the substratefrom further ablation. The C/C-ZrC-SiC composites with 27.2%ZrC and 7.56%SiC shows superior ablation resistance, and the mass and linear ablation rates are-3.51 mg/s and-1.88 μm/s, respectively.
基金Projects(51201134,51271147)supported by the National Natural Science Foundation of ChinaProject(2015JM5181)supported by the Natural Science Foundation of Shaanxi Province,China+1 种基金Project(115-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),ChinaProject(3102014JCQ01023)supported by the Fundamental Research Funds for the Central Universities,China
文摘C/Mo duplex coating interfacially modified SiC fiber-reinforced γ-TiAl matrix composite (SiCf/C/Mo/γ-TiA1) was prepared by foil-fiber-foil method to investigate its interfacial modification effect. SiCf/C/TiAl composites were also prepared under the same processing condition for comparision. Both kinds of the composites were thermally exposed in vacuum at 800 and 900℃ for different durations in order to study thermal stability of the interfacial zone. With the aids of scanning electron microscope (SEM) and energy dispersive spectrometer (EDS), the interracial microstructures of the composites were investigated. The results reveal that, although adding the Mo coating, the interfacial reaction product of the SiCf/C/Mo/TiAl composite is the same with that of the SiCf/C/TiA1 composite, which is TiC/Ti2AlC between the coating and the matrix. However, C/Mo duplex coating is more efficient in hindering interfacial reaction than C single coating at 900 ℃ and below. In addition, a new layer of interfacial reaction product was found between Ti2AlC and the matrix after 900 ℃, 200 h thermal exposure, which is rich in V and close to the chemical composition of B2 phase.
文摘The thermophysical properties of the SiC /Al composites mixed with diamond(SiC-Dia/Al) were studied through theoretical calculation and experiments. The thermal conductivity and the thermal expansion coefficient of the SiC-Dia/Al were calculated by differential effective medium(DEM) theoretical model and extended Turner model, respectively. The microstructure of the SiC-Dia/Al shows that the combination between SiC particles and Al is close, while that between diamond particles and Al is not close. The experimental results of the thermophysical properties of the SiC-Dia/Al are consistent with the calculated ones. The calculation results show that when the volume ratio of the diamond particles to the SiC particles is 3:7, the thermal conductivity and the thermal expansion coefficient can be improved by 39% and 30% compared to SiC/Al composites, respectively. In other words, by adding a small amount of diamond particles, the thermophysical properties of the composites can be improved effectively, while the cost increases little.
基金Project (60776019) supported by the National Natural Science Foundation of ChinaProject (61-TP-2010) supported by the Research Fund of the State Key Laboratory of Solidification Processing (NWPU),China
文摘The Al/Si/SiC composites with medium volume fraction for electronic packaging were fabricated by gas pressure infiltration.On the premise of keeping the machinability of the composites,the silicon carbide particles,which have the similar size with silicon particles(average 13 μm),were added to replace silicon particles of same volume fraction,and microstructure and properties of the composites were investigated.The results show that reinforcing particles are distributed uniformly and no apparent pores are observed in the composites.It is also observed that higher thermal conductivity(TC) and flexural strength will be obtained with the addition of SiC particles.Meanwhile,coefficient of thermal expansion(CTE) changes smaller than TC.Models for predicting thermal properties were also discussed.Equivalent effective conductivity(EEC) was proposed to make H-J model suitable for hybrid particles and multimodal particle size distribution.
基金Project(201206375003)supported by the China Scholarship Council
文摘SiC nanowires were prepared on C/C composite surface without catalyst by chemical vapor deposition(CVD) using CH3 SiCl3 as precursor.SEM images of the CVD-product reveal that some long nanowires have grown to tens of micrometers with some gathered as a ball.Some short nanowires agglomerate like chestnut shell with many thorns accompanied by some deposited nano-particles.XRD,Raman-spectrum and FTIR patterns indicate that the product is a typical β-SiC.TEM images show that the nanowires have a wide diameter range from 10 to 100 nm,and some thin nanowires are bonded to the thick one by amorphous CVD-SiC.A SiC branch generates from an amorphous section of a thick one with an angle of 70° between them,which is consistent with the [111] axis stacking angle of the crystal.SAED and fast Fourier transform(FFT) patterns reveal that the nanowires can grow along with different axes,and the bamboo-nodes section is full of stacking faults and twin crystal.The twisted SiC lattice planes reveal that the screw dislocation growth is the main mechanism for the CVD-SiC nanowires.
基金Project (51204105) supported by the National Natural Science Foundation of ChinaProject (11ZR1418000) supported by the Shanghai Natural Science Foundation, China
文摘The friction and wear properties of the electrolessly-deposited Ni-P-Gr-SiC composites were investigated. The effects of graphite content, load and rotation speed on the friction coefficient and wear resistance of the composite coatings were mainly investigated. The worn surface and cross section of the coatings were characterized by scanning electron microscopy and energy-dispersive X-ray analysis. The results show that the composite coatings reveal good antifriction and wear resistance due to the synergic effect of graphite and SiC particles. The formation of graphite-rich mechanically mixed layer (GRMML) on the surface of Ni-P-Gr-SiC coating contributes to the good tribological behavior of the wear counterparts and SiC particles play a load bearing role in protecting GRMML from shearing easily.
文摘Superplasticity of AZ 31 magnesium matrix composites reinforced with 10 vol% SiC(2 μm) particulate i s investigated at temperature range from 365℃ to 565℃ and strain rate from 2.0 8×10<sup>-3</sup> to 5.21×10<sup>-1</sup> s<sup>-1</sup>. The maximum total elongation of 228 % is obtained at a strain rate of 2.08×10<sup>-1</sup> s<sup>-1</sup>. The strain rate se nsitivity exponent (m) higher than 0.3, is observed when the strain rate is high er than 10<sup>-1</sup> s<sup>-1</sup> at 525℃. Increasing the test temperature to 540℃, the maximum total elongation exceeding 195% is achieved at a higher strain rate of 5.21×10<sup>-1</sup> s<sup>-1</sup> than that at 525℃. SiC in AZ31/SiCp composite ca n fine the matrix grain size. Filament is observed on the fracture surface of th e specimens showing superplasticity.
基金Project supported by the Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center,ChinaProject(51205417)supported by the National Natural Science Foundation of China
文摘A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%.
基金Project supported by the Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,ChinaProject(CJ12-01-01)supported by the Innovative Group of National University of Defense Technology,ChinaProject(SAST2015043)supported by the Science Innovation Foundation of Shanghai Academy of Spaceflight Technology,China
文摘Yttrium silicate (Y2Si2O7) coating was fabricated on C/SiC composites through dip-coating with silicone resin + Y2O3 powder slurry as raw materials. The synthesis, microstructure and oxidation resistance and the anti-oxidation mechanism of Y2Si2O7 coating were investigated. Y2Si2O7 can be synthesized by the pyrolysis of Y2O3 powder filled silicone resin at mass ratio of 54.2:45.8 and 800 °C in air and then heat treated at 1400 °C under Ar. The as-fabricated coating shows high density and favorable bonding to C/SiC composites. After oxidation in air at 1400, 1500 and 1600 °C for 30 min, the coating-containing composites possess 130%-140% of original flexural strength. The desirable thermal stability and the further densification of coating during oxidation are responsible for the excellent oxidation resistance. In addition, the formation of eutectic Y-Si-Al-O glassy phase between Y2Si2O7 and Al2O3 sample bracket at 1500 °C is discovered.
基金Project (2012BAE06B01) supported by the Key Technology R&D Program During the 12th Five-Year Plan Period, ChinaProjects(21201030, 51272039, 51032007) supported by the National Natural Science Foundation of ChinaProject (1099043) supported by the Science and Technology in Guangxi Province, China
文摘The dry friction and wear behaviors of co-continuous composites SiC/Fe–40Cr against SiC/Al 2618 alloy were investigated on a ring-on-ring friction and wear tester at sliding speed of 30-105 m/s under the load of 1.0-2.5 MPa. The experimental result reveals that the characteristic of two body abrasive wear and oxidation wear mechanisms are present for SiCn/2618 Al composite under higher load and sliding speed. SiC ceramic continuous network as the reinforcement can avoid composite from the third body wear that usually occurs in traditional particle reinforced composite. The mechanically mixed layer (MML) controls greatly the wear rate and friction coefficient of the composites. The composites tested at higher sliding speed exhibit higher value of friction coefficient and fluctuation, which is associated with the intermittent formation and removal of the MML. The wear and stress—strain behaviors of SiCn/Fe–40Cr against SiCn/Al 2168 at 30-105 m/s under 1.0-2.5 MPa were analyzed by finite element method with the software Solidwork2012 Simulation, respectively. The wear and stress–strain behavior of the composite predicted by the FEM correlated well with the experimental results.