Core-shell structured SiO2/poly(N-isopropylacrylamide) (SiO2/PNIPAM) microspheres were successfully fabricated through hydrolysis and condensation reaction of tertraethyl orthosilicate (TEOS) on the surface of P...Core-shell structured SiO2/poly(N-isopropylacrylamide) (SiO2/PNIPAM) microspheres were successfully fabricated through hydrolysis and condensation reaction of tertraethyl orthosilicate (TEOS) on the surface of PNIPAM template at 50 ~C. The PNIPAM template can be easily removed by water at room temperature so that SiO2 hollow microspheres were finally obtained. The transmission electron microscope and scanning electron microscope observations indicated that SiO2 hollow microspheres with an average diameter of 150 nm can be formed only if there are enough concentration of PNIPAM and TEOS, and the hy- drolysis time of TEOS. FTIR analysis showed that part of PNIPAM remained on the wall of SiO2 because of the strong interaction between PNIPAM and silica. This work provides a clean and efficient way to prepare hollow microspheres.展开更多
A simple and novel method is firstly reported for controlling coffee ring structure on polystyrene(PS)film surface by O2 plasma. O2 plasma treatment leads to the wettability change of PS surface from hydrophobic to ...A simple and novel method is firstly reported for controlling coffee ring structure on polystyrene(PS)film surface by O2 plasma. O2 plasma treatment leads to the wettability change of PS surface from hydrophobic to hydrophilic. For hydrophilic PS surface the coffee ring structure is avoided relying on the motion of contact line(CL) while SiO2 microspheres are left. The motion of the CL is produced based on the viscosity and Marangoni effect with the addition of polymer additives. For hydrophobic PS surface coffee ring structure still persists even with polymer additives because SiO2 microspheres transfer with the motion of the CL at the beginning of droplet evaporation and accumulate at the droplet edge at late stage with the pinning of the CL. As a result, uniform and macroscale SiO2 microspheres deposition without coffee ring structure and SiO2 microspheres deposition with coffee ring structure are controlled by O2 plasma. This method provides a new way to tune coffee ring structure with smart surface and may be potentially useful for a range of application at material deposition and diagnosing diseases.展开更多
文摘Core-shell structured SiO2/poly(N-isopropylacrylamide) (SiO2/PNIPAM) microspheres were successfully fabricated through hydrolysis and condensation reaction of tertraethyl orthosilicate (TEOS) on the surface of PNIPAM template at 50 ~C. The PNIPAM template can be easily removed by water at room temperature so that SiO2 hollow microspheres were finally obtained. The transmission electron microscope and scanning electron microscope observations indicated that SiO2 hollow microspheres with an average diameter of 150 nm can be formed only if there are enough concentration of PNIPAM and TEOS, and the hy- drolysis time of TEOS. FTIR analysis showed that part of PNIPAM remained on the wall of SiO2 because of the strong interaction between PNIPAM and silica. This work provides a clean and efficient way to prepare hollow microspheres.
基金supported by the National Nature Science Foundation (Nos. 91123031, 20921003, 51403076, 21103112)he National Basic Research Program of China (No. 2012CB933802)
文摘A simple and novel method is firstly reported for controlling coffee ring structure on polystyrene(PS)film surface by O2 plasma. O2 plasma treatment leads to the wettability change of PS surface from hydrophobic to hydrophilic. For hydrophilic PS surface the coffee ring structure is avoided relying on the motion of contact line(CL) while SiO2 microspheres are left. The motion of the CL is produced based on the viscosity and Marangoni effect with the addition of polymer additives. For hydrophobic PS surface coffee ring structure still persists even with polymer additives because SiO2 microspheres transfer with the motion of the CL at the beginning of droplet evaporation and accumulate at the droplet edge at late stage with the pinning of the CL. As a result, uniform and macroscale SiO2 microspheres deposition without coffee ring structure and SiO2 microspheres deposition with coffee ring structure are controlled by O2 plasma. This method provides a new way to tune coffee ring structure with smart surface and may be potentially useful for a range of application at material deposition and diagnosing diseases.