To improve the bit error rate(BER)performance of multi-user signal detection in satelliteterrestrial downlink non-orthogonal multiple access(NOMA)systems,an iterative signal detection algorithm based on soft interfere...To improve the bit error rate(BER)performance of multi-user signal detection in satelliteterrestrial downlink non-orthogonal multiple access(NOMA)systems,an iterative signal detection algorithm based on soft interference cancellation with optimal power allocation is proposed.Given that power allocation has a significant impact on BER performance,the optimal power allocation is obtained by minimizing the average BER of NOMA users.According to the allocated powers,successive interference cancellation(SIC)between NOMA users is performed in descending power order.For each user,an iterative soft interference cancellation is performed,and soft symbol probabilities are calculated for soft decision.To improve detection accuracy and without increasing the complexity,the aforementioned algorithm is optimized by adding minimum mean square error(MMSE)signal estimation before detection,and in each iteration soft symbol probabilities are utilized for soft-decision of the current user and also for the update of soft interference of the previous user.Simulation results illustrate that the optimized algorithm i.e.MMSE-IDBSIC significantly outperforms joint multi-user detection and SIC detection by 7.57dB and 8.03dB in terms of BER performance.展开更多
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
To enhance the capacity of the radar-reconnaissance interception receiver recognizing linear frequency modulated (LFM) at a low signal-noise ratio, this paper presents WignerHough transform (WHT) of the LFM signal and...To enhance the capacity of the radar-reconnaissance interception receiver recognizing linear frequency modulated (LFM) at a low signal-noise ratio, this paper presents WignerHough transform (WHT) of the LFM signal and its corresponding characteristics, derives the probability density functions of the LFM signal and Gaussian white noise within WHT based on entropy (WHTE), dimension under different assumptions and puts forward a WHT algorithm based on entropy of slice to improve the capacity of detecting the LFM signal. Entropy of the WHT domain slice is adopted to assess the information size of polar radius or angle slice, which is converted into the weight factor to weight every slice. Double-deck weight is used to weaken the influences of noise and disturbance terms and WHTE treatment and signal detection procedure are also summarized. The rationality of the algorithm is demonstrated through theoretical analysis and formula derivation, the efficiency of the algorithm is verified by simulation comparison between WHT, fractional Fourier transform and periodic WHT, and it is highlighted that the WHTE algorithm has better detection accuracy and range of application against strong noise background.展开更多
This paper proposes a desirable method to detect different kinds of low probability of intercept (LPI) radar signals, targeted at the main intra-pulse modulation method of LPI radar signals including the signals of li...This paper proposes a desirable method to detect different kinds of low probability of intercept (LPI) radar signals, targeted at the main intra-pulse modulation method of LPI radar signals including the signals of linear frequency modulation, phase code, and frequency code. Firstly, it improves the coherent integration of LPI radar signals by adding the periodicity of the ambiguity function. Then, it develops a frequency domain detection method based on fast Fourier transform (FFT) and segmented autocorrelation function to detect signals without features of linear frequency modulation by virtue of the distribution characteristics of noise signals in the frequency domain. Finally, this paper gives a verification of the performance of the method for different signal-to-noise ratios by conducting simulation experiments, and compares the method with existing ones. Additionally, this method is characterized by the straightforward calculation and high real-time performance, which is conducive to better detecting all kinds of LPI radar signals.展开更多
Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying th...Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying the model of GPS signal in white Gaussian noise,It is proved that the test statistic follows central or noncentral F distribution,It is also pointed out that the test statistic is nearly identical to central or noncentral chi-squared distribution because the processing samples are large enough to be considered as infinite in GPS acquisition problem.It is also proved that the probability of false alarm,the probability of detection and the threshold are affected largely when the hypothesis testing refers to the full pseudorandom noise(PRN) code phase and Doppler frequency search space cells instead of each individual cell.The performance of the test statistic is also given with combining the noncoherent integration.展开更多
The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase...The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase trajectory in a small- scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system.展开更多
Although single-pulse lasers are often used in traditional laser-induced breakdown spectroscopy (LIBS) measurements, their measurement outcomes are generally undesirable because of the low sensitivity of carbon in i...Although single-pulse lasers are often used in traditional laser-induced breakdown spectroscopy (LIBS) measurements, their measurement outcomes are generally undesirable because of the low sensitivity of carbon in iron-based alloys. In this article, a double-pulse laser was applied to improve the signal intensity of carbon. Both the inter-pulse delay and the combination of laser wavelengths in double-pulse laser-induced breakdown spectroscopy (DP-LIBS) were optimized in our experiment. At the optimized inter-pulse delay, the combination of a first laser of 532 nm and a second laser of 1,064 nm achieved the highest signal enhancement. The properties of the target also played a role in determining the mass ablation enhancement in DP-LIBS configuration.展开更多
As this is the first time a large volume airgun has been excited in the "Yangtse River Geoscience Project",it is necessary to study the time-frequency characteristic based on the linear stacked seismic data ...As this is the first time a large volume airgun has been excited in the "Yangtse River Geoscience Project",it is necessary to study the time-frequency characteristic based on the linear stacked seismic data from records from portable stations near the fixed fields and seismic stations. Airgun signal propagation distances were detected using stacked seismic data to analyze the environmental impact on signal propagation distance. The results showed that:( 1) the airgun signal produced by bubble pulses,pressure pulses and the surface wave can be received by a portable station near the fixed field;( 2) the dominant frequency of a bubble at 5Hz or so can be received by both near-field stations and far-field stations,pressure pulses rapidly weaken and the dominant frequency bands get narrower as epicentral distance increases;( 3) the longest spread distance of signal is 260 km,the nearest is 180 km,and the signal can travel further in the evening.展开更多
The weak signal detection method based on stochastic resonance is usually used to extract and identify the weak characteristic signal submerged in strong noise by using the noise energy transfer mechanism.We propose a...The weak signal detection method based on stochastic resonance is usually used to extract and identify the weak characteristic signal submerged in strong noise by using the noise energy transfer mechanism.We propose a novel composite multistable stochastic-resonance(NCMSR)model combining the Gaussian potential model and an improved bistable model.Compared with the traditional multistable stochastic resonance method,all the parameters in the novel model have no symmetry,the output signal-to-noise ratio can be optimized and the output amplitude can be improved by adjusting the system parameters.The model retains the advantages of continuity and constraint of the Gaussian potential model and the advantages of the improved bistable model without output saturation,the NCMSR model has a higher utilization of noise.Taking the output signal-to-noise ratio as the index,weak periodic signal is detected based on the NCMSR model in Gaussian noise andαnoise environment respectively,and the detection effect is good.The application of NCMSR to the actual detection of bearing fault signals can realize the fault detection of bearing inner race and outer race.The outstanding advantages of this method in weak signal detection are verified,which provides a theoretical basis for industrial practical applications.展开更多
The chaotic system is sensitive to the initial value, and this can be applied in the weak signal detection. There are periodic, critical and chaotic states in a chaotic system. When the system is in the critical stat...The chaotic system is sensitive to the initial value, and this can be applied in the weak signal detection. There are periodic, critical and chaotic states in a chaotic system. When the system is in the critical state, a small perturbation of system,n parameter may lead to a qualitative change of the system's state. This paper introduces a new method to detect weak signals by the way of disturbing the damping ratio. The authors choose the duffing equation, using MATLAB to carry on the simulation, to study the changes of the system when the signal to be measured is added to the damping ratio. By means of observing the phase loots chart and time damin chart, the weak signal will be detected.展开更多
In order to solve the parameter adjustment problems of adaptive stochastic resonance system in the areas of weak signal detection,this article presents a new method to enhance the detection efficiency and availability...In order to solve the parameter adjustment problems of adaptive stochastic resonance system in the areas of weak signal detection,this article presents a new method to enhance the detection efficiency and availability in the system of two-dimensional Duffing based on particle swarm optimization.First,the influence of different parameters on the detection performance is analyzed respectively.The correlation between parameter adjustment and stochastic resonance effect is also discussed and converted to the problem of multi-parameter optimization.Second,the experiments including typical system and sea clutter data are conducted to verify the effect of the proposed method.Results show that the proposed method is highly effective to detect weak signal from chaotic background,and enhance the output SNR greatly.展开更多
In order to apply speech recognition systems to actual circumstances such as inspection and maintenance operations in industrial factories to recording and reporting routines at construction sites, etc. where hand-wri...In order to apply speech recognition systems to actual circumstances such as inspection and maintenance operations in industrial factories to recording and reporting routines at construction sites, etc. where hand-writing is difficult, some countermeasure methods for surrounding noise are indispensable. In this study, a signal detection method to remove the noise for actual speech signals is proposed by using Bayesian estimation with the aid of bone-conducted speech. More specifically, by introducing Bayes’ theorem based on the observation of air-conducted speech contaminated by surrounding background noise, a new type of algorithm for noise removal is theoretically derived. In the proposed speech detection method, bone-conducted speech is utilized in order to obtain precise estimation for speech signals. The effectiveness of the proposed method is experimentally confirmed by applying it to air- and bone-conducted speeches measured in real environment under the existence of surrounding background noise.展开更多
Based on the asymptotic spectral distribution of Wigner matrices, a new normality test method is proposed via reforming the white noise sequence. In this work, the asymptotic cumulative distribution function (CDF) o...Based on the asymptotic spectral distribution of Wigner matrices, a new normality test method is proposed via reforming the white noise sequence. In this work, the asymptotic cumulative distribution function (CDF) of eigenvalues of the Wigner matrix is deduced. A numerical Kullback-Leibler divergence of the empiric-d spectral CDF based on test samples from the deduced asymptotic CDF is established, which is treated as the test statistic. For validating the superiority of our proposed normality test, we apply the method to weak SIPSK signal detection in the single-input single-output (SISO) system and the single-input multiple-output (SIMO) system. By comparing with other common normality tests and the existing signal detection methods, simulation results show that the proposed method is superior and robust.展开更多
The distribution probability of the photon interarrival time (PIT) without signal initial phases is derived based on the Poisson model of X-ray pulsar signals, and a pulsar signal detection algorithm employing the P...The distribution probability of the photon interarrival time (PIT) without signal initial phases is derived based on the Poisson model of X-ray pulsar signals, and a pulsar signal detection algorithm employing the PIT sequence is put forward. The joint probability of the PIT sequence is regarded as a function of the distribution probability and used to compare a constant radiation intensity model with the nonhomogeneous Poisson model for the signal detection. The relationship between the number of detected photons and the probabilities of false negative and positive is studied, and the success rate and mean detection time are estimated based on the number of the given photons. For the spacecraft velocity data detection, the changes of time of photon arrival (TOPA) and PIT caused by spacecraft motion are presented first, then the influences on detection are analyzed respectively. By using the analytical pulse profile of PSR B0531+21, the simulation of the Xray pulsar signal detection is implemented. The simulation results verify the effectiveness of the proposed method, and the contrast tests show that the proposed method is suitable for the spacecraft velocity data detection.展开更多
With the conditions of small data size and low Signal-to-Noise Ratio (SNR), the application of Higher Order Statistics (HOS) is restrained not only by its high estimation variance,but also by its low estimation precis...With the conditions of small data size and low Signal-to-Noise Ratio (SNR), the application of Higher Order Statistics (HOS) is restrained not only by its high estimation variance,but also by its low estimation precision. Therefore, a modified HOS based Time Delay Estimation (TDE) algorithm is proposed to overcome these problems. Comparing with the conventional TDE algorithms, the estimation variance is improved greatly. A typical simulation example is completed in order to test the performance of the algorithm proposed, which shows that the proposed algorithm has advantages over the traditional ones in both detection performance and computation efficiency.展开更多
This paper proposes an efficient approximate Maximum Likelihood (ML) detection method for Multiple-Input Multiple-Output (MIMO) systems,which searches local area instead of exhaustive search and selects valid search p...This paper proposes an efficient approximate Maximum Likelihood (ML) detection method for Multiple-Input Multiple-Output (MIMO) systems,which searches local area instead of exhaustive search and selects valid search points in each transmit antenna signal constellation instead of all hy-perplane. Both of the selection and search complexity can be reduced significantly. The method per-forms the tradeoff between computational complexity and system performance by adjusting the neighborhood size to select the valid search points. Simulation results show that the performance is comparable to that of the ML detection while the complexity is only as the small fraction of ML.展开更多
Modern radar signals mostly use low probability of intercept(LPI)waveforms,which have short pulses in the time domain,multicomponent properties,frequency hopping,combined modulation waveforms and other characteristics...Modern radar signals mostly use low probability of intercept(LPI)waveforms,which have short pulses in the time domain,multicomponent properties,frequency hopping,combined modulation waveforms and other characteristics,making the detection and estimation of LPI radar signals extremely difficult,and leading to highly required significant research on perception technology in the battlefield environment.This paper proposes a visibility graphs(VG)-based multicomponent signals detection method and a modulation waveforms parameter estimation algorithm based on the time-frequency representation(TFR).On the one hand,the frequency domain VG is used to set the dynamic threshold for detecting the multicomponent LPI radar waveforms.On the other hand,the signal is projected into the time and frequency domains by the TFR method for estimating its symbol width and instantaneous frequency(IF).Simulation performance shows that,compared with the most advanced methods,the algorithm proposed in this paper has a valuable advantage.Meanwhile,the calculation cost of the algorithm is quite low,and it is achievable in the future battlefield.展开更多
The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the targe...The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.展开更多
With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and ...With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition.This method suffers from the problem of large dimensionality of image features,which leads to large input data size and noise affecting learning.Therefore,this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512×4 to 16 dimensions.However,the downscaled feature data makes the accuracy of traditional machine learning algorithms decrease,so we propose a new hybrid quantum neural network with signal feature overlay projection(HQNN-SFOP),which reduces the dimensionality of the signal by extracting the statistical features in the time domain of the signal,introduces the signal feature overlay projection to enhance the expression ability of quantum computation on the signal features,and introduces the quantum circuits to improve the neural network’s ability to obtain the inline relationship of features,thus improving the accuracy and migration generalization ability of drone detection.In order to validate the effectiveness of the proposed method,we experimented with the method using the MM model that combines the real parameters of five commercial drones and random drones parameters to generate data to simulate a realistic environment.The results show that the method based on statistical features in the time domain of the signal is able to extract features at smaller scales and obtain higher accuracy on a dataset with an SNR of 10 dB.On the time-domain feature data set,HQNNSFOP obtains the highest accuracy compared to other conventional methods.In addition,HQNN-SFOP has good migration generalization ability on five commercial drones and random drones data at different SNR conditions.Our method verifies the feasibility and effectiveness of signal detection methods based on quantum computation and experimentally demonstrates that the advantages of quantum computation for information processing are still valid in the field of signal processing,it provides a highly efficient method for the drone detection using radar return signals.展开更多
This paper mainly revolves the time-frequency image of low probability of intercept(LPI) radar signals and carries out research work on image features selection and extraction and recognition. Since Choi-Williams dist...This paper mainly revolves the time-frequency image of low probability of intercept(LPI) radar signals and carries out research work on image features selection and extraction and recognition. Since Choi-Williams distribution(CWD) uses the exponential kernel of bilinear generalized class of time-frequency distribution, it has an excellent time-frequency aggregation. And it is suitable for detecting LPI radar signals in a low signal-to-noise ratio(SNR) condition. A radial integration method based on the integral rotating factor is proposed to detect LPI radar signals when the signals' time-frequency image is obtained. First, the digital image processing method is used to preprocess the LPI radar signals' time-frequency images after CWD transformation; then, the radial integration method based on the integral rotating factor is used to detect LPI radar signals in the binary images. The analytic results of real data show that the method has a good performance on detecting LPI radar signals in a low SNR condition. Additionally,the method is simple and takes less logic resources and has the potential of real-time detection of LPI radar signals.展开更多
基金supported by the National Key Research and Development Program of China(No.2021YFB2900602)the National Natural Science Foundation of China(No.61875230).
文摘To improve the bit error rate(BER)performance of multi-user signal detection in satelliteterrestrial downlink non-orthogonal multiple access(NOMA)systems,an iterative signal detection algorithm based on soft interference cancellation with optimal power allocation is proposed.Given that power allocation has a significant impact on BER performance,the optimal power allocation is obtained by minimizing the average BER of NOMA users.According to the allocated powers,successive interference cancellation(SIC)between NOMA users is performed in descending power order.For each user,an iterative soft interference cancellation is performed,and soft symbol probabilities are calculated for soft decision.To improve detection accuracy and without increasing the complexity,the aforementioned algorithm is optimized by adding minimum mean square error(MMSE)signal estimation before detection,and in each iteration soft symbol probabilities are utilized for soft-decision of the current user and also for the update of soft interference of the previous user.Simulation results illustrate that the optimized algorithm i.e.MMSE-IDBSIC significantly outperforms joint multi-user detection and SIC detection by 7.57dB and 8.03dB in terms of BER performance.
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
基金supported by the Aeronautical Science Fund of China(201455960252015209619)
文摘To enhance the capacity of the radar-reconnaissance interception receiver recognizing linear frequency modulated (LFM) at a low signal-noise ratio, this paper presents WignerHough transform (WHT) of the LFM signal and its corresponding characteristics, derives the probability density functions of the LFM signal and Gaussian white noise within WHT based on entropy (WHTE), dimension under different assumptions and puts forward a WHT algorithm based on entropy of slice to improve the capacity of detecting the LFM signal. Entropy of the WHT domain slice is adopted to assess the information size of polar radius or angle slice, which is converted into the weight factor to weight every slice. Double-deck weight is used to weaken the influences of noise and disturbance terms and WHTE treatment and signal detection procedure are also summarized. The rationality of the algorithm is demonstrated through theoretical analysis and formula derivation, the efficiency of the algorithm is verified by simulation comparison between WHT, fractional Fourier transform and periodic WHT, and it is highlighted that the WHTE algorithm has better detection accuracy and range of application against strong noise background.
基金supported by the National Natural Science Foundation of China(61571462)Weapons and Equipment Exploration Research Project(7131464)
文摘This paper proposes a desirable method to detect different kinds of low probability of intercept (LPI) radar signals, targeted at the main intra-pulse modulation method of LPI radar signals including the signals of linear frequency modulation, phase code, and frequency code. Firstly, it improves the coherent integration of LPI radar signals by adding the periodicity of the ambiguity function. Then, it develops a frequency domain detection method based on fast Fourier transform (FFT) and segmented autocorrelation function to detect signals without features of linear frequency modulation by virtue of the distribution characteristics of noise signals in the frequency domain. Finally, this paper gives a verification of the performance of the method for different signal-to-noise ratios by conducting simulation experiments, and compares the method with existing ones. Additionally, this method is characterized by the straightforward calculation and high real-time performance, which is conducive to better detecting all kinds of LPI radar signals.
文摘Hypothesis testing analysis and unknown parameter estimation of both the intermediate frequency(IF) and baseband GPS signal detection are given by using the generalized likelihood ratio test(GLRT) approach,applying the model of GPS signal in white Gaussian noise,It is proved that the test statistic follows central or noncentral F distribution,It is also pointed out that the test statistic is nearly identical to central or noncentral chi-squared distribution because the processing samples are large enough to be considered as infinite in GPS acquisition problem.It is also proved that the probability of false alarm,the probability of detection and the threshold are affected largely when the hypothesis testing refers to the full pseudorandom noise(PRN) code phase and Doppler frequency search space cells instead of each individual cell.The performance of the test statistic is also given with combining the noncoherent integration.
基金Project supported by the National Natural Science Foundation of China(Grant No.61673066)
文摘The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase trajectory in a small- scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system.
基金supported by National Natural Science Foundation of China(No.51374040)the National Key Scientific Instrument and Equipment Development Project of China(No.2014YQ120351)
文摘Although single-pulse lasers are often used in traditional laser-induced breakdown spectroscopy (LIBS) measurements, their measurement outcomes are generally undesirable because of the low sensitivity of carbon in iron-based alloys. In this article, a double-pulse laser was applied to improve the signal intensity of carbon. Both the inter-pulse delay and the combination of laser wavelengths in double-pulse laser-induced breakdown spectroscopy (DP-LIBS) were optimized in our experiment. At the optimized inter-pulse delay, the combination of a first laser of 532 nm and a second laser of 1,064 nm achieved the highest signal enhancement. The properties of the target also played a role in determining the mass ablation enhancement in DP-LIBS configuration.
基金jointly sponsored by the Special Fund for Earthquake Scientific Research in the Public Welfare of China Earthquake Administration(2015419015)the National Natural Science Foundation of China(41474071)
文摘As this is the first time a large volume airgun has been excited in the "Yangtse River Geoscience Project",it is necessary to study the time-frequency characteristic based on the linear stacked seismic data from records from portable stations near the fixed fields and seismic stations. Airgun signal propagation distances were detected using stacked seismic data to analyze the environmental impact on signal propagation distance. The results showed that:( 1) the airgun signal produced by bubble pulses,pressure pulses and the surface wave can be received by a portable station near the fixed field;( 2) the dominant frequency of a bubble at 5Hz or so can be received by both near-field stations and far-field stations,pressure pulses rapidly weaken and the dominant frequency bands get narrower as epicentral distance increases;( 3) the longest spread distance of signal is 260 km,the nearest is 180 km,and the signal can travel further in the evening.
基金the National Natural Science Foundation of China(Grant No.61871318)the Key Research and Development Projects in Shaanxi Province(Grant No.2023YBGY-044)the Key Laboratory System Control and Intelligent Information Processing(Grant No.2020CP10)。
文摘The weak signal detection method based on stochastic resonance is usually used to extract and identify the weak characteristic signal submerged in strong noise by using the noise energy transfer mechanism.We propose a novel composite multistable stochastic-resonance(NCMSR)model combining the Gaussian potential model and an improved bistable model.Compared with the traditional multistable stochastic resonance method,all the parameters in the novel model have no symmetry,the output signal-to-noise ratio can be optimized and the output amplitude can be improved by adjusting the system parameters.The model retains the advantages of continuity and constraint of the Gaussian potential model and the advantages of the improved bistable model without output saturation,the NCMSR model has a higher utilization of noise.Taking the output signal-to-noise ratio as the index,weak periodic signal is detected based on the NCMSR model in Gaussian noise andαnoise environment respectively,and the detection effect is good.The application of NCMSR to the actual detection of bearing fault signals can realize the fault detection of bearing inner race and outer race.The outstanding advantages of this method in weak signal detection are verified,which provides a theoretical basis for industrial practical applications.
文摘The chaotic system is sensitive to the initial value, and this can be applied in the weak signal detection. There are periodic, critical and chaotic states in a chaotic system. When the system is in the critical state, a small perturbation of system,n parameter may lead to a qualitative change of the system's state. This paper introduces a new method to detect weak signals by the way of disturbing the damping ratio. The authors choose the duffing equation, using MATLAB to carry on the simulation, to study the changes of the system when the signal to be measured is added to the damping ratio. By means of observing the phase loots chart and time damin chart, the weak signal will be detected.
基金supported by the National Natural Science Foundation of China ( Grant No. 61072133)the Production,Learning and Research Joint Innovation Program of Jiangsu Province, China ( Grant Nos. BY2013007-02, SBY201120033)+2 种基金the Major Project Plan for Natural science Research in Colleges and Universities of Jiangsu Province, China( Grant No. 15KJA460008)the Open Topic of Atmospheric Sounding Key Open Laboratory of China Meteorological Administration ( Grant No. KLAS201407)the advantage discipline platform " Information and Communication Engineering" of Jiangsu Province,China
文摘In order to solve the parameter adjustment problems of adaptive stochastic resonance system in the areas of weak signal detection,this article presents a new method to enhance the detection efficiency and availability in the system of two-dimensional Duffing based on particle swarm optimization.First,the influence of different parameters on the detection performance is analyzed respectively.The correlation between parameter adjustment and stochastic resonance effect is also discussed and converted to the problem of multi-parameter optimization.Second,the experiments including typical system and sea clutter data are conducted to verify the effect of the proposed method.Results show that the proposed method is highly effective to detect weak signal from chaotic background,and enhance the output SNR greatly.
文摘In order to apply speech recognition systems to actual circumstances such as inspection and maintenance operations in industrial factories to recording and reporting routines at construction sites, etc. where hand-writing is difficult, some countermeasure methods for surrounding noise are indispensable. In this study, a signal detection method to remove the noise for actual speech signals is proposed by using Bayesian estimation with the aid of bone-conducted speech. More specifically, by introducing Bayes’ theorem based on the observation of air-conducted speech contaminated by surrounding background noise, a new type of algorithm for noise removal is theoretically derived. In the proposed speech detection method, bone-conducted speech is utilized in order to obtain precise estimation for speech signals. The effectiveness of the proposed method is experimentally confirmed by applying it to air- and bone-conducted speeches measured in real environment under the existence of surrounding background noise.
基金Supported by the National Natural Science Foundation of China under Grant No 61371170the Fundamental Research Funds for the Central Universities under Grant Nos NP2015404 and NS2016038+1 种基金the Aeronautical Science Foundation of China under Grant No 20152052028the Funding of Jiangsu Innovation Program for Graduate Education under Grant No KYLX15_0282
文摘Based on the asymptotic spectral distribution of Wigner matrices, a new normality test method is proposed via reforming the white noise sequence. In this work, the asymptotic cumulative distribution function (CDF) of eigenvalues of the Wigner matrix is deduced. A numerical Kullback-Leibler divergence of the empiric-d spectral CDF based on test samples from the deduced asymptotic CDF is established, which is treated as the test statistic. For validating the superiority of our proposed normality test, we apply the method to weak SIPSK signal detection in the single-input single-output (SISO) system and the single-input multiple-output (SIMO) system. By comparing with other common normality tests and the existing signal detection methods, simulation results show that the proposed method is superior and robust.
基金supported by the National Natural Science Foundation of China (61172138)the Open Fund of Key Laboratory of Precision Navigation and Technology,National Time Service Center,CAS (2012PNTT02)
文摘The distribution probability of the photon interarrival time (PIT) without signal initial phases is derived based on the Poisson model of X-ray pulsar signals, and a pulsar signal detection algorithm employing the PIT sequence is put forward. The joint probability of the PIT sequence is regarded as a function of the distribution probability and used to compare a constant radiation intensity model with the nonhomogeneous Poisson model for the signal detection. The relationship between the number of detected photons and the probabilities of false negative and positive is studied, and the success rate and mean detection time are estimated based on the number of the given photons. For the spacecraft velocity data detection, the changes of time of photon arrival (TOPA) and PIT caused by spacecraft motion are presented first, then the influences on detection are analyzed respectively. By using the analytical pulse profile of PSR B0531+21, the simulation of the Xray pulsar signal detection is implemented. The simulation results verify the effectiveness of the proposed method, and the contrast tests show that the proposed method is suitable for the spacecraft velocity data detection.
基金Supported by the National Natural Science Foundation of China(No.60072027)
文摘With the conditions of small data size and low Signal-to-Noise Ratio (SNR), the application of Higher Order Statistics (HOS) is restrained not only by its high estimation variance,but also by its low estimation precision. Therefore, a modified HOS based Time Delay Estimation (TDE) algorithm is proposed to overcome these problems. Comparing with the conventional TDE algorithms, the estimation variance is improved greatly. A typical simulation example is completed in order to test the performance of the algorithm proposed, which shows that the proposed algorithm has advantages over the traditional ones in both detection performance and computation efficiency.
文摘This paper proposes an efficient approximate Maximum Likelihood (ML) detection method for Multiple-Input Multiple-Output (MIMO) systems,which searches local area instead of exhaustive search and selects valid search points in each transmit antenna signal constellation instead of all hy-perplane. Both of the selection and search complexity can be reduced significantly. The method per-forms the tradeoff between computational complexity and system performance by adjusting the neighborhood size to select the valid search points. Simulation results show that the performance is comparable to that of the ML detection while the complexity is only as the small fraction of ML.
基金supported by the National Defence Pre-research Foundation of China(30502010103).
文摘Modern radar signals mostly use low probability of intercept(LPI)waveforms,which have short pulses in the time domain,multicomponent properties,frequency hopping,combined modulation waveforms and other characteristics,making the detection and estimation of LPI radar signals extremely difficult,and leading to highly required significant research on perception technology in the battlefield environment.This paper proposes a visibility graphs(VG)-based multicomponent signals detection method and a modulation waveforms parameter estimation algorithm based on the time-frequency representation(TFR).On the one hand,the frequency domain VG is used to set the dynamic threshold for detecting the multicomponent LPI radar waveforms.On the other hand,the signal is projected into the time and frequency domains by the TFR method for estimating its symbol width and instantaneous frequency(IF).Simulation performance shows that,compared with the most advanced methods,the algorithm proposed in this paper has a valuable advantage.Meanwhile,the calculation cost of the algorithm is quite low,and it is achievable in the future battlefield.
基金This work was supported by the National Natural Science Foundation of China(62071475,61890541,62171447).
文摘The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.
基金supported by Major Science and Technology Projects in Henan Province,China,Grant No.221100210600.
文摘With the wide application of drone technology,there is an increasing demand for the detection of radar return signals from drones.Existing detection methods mainly rely on time-frequency domain feature extraction and classical machine learning algorithms for image recognition.This method suffers from the problem of large dimensionality of image features,which leads to large input data size and noise affecting learning.Therefore,this paper proposes to extract signal time-domain statistical features for radar return signals from drones and reduce the feature dimension from 512×4 to 16 dimensions.However,the downscaled feature data makes the accuracy of traditional machine learning algorithms decrease,so we propose a new hybrid quantum neural network with signal feature overlay projection(HQNN-SFOP),which reduces the dimensionality of the signal by extracting the statistical features in the time domain of the signal,introduces the signal feature overlay projection to enhance the expression ability of quantum computation on the signal features,and introduces the quantum circuits to improve the neural network’s ability to obtain the inline relationship of features,thus improving the accuracy and migration generalization ability of drone detection.In order to validate the effectiveness of the proposed method,we experimented with the method using the MM model that combines the real parameters of five commercial drones and random drones parameters to generate data to simulate a realistic environment.The results show that the method based on statistical features in the time domain of the signal is able to extract features at smaller scales and obtain higher accuracy on a dataset with an SNR of 10 dB.On the time-domain feature data set,HQNNSFOP obtains the highest accuracy compared to other conventional methods.In addition,HQNN-SFOP has good migration generalization ability on five commercial drones and random drones data at different SNR conditions.Our method verifies the feasibility and effectiveness of signal detection methods based on quantum computation and experimentally demonstrates that the advantages of quantum computation for information processing are still valid in the field of signal processing,it provides a highly efficient method for the drone detection using radar return signals.
文摘This paper mainly revolves the time-frequency image of low probability of intercept(LPI) radar signals and carries out research work on image features selection and extraction and recognition. Since Choi-Williams distribution(CWD) uses the exponential kernel of bilinear generalized class of time-frequency distribution, it has an excellent time-frequency aggregation. And it is suitable for detecting LPI radar signals in a low signal-to-noise ratio(SNR) condition. A radial integration method based on the integral rotating factor is proposed to detect LPI radar signals when the signals' time-frequency image is obtained. First, the digital image processing method is used to preprocess the LPI radar signals' time-frequency images after CWD transformation; then, the radial integration method based on the integral rotating factor is used to detect LPI radar signals in the binary images. The analytic results of real data show that the method has a good performance on detecting LPI radar signals in a low SNR condition. Additionally,the method is simple and takes less logic resources and has the potential of real-time detection of LPI radar signals.