Studies on rodents and humans demonstrate an inherited predisposition to hepatocellular carcinoma (HCC). Analysis of the molecular alterations involved in the acquisition of a phenotype resistant or susceptible to h...Studies on rodents and humans demonstrate an inherited predisposition to hepatocellular carcinoma (HCC). Analysis of the molecular alterations involved in the acquisition of a phenotype resistant or susceptible to hepatocarcinogenesis showed a deregulation of G1 and S phases in HCC of genetically susceptible F344 rats and a G1-S block in lesions of resistant Brown norway (BN) rats. Unrestrained extracellular signal-regulated kinase (ERK) activity linked to proteasomal degradation of dual-specificity phosphatase 1 (DUSP1), a specific ERK inhibitor, by the CKS1-SKP2 ubiquitin ligase complex occurs in more aggressive HCC of F344 rats and humans. This mechanism is less active in HCC of BN rats and human HCC with better prognosis. Upregulation of iNos cross-talk with IKK/NF-KB and RAS/ERK pathways occurs in rodent liver lesions at higher levels in the most aggressive models represented by HCC of F344 rats and c-Myc-TGF-α transgenic mice. iNOS, IKK/NF-κB, and RAS/ERK upregulation is highest in human HCC with a poorer prognosis and positively correlates with tumor proliferation, genomic instability and microvascularization, and negatively with apoptosis. Thus, cell cycle regulation and the activity of signal transduction pathways seem to be modulated by HCC modifier genes, and differences in their efficiency influence the susceptibility to hepatocarcinogenesis and probably the prognosis of human HCC.展开更多
In the present study, a rat model of type 2 diabetes mellitus was established by continuous peritoneal injection of streptozotocin. Following intragastric perfusion of sericin for 35 days, blood glucose levels signifi...In the present study, a rat model of type 2 diabetes mellitus was established by continuous peritoneal injection of streptozotocin. Following intragastric perfusion of sericin for 35 days, blood glucose levels significantly reduced, neuronal apoptosis in the hippocampal CA1 region decreased, hippocampal phosphorylated Akt and nuclear factor kappa B expression were enhanced, but Bcl-xL/Bcl-2 associated death promoter expression decreased. Results demonstrated that sericin can reduce hippocampal neuronal apoptosis in a rat model of diabetes mellitus by regulating abnormal changes in the Akt signal transduction pathway.展开更多
Mesenchymal stem cell (MSC)-based treatments have shown promise for improving tendon healing and repair. MSCs have the potential to differentiate into multiple lineages in response to select chemical and physical st...Mesenchymal stem cell (MSC)-based treatments have shown promise for improving tendon healing and repair. MSCs have the potential to differentiate into multiple lineages in response to select chemical and physical stimuli, including into tenocytes. Cell elongation and cytoskeletal tension have been shown to be instrumental to the process of MSC differentiation. Previous studies have shown that inhibition of stress fiber formation leads MSCs to default toward an adipogenic lineage, which suggests that stress fibers are required for MSCs to sense the environmental factors that can induce differentiation into tenocytes. As the Rho/ROCK signal transduction pathway plays a critical role in both stress fiber formation and in cell sensation, we examined whether the activation of this pathway was required when inducing MSC tendon differentiation using rope-like silk scaffolds. To accomplish this, we employed a loss-of-function approach by knocking out ROCK, actin and myosin (two other components of the pathway) using the specific inhibitors Y-27632, Latrunculin A and blebbistatin, respectively. We demonstrated that independently disrupting the cytoskeleton and the Rho/ ROCK pathway abolished the expression of tendon differentiation markers and led to a loss of spindle morphology. Together, these studies suggest that the tension that is generated by MSC elongation is essential for MSC teno-differentiation and that the Rho/ROCK pathway is a critical mediator of tendon differentiation on rope-like silk scaffolds.展开更多
The Janus kinase and signal transducer and activator of transcription (JAK/STAT) signal transduction pathway is involved in sepsis-induced functional damage to the heart, liver, kidney, and other organs. However, th...The Janus kinase and signal transducer and activator of transcription (JAK/STAT) signal transduction pathway is involved in sepsis-induced functional damage to the heart, liver, kidney, and other organs. However, the cellular and molecular mechanisms underlying sepsis-induced brain damage remain elusive. In the present study, we found severe loss of neurons in the hippocampal CA1 region in rats with sepsis-induced brain damage following intraperitoneal injection of endotoxin, The expression of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 was significantly increased in brain tissues following lipopolysaccharide exposure. AG490 (JAK2 antagonist) and rapamycin (STAT3 antagonist) significantly reduced neuronal loss and suppressed the increased expression of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 in the hippocampal CA1 region in sepsis-induced brain damaged rats. Overall, these data suggest that blockade of the JAK/STAT signal transduction pathway is neuroprotective in sepsis-induced brain damage via the inhibition of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 exoression.展开更多
Whether M3 cholinergic receptor signal transduction pathway is involved in regulation of the activation of NF-κB and the expression of chemokine MOB-1, MCP-1genes in pancreatic acinar cells was investigated. Rat panc...Whether M3 cholinergic receptor signal transduction pathway is involved in regulation of the activation of NF-κB and the expression of chemokine MOB-1, MCP-1genes in pancreatic acinar cells was investigated. Rat pancreatic acinar cells were isolated, cultured and treated with carbachol, atropine and PDTC in vitro. The MOB-1 and MCP-1 mRNA expression was detected by using RT-PCR. The activation of NF-κB was monitored by using electrophoretic mobility shift assay. The results showed that as compared with control group, M3 cholinergic receptor agonist (10 -3 mol/L, 10 -4 mol/L carbachol) could induce a concentration-dependent and time-dependent increase in the expression of MOB-1, MCP-1 mRNA in pancreatic acinar cells. After treatment with 10 -3 mol/L carbachol for 2 h, the expression of MOB-1, MCP-1 mRNA was strongest. The activity of NF-κB in pancreatic acinar cells was significantly increased (P<0.01) after treated with M3 cholinergic receptor agonist (10 -3 mol/L carbachol) in vitro for 30 min. Either M3 cholinergic receptor antagonist (10 -5 mol/L atropine) or NF-κB inhibitor (10 -2 mol/L PDTC) could obviously inhibit the activation of NF-κB and the chemokine MOB-1, MCP-1 mRNA expression induced by carbachol (P<0.05). This inhibitory effect was significantly increased by atropine plus PDTC (P<0.01). The results of these studies indicated that M3 cholinergic receptor signal transduction pathway was likely involved in regulation of the expression of chemokine MOB-1 and MCP-1genes in pancreatic acinar cells in vitro through the activation of NF-κB.展开更多
Objective: To investigate the anti-depression mechanism of JiaWeiWenDan Decoction in regulating p38MAPK-ERK5 signal transduction pathway. Methods: Depression model rats were randomly divided into Blank Control Group, ...Objective: To investigate the anti-depression mechanism of JiaWeiWenDan Decoction in regulating p38MAPK-ERK5 signal transduction pathway. Methods: Depression model rats were randomly divided into Blank Control Group, Model Control Group, Chinese Medicine Treatment Group, and Western Medicine Treatment Group (hereinafter referred to as Blank Group, Model Group, Chinese Medicine Group, and Western Medicine Group), with 48 rats in each group. The mice were treated with p38MAPK-ERK5 on the 7th day, 14th day and 21st day, respectively, and the mice were treated for 28 days. The key targets and cytokines in p38MAPK-ERK5 signal transduction pathway were detected. Results: Compared with the Blank Group, the expression of p38MAPKmRNA in the hippocampus of the Model Group was increased. The Chinese Medicine Group and Western Medicine Group could reduce the expression of p38MAPK mRNA (P P P P Conclusion: The anti-inflammatory effect of JiaWeiWenDan Decoction may be related to the regulation of p38MAPK-ERK5 signaling pathway. With the advance of the treatment week, the best effect was obtained when the treatment was started on the 7th day of modeling.展开更多
The physiological importance of GSK3-like kinases in plants emerged when the functional role of plant GSK3-like kinases represented by BIN2 was first elucidated in the brassinosteroid (BR)-regulated signal transduct...The physiological importance of GSK3-like kinases in plants emerged when the functional role of plant GSK3-like kinases represented by BIN2 was first elucidated in the brassinosteroid (BR)-regulated signal transduction pathway. While early studies focused more on understanding how GSK3-like kinases regulate BR signaling, recent studies have implicated many novel substrates of GSK3-like kinases that are involved in a variety of cellular processes as well as BR signaling. Plant GSK3-like kinases play diverse roles in physiological and developmental processes such as cell growth, root and stomatal cell development, flower development, xylem differentiation, light response, and stress responses. Here, we review the progress made in recent years in understanding the versatile functions of plant GSK3-like kinases. Based on the relationship between GSK3-like kinases and their newly identified substrates, we discuss the physiological and biochemical relevance of various cellular signaling mediated by GSK3-like kinases in plants.展开更多
Background Lipopolysaccharide (LPS) forms outer membrane of the wall of Gram-negative cells. LPS can directly cause damage to epithelia of respiratory tract and is the major factor responsible for the chronic inflam...Background Lipopolysaccharide (LPS) forms outer membrane of the wall of Gram-negative cells. LPS can directly cause damage to epithelia of respiratory tract and is the major factor responsible for the chronic inflammation of respiratory passage. The mitogen-activated protein kinase (MAPK) signal transduction pathway of the airway epithelia is intimately associated with the action of LPS. The chronic inflammation of respiratory tract and smoking are interrelated and entwined in the development and progression of chronic lung diseases. This study was designed to examine the effects of cigarette smoke extract (CSE) and LPS on MAPK signal transduction pathway in order to further understand the roles CSE and LPS play in chronic lung inflammation. Methods Cultured primary human epithelial cells of airway were divided into four groups according to the stimulants used: blank control group, LPS-stimulation group, CSE-stimulation group and CSE plus LPS group. Western blotting was employed for the detection of phosphorylation level of extracellular-signal-regulated-kinase (ERK1/2), p38 MAPK and c-Jun N-terminal kinase (JNK). The expression of cytokines of MAPK transduction pathway (granulocyte-macrophage colony stimulating factor (GM-CSF) and mRNA of IL-8) in the primary epithelial cells of respiratory tract was also determined. Results Western blotting revealed that the phosphorylation levels of ERK1/2, p38 MAPK and JNK were low and 2 hours after the LPS stimulation, the phosphorylation of ERK1/2, p38 MAPK and JNK were all increased. There was a significant difference in the phosphorylation between the LPS-stimulation group and blank control group (P〈0.05); no significant difference was found between CSE-stimulation group and blank control group (P〉0.05); there was a significant difference between CSE + LPS group and blank control group and between CSE + LPS group and LPS group (P〈0.05). The phosphorylation of CSE-LPS group was higher than that of blank control group but lower than that of LPS group. In blank control group, the expression of IL-8 and GM-CSF mRNA was low in the epithelial cells of airway and the release of IL-8 and GM-CSF was also at a low level. One hour after LPS stimulation, the level of IL-8 mRNA increased (P〈0.05) and reached a peak after 2 hours. On the other hand, GM-CSF mRNA level increased 2 hours after the stimulation (P〈0.05) and reached the highest level 4 hours after the stimulation. Two hours after LPS stimulation, IL-8 and GM-CSF protein level began to rise (P〈0.05), and the level was the highest 8 hours after the stimulation (P〈0.01). Stimulation with CSE alone had no effect on the release of IL-8 and GM-CSF and expression of IL-8 mRNA (P〉0.05), but pre-treatment with CSE could delay the LPS-induced release of IL-8 and GM-CSF and the expression of IL-8 mRNA and its peak was lower. Conclusions LPS stimulation can significantly increase the phosphorylation of ERK1/2, p38 MAPK and JNK in the epithelial cells of airway and activate the MAPK transduction pathway, thereby can activate the downstream signal transduction pathway, and can ultimately result in the release of cytokines by the epithelial cells of airway. CSE can partially abolish the LPS-induced activation of MAPK signal transduction pathway and the expression of cytokines of the pathway, which might contribute to the development and progression of the inflammatory reactions in COPD patients.展开更多
Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell diff...Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell differentiation into neurons. Mitogen-activated protein kinase signaling was identified as one of the key pathways underlying this differentiation process. The present study shows phosphorylated extracellular signal-regulated protein kinase and phosphorylated p38 protein expression was increased after differentiation. Cellular signaling pathway blocking agents, PD98059 and SB203580, inhibited extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways respectively, mRNA and protein expression of the neuronal marker, neuron specific enolase, and neural stem cell marker, nestin, were decreased in bone marrow mesenchymal stem cells after treatment with the active principle region of Buyang Huanwu decoction. Experimental findings indicate that, extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways participate in bone marrow mesenchymal stem cell differentiation into neuron-like cells, induced by the active principle region of Buyang Huanwu decoction.展开更多
Objective To determine whether transforming growth factor betal (TGF-β1)/Smad signaling pathway mediates p53-dependent apoptosis in hepatoma cell lines.Methods Three human hepatic carcinoma cell lines, HepG2, Huh-7, ...Objective To determine whether transforming growth factor betal (TGF-β1)/Smad signaling pathway mediates p53-dependent apoptosis in hepatoma cell lines.Methods Three human hepatic carcinoma cell lines, HepG2, Huh-7, and Hep3B, were used in this study.TGF-β1-induced apoptosis in hepatic carcinoma cell lines was analyzed using TUNEL assay.For identifying the mechanism of apoptosis induced by TGF-β1, cell lines were transfected with a TGF-β1-inducible luciferase reportor plasmid containing Smad4 binding elements.After transfection, cells were treated with TGF-β1, then assayed for luciferase activity.Results The apoptosis rate of HepG2 cell lines (48.51%± 8.21%) was significantly higher than control ( 12.72%±2.18%, P<0.05).But TGF-β1 was not able to induce apoptosis of Huh-7 and Hep3B cell lines.The relative luciferase activity of TGF-β1-treated HepG2 cell lines (4.38) was significantly higher than control (1.00, P< 0.05).But the relative luciferase activity of TGF-β1-treated Huh-7 and Hep3B cell lines less increased compared with control.Conclusions HepG2 cells seem to be highly susceptible to TGF-β1-induced apoptosis compared with Hep3B and Huh-7 cell lines.Smad4 is a central mediator of TGF-β1 signaling transdution pathway.TGF-β1/Smad signaling pathway might mediate p53-dependent apoptosis in hepatoma cell lines.展开更多
Fos-related antigen 1(Fra-1)is a nuclear transcription factor that regulates cell growth,differentiation,and apoptosis.It is involved in the proliferation,invasion,apoptosis and epithelial mesenchymal transformation o...Fos-related antigen 1(Fra-1)is a nuclear transcription factor that regulates cell growth,differentiation,and apoptosis.It is involved in the proliferation,invasion,apoptosis and epithelial mesenchymal transformation of malignant tumor cells.Fra-1 is highly expressed in gastric cancer(GC),affects the cycle distribution and apoptosis of GC cells,and participates in GC occurrence and development.However,the detailed mechanism of Fra-1 in GC is unclear,such as the identification of Fra-1-interacting proteins and their role in GC pathogenesis.In this study,we identified tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein eta(YWHAH)as a Fra-1-interacting protein in GC cells using co-immunoprecipitation combined with liquid chromatography-tandem mass spectrometry.Experiments showed that YWHAH positively regulated Fra-1 mRNA and protein expression,and affected GC cell proliferation.Whole proteome analysis showed that Fra-1 affected the activity of the high mobility group AT-hook 1(HMGA1)/phosphatidylinositol-4,5-bisphosphate 3-kinase(PI3K)/protein kinase B(AKT)/mechanistic target of rapamycin(mTOR)signaling pathway in GC cells.Western blotting and flow cytometry confirmed that YWHAH activated HMGA1/PI3K/AKT/mTOR signaling pathway by positively regulating Fra-1 to affect GC cell proliferation.These results will help to discover new molecular targets for the early diagnosis,treatment,and prognosis prediction of GC.展开更多
As a crucial protein kinase,the mammalian target of rapamycin(mTOR)intimately controls essential cellular processes like cell development,proliferation,metabolism,and other crucial activities.Different cancers and dis...As a crucial protein kinase,the mammalian target of rapamycin(mTOR)intimately controls essential cellular processes like cell development,proliferation,metabolism,and other crucial activities.Different cancers and disorders have been linked to imbalances in mTOR's regulatory systems.Multiple mTOR inhibitor therapy has recently acquired popularity as a method of treating cancers brought on by abnormal signal transduction pathways.We also explore potential processes behind tumor cell resistance to mTOR inhibitors and suggest workarounds to overcome this challenge.We hold the potential to pioneer cutting-edge methods for tumor therapy by methodically examining the complex mTOR signaling system and its regulatory complexity.Increasing our knowledge of mTOR-related mechanisms not only creates opportunities for cutting-edge methods to target and treat cancers but also has the potential to improve patient outcomes and general quality of life significantly.This review paper explores the most recent developments in understanding mTOR signaling pathways and the use of mTOR inhibitors in treating tumors.展开更多
BACKGROUND:Calcium calmodulin-dependent kinase II(CaMKII) can be more active in patients with left ventricular hypertrophy(LVH),which in turn causes phosphorylation of ryanodine receptors,resulting in inactivation and...BACKGROUND:Calcium calmodulin-dependent kinase II(CaMKII) can be more active in patients with left ventricular hypertrophy(LVH),which in turn causes phosphorylation of ryanodine receptors,resulting in inactivation and the instability of intracellular calcium homeostasis.The present study aimed to determine the effect of CaMKII-ryanodine receptor pathway signaling in rabbits with left ventricular hypertrophy and triggered ventricular arrhythmia.METHODS:Forty New Zealand rabbits were randomized into four groups(10 per group):sham group,LVH group,KN-93 group(LVH+KN-93),and ryanodine group(LVH+ryanodine).Rabbits in the LVH,KN-93,and ryanodine groups were used to establish a left ventricular hypertrophy model by the coarctation of the abdominal aorta,while those in the sham group did not undergo the coarctation.After eight weeks,action potentials(APs) were recorded simultaneously in the endocardium and epicardium,and a transmural electrocardiogram(ECG) was also recorded in the rabbit left ventricular wedge model.Drugs were administered to the animals in the KN-93 and ryanodine groups,and the frequency of triggered APs and ventricular tachycardia was recorded after the rabbits were given isoprenaline(1 μmol/L) and high-frequency stimulation.RESULTS:The frequency(animals/group) of triggered APs was 0/10 in the sham group,10/10 in the LVH group,4/10 in the KN-93 group,and 1/10 in the ryanodine group.The frequencies of ventricular tachycardia were 0/10,9/10,3/10,and 1/10,respectively.The frequencies of polymorphic ventricular tachycardia or ventricular fibrillation were 0/10,7/10,2/10,and 1/10,respectively.The frequencies of triggered ventricular arrhythmias in the KN-93 and ryanodine groups were much lower than those in the LVH group(P<0.05).CONCLUSIONS:KN-93 and ryanodine can effectively reduce the occurrence of triggered ventricular arrhythmia in rabbits with LVH.The CaMKII-ryanodine signaling pathway can be used as a new means of treating ventricular arrhythmia.展开更多
There is evidence to suggest that follicle-stimulating hormone (FSH) can facilitate the neovascularization of ovarian cancers by increasing vascular endothelial growth factor (VEGF) expression in cancer cells, alt...There is evidence to suggest that follicle-stimulating hormone (FSH) can facilitate the neovascularization of ovarian cancers by increasing vascular endothelial growth factor (VEGF) expression in cancer cells, although the underlying molecular mechanism of this process is not well known. Therefore, we investigated the effect of FSH on VEGF expression in the ovarian cancer cell lines SKOV-3 and ES-2. Treatment with FSH significantly increased VEGF expression in a dose- and time-dependent manner. In addition, FSH treatment enhanced the expression of survivin and hypoxlainducible factor-1 (HIF-1α). Knockdown of survivin or HIF-1α suppressed VEGF expression, but only knockdown of survivin inhibited FSH-stimulated VEGF expression. Pretreatment with LY294002, a phosphoinositide 3-kinase (PI3K)/AKT inhibitor, neutralized the enhanced expression of survivin induced by FSH, but treatment with U0126, a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor, had no such effect. We further showed that ovarian serous cystadenocarcinoma samples had much higher incidence of positive AKT and phosphorylated AKT (pAKT) protein staining than did benign ovarian cystadenoma samples (p 〈 0.01). The 5-year survival rate was only about 15% in patients with ovarian serous cystadenocarcinoma who had AKT and pAKT expression, whereas it was about 80% in those who did not have AKT or pAKT expression. Taken together, these results indicate that FSH increases the expression of VEGF by upregulating the expression of survivin, which is activated by the PI3K/AKT signaling pathway. Understanding the role of the PI3K/AKT pathway in FSH-stimulated expression of survivin and VEGF will be beneficial for evaluating the prognosis for patients with ovarian serous cystadenocarcinoma and for pursulug effective treatment against this disease.展开更多
In multicellular organisms, biological activities are regulated by cell signaling. The various signal transduction path- ways regulate cell fate, proliferation, migration, and polarity. Miscoordination of the communic...In multicellular organisms, biological activities are regulated by cell signaling. The various signal transduction path- ways regulate cell fate, proliferation, migration, and polarity. Miscoordination of the communicative signals will lead to disasters like cancer and other fatal diseases. The JAK/STAT signal transduction pathway is one of the pathways, which was first identified in vertebrates and is highly conserved throughout evolution. Studying the JAK/STAT signal transduc- tion pathway in Drosophila provides an excellent opportunity to understand the molecular mechanism of the cell regu- lation during development and tumor formation. In this review, we discuss the general overview of JAK/STAT signaling in Drosophila with respect to its functions in the eye development and stem cell fate determination.展开更多
We have developed a protein array system,named"Phospho-Totum",which reproduces the phosphorylation state of a sample on the array.The protein array contains 1471 proteins from 273 known signaling pathways.Ac...We have developed a protein array system,named"Phospho-Totum",which reproduces the phosphorylation state of a sample on the array.The protein array contains 1471 proteins from 273 known signaling pathways.According to the activation degrees of tyrosine kinases in the sample,the corresponding groups of substrate proteins on the array are phosphorylated under the same conditions.In addition to measuring the phosphorylation levels of the 1471 substrates,we have developed and performed the artificial intelligence-assisted tools to further characterize the phosphorylation state and estimate pathway activation,tyrosine kinase activation,and a list of kinase inhibitors that produce phosphorylation states similar to that of the sample.The Phospho-Totum system,which seamlessly links and interrogates the measurements and analyses,has the potential to not only elucidate pathophysiological mechanisms in diseases by reproducing the phosphorylation state of samples,but also be useful for drug discovery,particularly for screening targeted kinases for potential drug kinase inhibitors.展开更多
The aim of this paper is to study the effect of bradykinin(BK)on bradykinin-B2 receptor as well as the possible involved signal transduction pathways in cultured rat aortic vascular smooth muscle cells(VSMCs).Rat aort...The aim of this paper is to study the effect of bradykinin(BK)on bradykinin-B2 receptor as well as the possible involved signal transduction pathways in cultured rat aortic vascular smooth muscle cells(VSMCs).Rat aortic VSMCs were cultured.Cells after 4–6 passages were used in the experiment.VSMCs were incubated with BK,BK+B2 receptor inhibitor(HOE-140),BK+MEK inhibitor(PD98059),BK+mitogen-activated protein kinase(MAPK)inhibitor(apigenin),BK+phosphoinosi-tide 3-kinase(PI3K)inhibitor(LY294002),and BK+Akt inhibitor to evaluate the expression of B2 receptor and phosphorylation of signaling molecules MAPK,Akt,and PI3K by Western blot.(1)BK markedly up-regulated the expression of B2 receptor in VSMC.(2)Apigenin,PD98059,Akt inhibitor,and LY294002 inhibited up-regulation of B2 receptor induced by BK.(3)Signal transduction pathways of MAPK and PI3K were involved in the up-regulation of B2 receptor by BK mediation.Results suggest that bradykinin can up-regulate the expression of B2 receptor in VSMCs.展开更多
It is well-known that risk for endometrial adenocarcinoma increases in patients with high level ofestrogen that is unopposed by progestin. And activation of extracellular signal-regulated kinase (ERK) and phosphatid...It is well-known that risk for endometrial adenocarcinoma increases in patients with high level ofestrogen that is unopposed by progestin. And activation of extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3 kinase/protein kinase B (PI3K/PKB) pathway are responsible for hormone-dependent cell growth in endometrial carcinoma. PI3K produces phosphatidylinositol- 3-phosphates by phosphory-lating the D3 hydroxyl of phosphoinositides, leading to membrane translocation of PKB,展开更多
Colorectal cancer (CRC) has an apparent hereditary component, as evidenced by the well-characterized genetic syndromes and family history associated with the increased risk of this disease. However, in a large fractio...Colorectal cancer (CRC) has an apparent hereditary component, as evidenced by the well-characterized genetic syndromes and family history associated with the increased risk of this disease. However, in a large fraction of CRC cases, no known genetic syndrome or family history can be identified, suggesting the presence of “missing heritability” in CRC etiology. The genome-wide association study (GWAS) platform has led to the identification of multiple replicable common genetic variants associated with CRC risk. These newly discovered genetic variations might account for a portion of the missing heritability. Here, we summarize the recent GWASs related to newly identified genetic variants associated with CRC risk and clinical outcome. The findings from these studies suggest that there is a lack of understanding of the mechanism of many single nucleotide polymorphisms (SNPs) that are associated with CRC. In addition, the utility of SNPs as prognostic markers of CRC in clinical settings remains to be further assessed. Finally, the currently validated SNPs explain only a small fraction of total heritability in complex-trait diseases like CRC. Thus, the “missing heritability” still needs to be explored further. Future epidemiological and functional investigations of these variants will add to our understanding of CRC pathogenesis, and may ultimately lead to individualized strategies for prevention and treatment of CRC.展开更多
基金Supported by Grants from the"Associazione Italiana Ricerche sul Cancro"
文摘Studies on rodents and humans demonstrate an inherited predisposition to hepatocellular carcinoma (HCC). Analysis of the molecular alterations involved in the acquisition of a phenotype resistant or susceptible to hepatocarcinogenesis showed a deregulation of G1 and S phases in HCC of genetically susceptible F344 rats and a G1-S block in lesions of resistant Brown norway (BN) rats. Unrestrained extracellular signal-regulated kinase (ERK) activity linked to proteasomal degradation of dual-specificity phosphatase 1 (DUSP1), a specific ERK inhibitor, by the CKS1-SKP2 ubiquitin ligase complex occurs in more aggressive HCC of F344 rats and humans. This mechanism is less active in HCC of BN rats and human HCC with better prognosis. Upregulation of iNos cross-talk with IKK/NF-KB and RAS/ERK pathways occurs in rodent liver lesions at higher levels in the most aggressive models represented by HCC of F344 rats and c-Myc-TGF-α transgenic mice. iNOS, IKK/NF-κB, and RAS/ERK upregulation is highest in human HCC with a poorer prognosis and positively correlates with tumor proliferation, genomic instability and microvascularization, and negatively with apoptosis. Thus, cell cycle regulation and the activity of signal transduction pathways seem to be modulated by HCC modifier genes, and differences in their efficiency influence the susceptibility to hepatocarcinogenesis and probably the prognosis of human HCC.
基金supported by a grant from the Education Department of Hebei Province (Mechanism of GH/IGF-1 and protective effects of sericin on gonadal axis lesions in diabetes mellitus), No. 2006301a grant from Science and Technology Department of Hebei Province (Protective effects of sericin on testicular dysfunction in diabetes mellitus), No. 08276101D-19
文摘In the present study, a rat model of type 2 diabetes mellitus was established by continuous peritoneal injection of streptozotocin. Following intragastric perfusion of sericin for 35 days, blood glucose levels significantly reduced, neuronal apoptosis in the hippocampal CA1 region decreased, hippocampal phosphorylated Akt and nuclear factor kappa B expression were enhanced, but Bcl-xL/Bcl-2 associated death promoter expression decreased. Results demonstrated that sericin can reduce hippocampal neuronal apoptosis in a rat model of diabetes mellitus by regulating abnormal changes in the Akt signal transduction pathway.
文摘Mesenchymal stem cell (MSC)-based treatments have shown promise for improving tendon healing and repair. MSCs have the potential to differentiate into multiple lineages in response to select chemical and physical stimuli, including into tenocytes. Cell elongation and cytoskeletal tension have been shown to be instrumental to the process of MSC differentiation. Previous studies have shown that inhibition of stress fiber formation leads MSCs to default toward an adipogenic lineage, which suggests that stress fibers are required for MSCs to sense the environmental factors that can induce differentiation into tenocytes. As the Rho/ROCK signal transduction pathway plays a critical role in both stress fiber formation and in cell sensation, we examined whether the activation of this pathway was required when inducing MSC tendon differentiation using rope-like silk scaffolds. To accomplish this, we employed a loss-of-function approach by knocking out ROCK, actin and myosin (two other components of the pathway) using the specific inhibitors Y-27632, Latrunculin A and blebbistatin, respectively. We demonstrated that independently disrupting the cytoskeleton and the Rho/ ROCK pathway abolished the expression of tendon differentiation markers and led to a loss of spindle morphology. Together, these studies suggest that the tension that is generated by MSC elongation is essential for MSC teno-differentiation and that the Rho/ROCK pathway is a critical mediator of tendon differentiation on rope-like silk scaffolds.
文摘The Janus kinase and signal transducer and activator of transcription (JAK/STAT) signal transduction pathway is involved in sepsis-induced functional damage to the heart, liver, kidney, and other organs. However, the cellular and molecular mechanisms underlying sepsis-induced brain damage remain elusive. In the present study, we found severe loss of neurons in the hippocampal CA1 region in rats with sepsis-induced brain damage following intraperitoneal injection of endotoxin, The expression of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 was significantly increased in brain tissues following lipopolysaccharide exposure. AG490 (JAK2 antagonist) and rapamycin (STAT3 antagonist) significantly reduced neuronal loss and suppressed the increased expression of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 in the hippocampal CA1 region in sepsis-induced brain damaged rats. Overall, these data suggest that blockade of the JAK/STAT signal transduction pathway is neuroprotective in sepsis-induced brain damage via the inhibition of toll-like receptor 4, tumor necrosis factor a, and interleukin-6 exoression.
文摘Whether M3 cholinergic receptor signal transduction pathway is involved in regulation of the activation of NF-κB and the expression of chemokine MOB-1, MCP-1genes in pancreatic acinar cells was investigated. Rat pancreatic acinar cells were isolated, cultured and treated with carbachol, atropine and PDTC in vitro. The MOB-1 and MCP-1 mRNA expression was detected by using RT-PCR. The activation of NF-κB was monitored by using electrophoretic mobility shift assay. The results showed that as compared with control group, M3 cholinergic receptor agonist (10 -3 mol/L, 10 -4 mol/L carbachol) could induce a concentration-dependent and time-dependent increase in the expression of MOB-1, MCP-1 mRNA in pancreatic acinar cells. After treatment with 10 -3 mol/L carbachol for 2 h, the expression of MOB-1, MCP-1 mRNA was strongest. The activity of NF-κB in pancreatic acinar cells was significantly increased (P<0.01) after treated with M3 cholinergic receptor agonist (10 -3 mol/L carbachol) in vitro for 30 min. Either M3 cholinergic receptor antagonist (10 -5 mol/L atropine) or NF-κB inhibitor (10 -2 mol/L PDTC) could obviously inhibit the activation of NF-κB and the chemokine MOB-1, MCP-1 mRNA expression induced by carbachol (P<0.05). This inhibitory effect was significantly increased by atropine plus PDTC (P<0.01). The results of these studies indicated that M3 cholinergic receptor signal transduction pathway was likely involved in regulation of the expression of chemokine MOB-1 and MCP-1genes in pancreatic acinar cells in vitro through the activation of NF-κB.
文摘Objective: To investigate the anti-depression mechanism of JiaWeiWenDan Decoction in regulating p38MAPK-ERK5 signal transduction pathway. Methods: Depression model rats were randomly divided into Blank Control Group, Model Control Group, Chinese Medicine Treatment Group, and Western Medicine Treatment Group (hereinafter referred to as Blank Group, Model Group, Chinese Medicine Group, and Western Medicine Group), with 48 rats in each group. The mice were treated with p38MAPK-ERK5 on the 7th day, 14th day and 21st day, respectively, and the mice were treated for 28 days. The key targets and cytokines in p38MAPK-ERK5 signal transduction pathway were detected. Results: Compared with the Blank Group, the expression of p38MAPKmRNA in the hippocampus of the Model Group was increased. The Chinese Medicine Group and Western Medicine Group could reduce the expression of p38MAPK mRNA (P P P P Conclusion: The anti-inflammatory effect of JiaWeiWenDan Decoction may be related to the regulation of p38MAPK-ERK5 signaling pathway. With the advance of the treatment week, the best effect was obtained when the treatment was started on the 7th day of modeling.
文摘The physiological importance of GSK3-like kinases in plants emerged when the functional role of plant GSK3-like kinases represented by BIN2 was first elucidated in the brassinosteroid (BR)-regulated signal transduction pathway. While early studies focused more on understanding how GSK3-like kinases regulate BR signaling, recent studies have implicated many novel substrates of GSK3-like kinases that are involved in a variety of cellular processes as well as BR signaling. Plant GSK3-like kinases play diverse roles in physiological and developmental processes such as cell growth, root and stomatal cell development, flower development, xylem differentiation, light response, and stress responses. Here, we review the progress made in recent years in understanding the versatile functions of plant GSK3-like kinases. Based on the relationship between GSK3-like kinases and their newly identified substrates, we discuss the physiological and biochemical relevance of various cellular signaling mediated by GSK3-like kinases in plants.
文摘Background Lipopolysaccharide (LPS) forms outer membrane of the wall of Gram-negative cells. LPS can directly cause damage to epithelia of respiratory tract and is the major factor responsible for the chronic inflammation of respiratory passage. The mitogen-activated protein kinase (MAPK) signal transduction pathway of the airway epithelia is intimately associated with the action of LPS. The chronic inflammation of respiratory tract and smoking are interrelated and entwined in the development and progression of chronic lung diseases. This study was designed to examine the effects of cigarette smoke extract (CSE) and LPS on MAPK signal transduction pathway in order to further understand the roles CSE and LPS play in chronic lung inflammation. Methods Cultured primary human epithelial cells of airway were divided into four groups according to the stimulants used: blank control group, LPS-stimulation group, CSE-stimulation group and CSE plus LPS group. Western blotting was employed for the detection of phosphorylation level of extracellular-signal-regulated-kinase (ERK1/2), p38 MAPK and c-Jun N-terminal kinase (JNK). The expression of cytokines of MAPK transduction pathway (granulocyte-macrophage colony stimulating factor (GM-CSF) and mRNA of IL-8) in the primary epithelial cells of respiratory tract was also determined. Results Western blotting revealed that the phosphorylation levels of ERK1/2, p38 MAPK and JNK were low and 2 hours after the LPS stimulation, the phosphorylation of ERK1/2, p38 MAPK and JNK were all increased. There was a significant difference in the phosphorylation between the LPS-stimulation group and blank control group (P〈0.05); no significant difference was found between CSE-stimulation group and blank control group (P〉0.05); there was a significant difference between CSE + LPS group and blank control group and between CSE + LPS group and LPS group (P〈0.05). The phosphorylation of CSE-LPS group was higher than that of blank control group but lower than that of LPS group. In blank control group, the expression of IL-8 and GM-CSF mRNA was low in the epithelial cells of airway and the release of IL-8 and GM-CSF was also at a low level. One hour after LPS stimulation, the level of IL-8 mRNA increased (P〈0.05) and reached a peak after 2 hours. On the other hand, GM-CSF mRNA level increased 2 hours after the stimulation (P〈0.05) and reached the highest level 4 hours after the stimulation. Two hours after LPS stimulation, IL-8 and GM-CSF protein level began to rise (P〈0.05), and the level was the highest 8 hours after the stimulation (P〈0.01). Stimulation with CSE alone had no effect on the release of IL-8 and GM-CSF and expression of IL-8 mRNA (P〉0.05), but pre-treatment with CSE could delay the LPS-induced release of IL-8 and GM-CSF and the expression of IL-8 mRNA and its peak was lower. Conclusions LPS stimulation can significantly increase the phosphorylation of ERK1/2, p38 MAPK and JNK in the epithelial cells of airway and activate the MAPK transduction pathway, thereby can activate the downstream signal transduction pathway, and can ultimately result in the release of cytokines by the epithelial cells of airway. CSE can partially abolish the LPS-induced activation of MAPK signal transduction pathway and the expression of cytokines of the pathway, which might contribute to the development and progression of the inflammatory reactions in COPD patients.
基金sponsored by the National Natural Science Foundation of China,No.81102595the Natural Science Foundation of Guangxi,No.2012GXNSFAA053113
文摘Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell differentiation into neurons. Mitogen-activated protein kinase signaling was identified as one of the key pathways underlying this differentiation process. The present study shows phosphorylated extracellular signal-regulated protein kinase and phosphorylated p38 protein expression was increased after differentiation. Cellular signaling pathway blocking agents, PD98059 and SB203580, inhibited extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways respectively, mRNA and protein expression of the neuronal marker, neuron specific enolase, and neural stem cell marker, nestin, were decreased in bone marrow mesenchymal stem cells after treatment with the active principle region of Buyang Huanwu decoction. Experimental findings indicate that, extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways participate in bone marrow mesenchymal stem cell differentiation into neuron-like cells, induced by the active principle region of Buyang Huanwu decoction.
文摘Objective To determine whether transforming growth factor betal (TGF-β1)/Smad signaling pathway mediates p53-dependent apoptosis in hepatoma cell lines.Methods Three human hepatic carcinoma cell lines, HepG2, Huh-7, and Hep3B, were used in this study.TGF-β1-induced apoptosis in hepatic carcinoma cell lines was analyzed using TUNEL assay.For identifying the mechanism of apoptosis induced by TGF-β1, cell lines were transfected with a TGF-β1-inducible luciferase reportor plasmid containing Smad4 binding elements.After transfection, cells were treated with TGF-β1, then assayed for luciferase activity.Results The apoptosis rate of HepG2 cell lines (48.51%± 8.21%) was significantly higher than control ( 12.72%±2.18%, P<0.05).But TGF-β1 was not able to induce apoptosis of Huh-7 and Hep3B cell lines.The relative luciferase activity of TGF-β1-treated HepG2 cell lines (4.38) was significantly higher than control (1.00, P< 0.05).But the relative luciferase activity of TGF-β1-treated Huh-7 and Hep3B cell lines less increased compared with control.Conclusions HepG2 cells seem to be highly susceptible to TGF-β1-induced apoptosis compared with Hep3B and Huh-7 cell lines.Smad4 is a central mediator of TGF-β1 signaling transdution pathway.TGF-β1/Smad signaling pathway might mediate p53-dependent apoptosis in hepatoma cell lines.
基金This work was supported by the Hunan Provincial Natural Science Foundation(2021JJ30915).
文摘Fos-related antigen 1(Fra-1)is a nuclear transcription factor that regulates cell growth,differentiation,and apoptosis.It is involved in the proliferation,invasion,apoptosis and epithelial mesenchymal transformation of malignant tumor cells.Fra-1 is highly expressed in gastric cancer(GC),affects the cycle distribution and apoptosis of GC cells,and participates in GC occurrence and development.However,the detailed mechanism of Fra-1 in GC is unclear,such as the identification of Fra-1-interacting proteins and their role in GC pathogenesis.In this study,we identified tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein eta(YWHAH)as a Fra-1-interacting protein in GC cells using co-immunoprecipitation combined with liquid chromatography-tandem mass spectrometry.Experiments showed that YWHAH positively regulated Fra-1 mRNA and protein expression,and affected GC cell proliferation.Whole proteome analysis showed that Fra-1 affected the activity of the high mobility group AT-hook 1(HMGA1)/phosphatidylinositol-4,5-bisphosphate 3-kinase(PI3K)/protein kinase B(AKT)/mechanistic target of rapamycin(mTOR)signaling pathway in GC cells.Western blotting and flow cytometry confirmed that YWHAH activated HMGA1/PI3K/AKT/mTOR signaling pathway by positively regulating Fra-1 to affect GC cell proliferation.These results will help to discover new molecular targets for the early diagnosis,treatment,and prognosis prediction of GC.
文摘As a crucial protein kinase,the mammalian target of rapamycin(mTOR)intimately controls essential cellular processes like cell development,proliferation,metabolism,and other crucial activities.Different cancers and disorders have been linked to imbalances in mTOR's regulatory systems.Multiple mTOR inhibitor therapy has recently acquired popularity as a method of treating cancers brought on by abnormal signal transduction pathways.We also explore potential processes behind tumor cell resistance to mTOR inhibitors and suggest workarounds to overcome this challenge.We hold the potential to pioneer cutting-edge methods for tumor therapy by methodically examining the complex mTOR signaling system and its regulatory complexity.Increasing our knowledge of mTOR-related mechanisms not only creates opportunities for cutting-edge methods to target and treat cancers but also has the potential to improve patient outcomes and general quality of life significantly.This review paper explores the most recent developments in understanding mTOR signaling pathways and the use of mTOR inhibitors in treating tumors.
基金supported by a grant from Surface Project of Natural Science Foundation of Fujian Province(2008J0075)
文摘BACKGROUND:Calcium calmodulin-dependent kinase II(CaMKII) can be more active in patients with left ventricular hypertrophy(LVH),which in turn causes phosphorylation of ryanodine receptors,resulting in inactivation and the instability of intracellular calcium homeostasis.The present study aimed to determine the effect of CaMKII-ryanodine receptor pathway signaling in rabbits with left ventricular hypertrophy and triggered ventricular arrhythmia.METHODS:Forty New Zealand rabbits were randomized into four groups(10 per group):sham group,LVH group,KN-93 group(LVH+KN-93),and ryanodine group(LVH+ryanodine).Rabbits in the LVH,KN-93,and ryanodine groups were used to establish a left ventricular hypertrophy model by the coarctation of the abdominal aorta,while those in the sham group did not undergo the coarctation.After eight weeks,action potentials(APs) were recorded simultaneously in the endocardium and epicardium,and a transmural electrocardiogram(ECG) was also recorded in the rabbit left ventricular wedge model.Drugs were administered to the animals in the KN-93 and ryanodine groups,and the frequency of triggered APs and ventricular tachycardia was recorded after the rabbits were given isoprenaline(1 μmol/L) and high-frequency stimulation.RESULTS:The frequency(animals/group) of triggered APs was 0/10 in the sham group,10/10 in the LVH group,4/10 in the KN-93 group,and 1/10 in the ryanodine group.The frequencies of ventricular tachycardia were 0/10,9/10,3/10,and 1/10,respectively.The frequencies of polymorphic ventricular tachycardia or ventricular fibrillation were 0/10,7/10,2/10,and 1/10,respectively.The frequencies of triggered ventricular arrhythmias in the KN-93 and ryanodine groups were much lower than those in the LVH group(P<0.05).CONCLUSIONS:KN-93 and ryanodine can effectively reduce the occurrence of triggered ventricular arrhythmia in rabbits with LVH.The CaMKII-ryanodine signaling pathway can be used as a new means of treating ventricular arrhythmia.
文摘There is evidence to suggest that follicle-stimulating hormone (FSH) can facilitate the neovascularization of ovarian cancers by increasing vascular endothelial growth factor (VEGF) expression in cancer cells, although the underlying molecular mechanism of this process is not well known. Therefore, we investigated the effect of FSH on VEGF expression in the ovarian cancer cell lines SKOV-3 and ES-2. Treatment with FSH significantly increased VEGF expression in a dose- and time-dependent manner. In addition, FSH treatment enhanced the expression of survivin and hypoxlainducible factor-1 (HIF-1α). Knockdown of survivin or HIF-1α suppressed VEGF expression, but only knockdown of survivin inhibited FSH-stimulated VEGF expression. Pretreatment with LY294002, a phosphoinositide 3-kinase (PI3K)/AKT inhibitor, neutralized the enhanced expression of survivin induced by FSH, but treatment with U0126, a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor, had no such effect. We further showed that ovarian serous cystadenocarcinoma samples had much higher incidence of positive AKT and phosphorylated AKT (pAKT) protein staining than did benign ovarian cystadenoma samples (p 〈 0.01). The 5-year survival rate was only about 15% in patients with ovarian serous cystadenocarcinoma who had AKT and pAKT expression, whereas it was about 80% in those who did not have AKT or pAKT expression. Taken together, these results indicate that FSH increases the expression of VEGF by upregulating the expression of survivin, which is activated by the PI3K/AKT signaling pathway. Understanding the role of the PI3K/AKT pathway in FSH-stimulated expression of survivin and VEGF will be beneficial for evaluating the prognosis for patients with ovarian serous cystadenocarcinoma and for pursulug effective treatment against this disease.
文摘In multicellular organisms, biological activities are regulated by cell signaling. The various signal transduction path- ways regulate cell fate, proliferation, migration, and polarity. Miscoordination of the communicative signals will lead to disasters like cancer and other fatal diseases. The JAK/STAT signal transduction pathway is one of the pathways, which was first identified in vertebrates and is highly conserved throughout evolution. Studying the JAK/STAT signal transduc- tion pathway in Drosophila provides an excellent opportunity to understand the molecular mechanism of the cell regu- lation during development and tumor formation. In this review, we discuss the general overview of JAK/STAT signaling in Drosophila with respect to its functions in the eye development and stem cell fate determination.
基金supported by the State Key Program of National Natural Science Foundation of China(Grant No.82230114 to F.H.)the National Key Research and Development Program of China(Grant No.2022YFE0104800 to F.H.).
文摘We have developed a protein array system,named"Phospho-Totum",which reproduces the phosphorylation state of a sample on the array.The protein array contains 1471 proteins from 273 known signaling pathways.According to the activation degrees of tyrosine kinases in the sample,the corresponding groups of substrate proteins on the array are phosphorylated under the same conditions.In addition to measuring the phosphorylation levels of the 1471 substrates,we have developed and performed the artificial intelligence-assisted tools to further characterize the phosphorylation state and estimate pathway activation,tyrosine kinase activation,and a list of kinase inhibitors that produce phosphorylation states similar to that of the sample.The Phospho-Totum system,which seamlessly links and interrogates the measurements and analyses,has the potential to not only elucidate pathophysiological mechanisms in diseases by reproducing the phosphorylation state of samples,but also be useful for drug discovery,particularly for screening targeted kinases for potential drug kinase inhibitors.
文摘The aim of this paper is to study the effect of bradykinin(BK)on bradykinin-B2 receptor as well as the possible involved signal transduction pathways in cultured rat aortic vascular smooth muscle cells(VSMCs).Rat aortic VSMCs were cultured.Cells after 4–6 passages were used in the experiment.VSMCs were incubated with BK,BK+B2 receptor inhibitor(HOE-140),BK+MEK inhibitor(PD98059),BK+mitogen-activated protein kinase(MAPK)inhibitor(apigenin),BK+phosphoinosi-tide 3-kinase(PI3K)inhibitor(LY294002),and BK+Akt inhibitor to evaluate the expression of B2 receptor and phosphorylation of signaling molecules MAPK,Akt,and PI3K by Western blot.(1)BK markedly up-regulated the expression of B2 receptor in VSMC.(2)Apigenin,PD98059,Akt inhibitor,and LY294002 inhibited up-regulation of B2 receptor induced by BK.(3)Signal transduction pathways of MAPK and PI3K were involved in the up-regulation of B2 receptor by BK mediation.Results suggest that bradykinin can up-regulate the expression of B2 receptor in VSMCs.
基金This study was partially supported by a grant from the Scientific Research Fund for Capital Medicine Development (No.ZD 199911).
文摘It is well-known that risk for endometrial adenocarcinoma increases in patients with high level ofestrogen that is unopposed by progestin. And activation of extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3 kinase/protein kinase B (PI3K/PKB) pathway are responsible for hormone-dependent cell growth in endometrial carcinoma. PI3K produces phosphatidylinositol- 3-phosphates by phosphory-lating the D3 hydroxyl of phosphoinositides, leading to membrane translocation of PKB,
基金Supported by A start-up grant from Thomas Jefferson Universityand National Cancer Institute Grant,CA162201
文摘Colorectal cancer (CRC) has an apparent hereditary component, as evidenced by the well-characterized genetic syndromes and family history associated with the increased risk of this disease. However, in a large fraction of CRC cases, no known genetic syndrome or family history can be identified, suggesting the presence of “missing heritability” in CRC etiology. The genome-wide association study (GWAS) platform has led to the identification of multiple replicable common genetic variants associated with CRC risk. These newly discovered genetic variations might account for a portion of the missing heritability. Here, we summarize the recent GWASs related to newly identified genetic variants associated with CRC risk and clinical outcome. The findings from these studies suggest that there is a lack of understanding of the mechanism of many single nucleotide polymorphisms (SNPs) that are associated with CRC. In addition, the utility of SNPs as prognostic markers of CRC in clinical settings remains to be further assessed. Finally, the currently validated SNPs explain only a small fraction of total heritability in complex-trait diseases like CRC. Thus, the “missing heritability” still needs to be explored further. Future epidemiological and functional investigations of these variants will add to our understanding of CRC pathogenesis, and may ultimately lead to individualized strategies for prevention and treatment of CRC.