Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research w...Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research was to investigate the progression of cumulative failure within a cracked rock formation,considering the combined effects of precipitation and excavation activities.The study was conducted in the Huangniuqian eastern mining area of the Dexing Copper Mine in Jiangxi Province,China.An engineering geological investigation was conducted,a physical model experiment was performed,numerical calculations and theoretical analysis were conducted using the matrix discrete element method(Mat-DEM),and the deformation characteristics and the effect of the slope angle of a fractured rock mass under different scenarios were examined.The failure and instability mechanisms of the fractured rock mass under three slope angle models were analyzed.The experimental results indicate that as the slope angle increases,the combined effect of rainfall infiltration and excavation unloading is reduced.A novel approach to simulating unsaturated seepage in a rock mass,based on the van Genuchten model(VGM),has been developed.Compared to the vertical displacement observed in a similar physical experiment,the average relative errors associated with the slope angles of 45,50,and 55were 2.094%,1.916%,and 2.328%,respectively.Accordingly,the combined effect of rainfall and excavation was determined using the proposed method.Moreover,the accuracy of the numerical simulation was validated.The findings contribute to the seepage field in a meaningful way,offering insight that can inform and enhance existing methods and theories for research on the underlying mechanism of ultra-high and steep rock slope instability,which can inform the development of more effective risk management strategies.展开更多
It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China...It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China Sea.In this study,a multiphysical-field coupling model,combined with actual exploration drilling data and the mechanical experimental data of hydrate cores in the laboratory,was established to investigate the physical and mechanical properties of low-permeability reservoirs with different slope angles during 5-year hydrate production by the depressurization method via a horizontal well.The result shows that the permeability of reservoirs severely affects gas production rate,and the maximum gas production amount of a 20-m-long horizontal well can reach186.8 m3/day during the 5-year hydrate production.Reservoirs with smaller slope angles show higher gas production rates.The depressurization propagation and hydrate dissociation mainly develop along the direction parallel to the slope.Besides,the mean effective stress of reservoirs is concentrated in the near-wellbore area with the on-going hydrate production,and gradually decreases with the increase of the slope angle.Different from the effective stress distribution law,the total reservoir settlement amount first decreases and then increases with the increase of the slope angle.The maximum settlement of reservoirs with a 0°slope angle is up to 3.4 m,and the displacement in the near-wellbore area is as high as2.2 m after 5 years of hydrate production.It is concluded that the pore pressure drop region of low-permeability reservoirs in the South China Sea is limited,and various slope angles further lead to differences in effective stress and strain of reservoirs during hydrate production,resulting in severe uneven settlement of reservoirs.展开更多
The present study reflects upon the results of substantial program of two-dimensional Finite Element Method (FEM) numerical analyses of the open pit that links to slope angle optimization associated with the safety ...The present study reflects upon the results of substantial program of two-dimensional Finite Element Method (FEM) numerical analyses of the open pit that links to slope angle optimization associated with the safety factor of the pit slope of a coal mine in Bangladesh. In the present analyses, two types of models have been presented. The first model estimates safety factor without seismic effect on the overall pit slope of the model; the second model incorporates safety factor with seismic stability of the model. The calculated optimum slope angle of the first model is 31% with a rational safety factor of 1.51, prior to the seismic effect. However, the value is reduced to 0.93, 0.82, and 0.72, after we applies the seismic effect in the second model with M6, M6.5, and M7, respectively. Finally, our modeling results emphasize that for the case of the proposed Phulbari coalmine, there is extremely high prospect for causing massive slope failure along the optimum pit slope angle with 31% if the mine area felt seismic shaking, like the Sikkim (in northern India) earthquake with M6.9 on September 18, 2011.展开更多
The ride-up and pile-up of sea ice have effects on the ice load of marine structure. The ride-up angle is an important parameter to study the process of ride-up and to determine the possibility of the ride-up to occur...The ride-up and pile-up of sea ice have effects on the ice load of marine structure. The ride-up angle is an important parameter to study the process of ride-up and to determine the possibility of the ride-up to occur. Some conclusions about the ride-up angle are drawn based on field-survey data in this paper. Thirty hummocks with full structure, formed by 0.4-1.6 cm ice layers, were investigated in the Liaohe Estuary of the north of Liaodong Bay. After analyzing the cross-sections of the pile-up body, some concfusions on the ride-up angle are reached. The results indicate that whether the ride-up occurs or not is associated with the slope angle of the hummock. If the slope angle is greater than 10.31°, the ride-up can take place. With the development of riding-up and piling-up, if the slope angle increases to 40.0°, the climbing-up process will stop and the drifting ice begins to accumulate in front of the hummock. The climbing process does not continue until a new slope angle, which is less than 28.0°, is formed. Meanwhile, the forming process of hummocks, which are made up of 10.0 cm or 22.0 cm ice layers, is proved to follow the rule.展开更多
Based on the exploration of the engineering geology and the rock mechan-ics testing, limit equilibrium analysis method was adopted to calculate the stability of the Huogeqi Copper Mine slope, the results show that the...Based on the exploration of the engineering geology and the rock mechan-ics testing, limit equilibrium analysis method was adopted to calculate the stability of the Huogeqi Copper Mine slope, the results show that the original slope angle is too con-servative and the slope have the potential of more preferable slope angle. In order to discuss the possibility of slope angle enhancement, sensitivity analysis of parameters related to limit state slope was made. Quantitatively determined angle value of the add-ing and the optimal slope angle was obtained. The study having performed showed that it is not only useful for the safety control of open-pit mine slope but also for the open-pit mine design for the similar geological condition.展开更多
The optimum design of the highway excavation slope angle is one of the most important problems to the highway construction and to the slope improvement. The Dawu Section of Jingzhu (Beijing Zhuhai) Highway is taken a...The optimum design of the highway excavation slope angle is one of the most important problems to the highway construction and to the slope improvement. The Dawu Section of Jingzhu (Beijing Zhuhai) Highway is taken as an example to illustrate the study method for excavation slope angle design. The analysis of the engineering condition from different angles with different factors shows that the stability of the slope is calculated by using residual pushing force and the Sarma method. Then the sensitive analysis of the slope stability is conducted by using residual pushing force method. Finally, the optimum angle of design is presented on the precondition of ensuring the whole stability of slope and the economic reasonability. The study results show that the most sensitive factors are the shear strength parameter and the seismic force, and that the optimum excavation slope angle is 60°.展开更多
Complicated terrain was considered and simplified as two-dimensional(2D)terrain in a dynamical downscaling model and a parametric wind field model for typhoons developed by the Shanghai Typhoon Institute.The 2D terrai...Complicated terrain was considered and simplified as two-dimensional(2D)terrain in a dynamical downscaling model and a parametric wind field model for typhoons developed by the Shanghai Typhoon Institute.The 2D terrain was further modeled as uphill and downhill segments with various slope angles relative to the incoming flow.The wind speed ratios and pressure characteristics around the 2D terrain were numerically and experimentally investigated in this study.Aerodynamic characteristics of the 2D terrain with a limitedlength upper surface were first investigated in the wind tunnel with sheared incoming flow.The corresponding numerical investigation was also conducted by using the commercial computational fluid dynamics code FLUENT with the realizable k-ε turbulence model.Special efforts were made to maintain the inflow boundary conditions throughout the computational domain.Aerodynamic characteristics were then investigated for the ideal 2D terrain with an unlimited-length upper surface by using a numerical method with uniform incoming flow.Comparisons of the different terrain models and incoming flows from the above studies show that the wind pressure coefficients and the wind speed ratios are both affected by the slope angle.A negative peak value of the wind pressure coefficients exists at the escarpment point,where flow separation occurs,for the uphill and downhill terrain models with slope angles of 40°and 30°,respectively.Correspondingly,the streamwise wind speed ratios at the points above the escarpment point for the uphill terrain model increase with increasing slope angle,reach their peak values at the slope angle of a=40°and decrease when the slope angle increases further.For the downhill terrain model,similar trends exist at the points above the escarpment point with the exception that the critical slope angle is a=30°.展开更多
This paper investigates the seismic responses of slopes in coral sand taken from a reef island in the South China Sea.A series of shaking table model tests were conducted to explore the responses of soil acceleration,...This paper investigates the seismic responses of slopes in coral sand taken from a reef island in the South China Sea.A series of shaking table model tests were conducted to explore the responses of soil acceleration,excess pore pressure,and slope displacement for three slope angles(5°,10°,and 15°).The results show that the excess pore pressure ratio of the slope decreases due to an increase in the initial shear stress when the slope angle increases.The acceleration response of the soil increases with the increase of the slope angle.The slope displacement presents substantial increments as the excess pore pressure ratio increases.In addition,the lateral movement,and slope settlement present substantial increments as the slope angle increases.No liquefaction is observed under a dynamic excitation of 0.2 g in the coral sand site.Under a dynamic excitation of 0.4 g,the site liquefies quickly,the acceleration amplification factor decreases,and the lateral movement and the settlement of the slope surface both increase compared with that under 0.2 g excitation.For the slope with an angle of 15°at 0.4 g,the flow distance of the sand strip increase by 289.47%compared with that in the 5°case.The lateral movement of the slope surface near the water level line is substantially larger than that away from the water line.The largest settlement is observed near the middle section of the slope(below the water level)under a dynamic excitation of 0.2 g.In contrast,the largest settlement under a dynamic excitation of 0.4 g occurs at the top of the slope.展开更多
The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the ...The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the slope-toe impedance effects and momentum-transfer mechanisms have not been completely explained by theoretical analyses,numerical simulations,or field investigations.To study the mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradations we conducted model experiments that recorded the motion of rapid and long-runout rockslides or avalanches.Flume tests were conducted using slope angles of 25°,35°,45°,and 55° and three particle size gradations.The resulting mass-front motions consisted of three stages:acceleration,velocity maintenance,and deceleration.The existing methods of velocity prediction could not explain the slowing effect of the slope toe or the momentum-transfer steady velocity stage.When the slope angle increased from 25° to 55°,the mass-front velocities dropped significantly to between 44.4% and59.6% of the peak velocities and energy lossesincreased from 69.1% to 83.7% of the initial,respectively.The velocity maintenance stages occurred after the slope-toe and mass-front velocity fluctuations.During this stage,travel distances increased as the angles increased,but the average velocity was greatest at 45°.At a slope angle of 45°,as the median particle size increased,energy loss around the slope toe decreased,the efficiency of momentum transfer increased,and the distance of the velocity maintenance stage increased.We presented an improved average velocity formula for granular flow and a geometrical model of the energy along the flow line.展开更多
The near-seabed multichannel seismic exploration systems have yielded remarkable successes in marine geological disaster assessment,marine gas hydrate investigation,and deep-sea mineral exploration owing to their high...The near-seabed multichannel seismic exploration systems have yielded remarkable successes in marine geological disaster assessment,marine gas hydrate investigation,and deep-sea mineral exploration owing to their high vertical and horizontal resolution.However,the quality of deep-towed seismic imaging hinges on accurate source-receiver positioning information.In light of existing technical problems,we propose a novel array geometry inversion method tailored for high-resolution deep-towed multichannel seismic exploration systems.This method is independent of the attitude and depth sensors along a deep-towed seismic streamer,accounting for variations in seawater velocity and seabed slope angle.Our approach decomposes the towed line array into multiline segments and characterizes its geometric shape using the line segment distance and pitch angle.Introducing optimization parameters for seawater velocity and seabed slope angle,we establish an objective function based on the model,yielding results that align with objective reality.Employing the particle swarm optimization algorithm enables synchronous acquisition of optimized inversion results for array geometry and seawater velocity.Experimental validation using theoretical models and practical data verifies that our approach effectively enhances source and receiver positioning inversion accuracy.The algorithm exhibits robust stability and reliability,addressing uncertainties in seismic traveltime picking and complex seabed topography conditions.展开更多
A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slo...A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slope intersect at the toe of the slope. Compared with the strength reduction (SR) method, finite element limit analysis method, and the SR method based on Davis algorithm, the new method is suitable for determining the slope stability and limit slope angle (LSA). The optimal slope shape is determined based on a series of slope heights and LSA values, which increases the LSA by 2.45°-11.14° and reduces an invalid overburden amount of rocks by 9.15%, compared with the space mechanics theory. The proposed method gives the objective quantification index of instability criterion, and results in a significant engineering economy.展开更多
The influence of laser beam divergence angle on the positioning accuracy of scanning airborne light detection and ranging (LIDAR) is analyzed and simulated. Based on the data process and positioning principle of air...The influence of laser beam divergence angle on the positioning accuracy of scanning airborne light detection and ranging (LIDAR) is analyzed and simulated. Based on the data process and positioning principle of airborne LIDAR, the errors from pulse broadening induced by laser beam di vergence angle are modeled and qualitatively analyzed for different terrain surfaces. Simulated results of positioning errors and suggestions to reduce them are given for the flat surface, the downhill of slope surface, and the uphill surface.展开更多
Lateral dispersion significantly directs the assessment of rockfall hazard and design of countermeasures. In the present study, the dependence of lateral dispersion on different controlling factors has been systematic...Lateral dispersion significantly directs the assessment of rockfall hazard and design of countermeasures. In the present study, the dependence of lateral dispersion on different controlling factors has been systematically evaluated by performing laboratory tests using three different rock block types, namely circular block, and two types of elliptical block. The three types of rock block are released onto an inclined surface with the identical initial status. Parallel, anti-parallel, and oblique impact tests set at slope angles of 22.5° and 45°are conducted to study the block-slope interaction of rockfall. Lateral dispersion of rockfall is less influenced by the block shape for the oblique impact, while the post-impact behaviors are greatly affected by the block shape. The key factors influencing the deviation of the post-impact trajectory direction are the slope angle (θ) and direction difference (Δφ). An empirical model is then developed to characterize the deviation distribution of lateral dispersion by 5th and 95th percentile values with the inclusion of the two key factors. Linear function can be used to describe the 5th percentile boundary, while hyperbolic function is good for the 95th percentile boundary, which need to be validated by field tests in the subsequent research.展开更多
The aim of the research work is to increase the yield of cotton fiber by improving the processing technology of germinated seeds, to improve the quality indicators of seeds and lint. In order to achieve this goal, a m...The aim of the research work is to increase the yield of cotton fiber by improving the processing technology of germinated seeds, to improve the quality indicators of seeds and lint. In order to achieve this goal, a mesh surface device was created to sort the seeds into fractions. Sorting technology was developed on this device and operating modes were determined. In addition, the law of surface distribution of the fractions separated from the cotton stream moving along the surface of the net was determined, and based on the results of practical and theoretical research, a mode of sorting of cotton seeds was developed. As a result, differential equations of the law of oscillation of seeds on parallel bases, taking into account the angle of inclination for the movement of cotton seeds on the sorting surface, were constructed and programmed on a computer to construct the trajectory of seeds. On the basis of the laws of motion, the optimal value of the angle of inclination on the horizontal, which gives the state of sorting of seeds, as well as the values of the amplitude and frequency of vibrations, was determined.展开更多
Traditionally,an empirical speed-up factor was introduced to reflect the effects of nonflat terrain on near-surface wind speeds.In this paper,the resistance effects of nonflat terrain are considered by introducing the...Traditionally,an empirical speed-up factor was introduced to reflect the effects of nonflat terrain on near-surface wind speeds.In this paper,the resistance effects of nonflat terrain are considered by introducing the terrain drag coefficient in the parametric wind field model for tropical cyclones(TCs)with a theoretical method.Terrain effects on wind fields are investigated in complex areas along the coastal zone in China under TC conditions.The results show that the terrain drag coefficient is the function of the slope angle and is sensitive to the spatial resolution.After including the resistance effect of nonflat terrain,the TC intensities weaken overall during landfall,with a slight enhancement near the coastal zone.The wind speeds outside the radius of the maximum wind speed decrease,while the wind speeds within the radius of the maximum wind speed increase.Both the TC eye and the radius of maximum wind speed shrink,which is more obvious when the TC center is entirely over land.As a result,the location and magnitude of the maximum wind speed are affected by the nonflat terrain.The changed structure of the wind fields demonstrates the necessity of considering the effects of nonflat terrain in simulating the wind fields under TC conditions.展开更多
基金the Research Fund of National Natural Science Foundation of China(NSFC)(Grant Nos.42477142 and 42277154)the Project of Slope Safety Control and Disaster Prevention Technology Innovation team of“Youth Innovation Talent Introduction and Education Plan”of Shandong Colleges and Universities(Grant No.Lu Jiao Ke Han[2021]No.51)。
文摘Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research was to investigate the progression of cumulative failure within a cracked rock formation,considering the combined effects of precipitation and excavation activities.The study was conducted in the Huangniuqian eastern mining area of the Dexing Copper Mine in Jiangxi Province,China.An engineering geological investigation was conducted,a physical model experiment was performed,numerical calculations and theoretical analysis were conducted using the matrix discrete element method(Mat-DEM),and the deformation characteristics and the effect of the slope angle of a fractured rock mass under different scenarios were examined.The failure and instability mechanisms of the fractured rock mass under three slope angle models were analyzed.The experimental results indicate that as the slope angle increases,the combined effect of rainfall infiltration and excavation unloading is reduced.A novel approach to simulating unsaturated seepage in a rock mass,based on the van Genuchten model(VGM),has been developed.Compared to the vertical displacement observed in a similar physical experiment,the average relative errors associated with the slope angles of 45,50,and 55were 2.094%,1.916%,and 2.328%,respectively.Accordingly,the combined effect of rainfall and excavation was determined using the proposed method.Moreover,the accuracy of the numerical simulation was validated.The findings contribute to the seepage field in a meaningful way,offering insight that can inform and enhance existing methods and theories for research on the underlying mechanism of ultra-high and steep rock slope instability,which can inform the development of more effective risk management strategies.
基金China Postdoctoral Science Foundation,Grant/Award Number:2020M681768Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20200653+1 种基金Fundamental Research Funds for the Central Universities,Grant/Award Number:2021GJZPY15National Natural Science Foundation of China,Grant/Award Number:42106210。
文摘It is important to study the effect of hydrate production on the physical and mechanical properties of low-permeability clayey–silty reservoirs for the largescale exploitation of hydrate reservoirs in the South China Sea.In this study,a multiphysical-field coupling model,combined with actual exploration drilling data and the mechanical experimental data of hydrate cores in the laboratory,was established to investigate the physical and mechanical properties of low-permeability reservoirs with different slope angles during 5-year hydrate production by the depressurization method via a horizontal well.The result shows that the permeability of reservoirs severely affects gas production rate,and the maximum gas production amount of a 20-m-long horizontal well can reach186.8 m3/day during the 5-year hydrate production.Reservoirs with smaller slope angles show higher gas production rates.The depressurization propagation and hydrate dissociation mainly develop along the direction parallel to the slope.Besides,the mean effective stress of reservoirs is concentrated in the near-wellbore area with the on-going hydrate production,and gradually decreases with the increase of the slope angle.Different from the effective stress distribution law,the total reservoir settlement amount first decreases and then increases with the increase of the slope angle.The maximum settlement of reservoirs with a 0°slope angle is up to 3.4 m,and the displacement in the near-wellbore area is as high as2.2 m after 5 years of hydrate production.It is concluded that the pore pressure drop region of low-permeability reservoirs in the South China Sea is limited,and various slope angles further lead to differences in effective stress and strain of reservoirs during hydrate production,resulting in severe uneven settlement of reservoirs.
文摘The present study reflects upon the results of substantial program of two-dimensional Finite Element Method (FEM) numerical analyses of the open pit that links to slope angle optimization associated with the safety factor of the pit slope of a coal mine in Bangladesh. In the present analyses, two types of models have been presented. The first model estimates safety factor without seismic effect on the overall pit slope of the model; the second model incorporates safety factor with seismic stability of the model. The calculated optimum slope angle of the first model is 31% with a rational safety factor of 1.51, prior to the seismic effect. However, the value is reduced to 0.93, 0.82, and 0.72, after we applies the seismic effect in the second model with M6, M6.5, and M7, respectively. Finally, our modeling results emphasize that for the case of the proposed Phulbari coalmine, there is extremely high prospect for causing massive slope failure along the optimum pit slope angle with 31% if the mine area felt seismic shaking, like the Sikkim (in northern India) earthquake with M6.9 on September 18, 2011.
文摘The ride-up and pile-up of sea ice have effects on the ice load of marine structure. The ride-up angle is an important parameter to study the process of ride-up and to determine the possibility of the ride-up to occur. Some conclusions about the ride-up angle are drawn based on field-survey data in this paper. Thirty hummocks with full structure, formed by 0.4-1.6 cm ice layers, were investigated in the Liaohe Estuary of the north of Liaodong Bay. After analyzing the cross-sections of the pile-up body, some concfusions on the ride-up angle are reached. The results indicate that whether the ride-up occurs or not is associated with the slope angle of the hummock. If the slope angle is greater than 10.31°, the ride-up can take place. With the development of riding-up and piling-up, if the slope angle increases to 40.0°, the climbing-up process will stop and the drifting ice begins to accumulate in front of the hummock. The climbing process does not continue until a new slope angle, which is less than 28.0°, is formed. Meanwhile, the forming process of hummocks, which are made up of 10.0 cm or 22.0 cm ice layers, is proved to follow the rule.
基金Supported by the National Nature Science Foundation of China(50074002)
文摘Based on the exploration of the engineering geology and the rock mechan-ics testing, limit equilibrium analysis method was adopted to calculate the stability of the Huogeqi Copper Mine slope, the results show that the original slope angle is too con-servative and the slope have the potential of more preferable slope angle. In order to discuss the possibility of slope angle enhancement, sensitivity analysis of parameters related to limit state slope was made. Quantitatively determined angle value of the add-ing and the optimal slope angle was obtained. The study having performed showed that it is not only useful for the safety control of open-pit mine slope but also for the open-pit mine design for the similar geological condition.
基金theNationalNaturalScienceFoundationofChina (No .40 0 72 0 85 )
文摘The optimum design of the highway excavation slope angle is one of the most important problems to the highway construction and to the slope improvement. The Dawu Section of Jingzhu (Beijing Zhuhai) Highway is taken as an example to illustrate the study method for excavation slope angle design. The analysis of the engineering condition from different angles with different factors shows that the stability of the slope is calculated by using residual pushing force and the Sarma method. Then the sensitive analysis of the slope stability is conducted by using residual pushing force method. Finally, the optimum angle of design is presented on the precondition of ensuring the whole stability of slope and the economic reasonability. The study results show that the most sensitive factors are the shear strength parameter and the seismic force, and that the optimum excavation slope angle is 60°.
基金The authors grateftilly acknowledge the support of the Ministry of Science and Technology of China(Grant Nos.2015CB452806 and 2018YFB1501104)the National Natural Science Foundation of China(Grant Nos.51408196 and 41805088)+1 种基金the Natural Science Foundation of Shanghai(Grant No.19ZR1469200)the Young Backbone Teacher Cultivation Program of Henan University of Technology.
文摘Complicated terrain was considered and simplified as two-dimensional(2D)terrain in a dynamical downscaling model and a parametric wind field model for typhoons developed by the Shanghai Typhoon Institute.The 2D terrain was further modeled as uphill and downhill segments with various slope angles relative to the incoming flow.The wind speed ratios and pressure characteristics around the 2D terrain were numerically and experimentally investigated in this study.Aerodynamic characteristics of the 2D terrain with a limitedlength upper surface were first investigated in the wind tunnel with sheared incoming flow.The corresponding numerical investigation was also conducted by using the commercial computational fluid dynamics code FLUENT with the realizable k-ε turbulence model.Special efforts were made to maintain the inflow boundary conditions throughout the computational domain.Aerodynamic characteristics were then investigated for the ideal 2D terrain with an unlimited-length upper surface by using a numerical method with uniform incoming flow.Comparisons of the different terrain models and incoming flows from the above studies show that the wind pressure coefficients and the wind speed ratios are both affected by the slope angle.A negative peak value of the wind pressure coefficients exists at the escarpment point,where flow separation occurs,for the uphill and downhill terrain models with slope angles of 40°and 30°,respectively.Correspondingly,the streamwise wind speed ratios at the points above the escarpment point for the uphill terrain model increase with increasing slope angle,reach their peak values at the slope angle of a=40°and decrease when the slope angle increases further.For the downhill terrain model,similar trends exist at the points above the escarpment point with the exception that the critical slope angle is a=30°.
基金supported by the National Natural Science Foundation of China(Grant Nos.41831282,51878103)the Fundamental Research Funds for the Central Universities(Grant No.2021CDJQY-042)the Postdoctoral innovative talents support program,Chongqing。
文摘This paper investigates the seismic responses of slopes in coral sand taken from a reef island in the South China Sea.A series of shaking table model tests were conducted to explore the responses of soil acceleration,excess pore pressure,and slope displacement for three slope angles(5°,10°,and 15°).The results show that the excess pore pressure ratio of the slope decreases due to an increase in the initial shear stress when the slope angle increases.The acceleration response of the soil increases with the increase of the slope angle.The slope displacement presents substantial increments as the excess pore pressure ratio increases.In addition,the lateral movement,and slope settlement present substantial increments as the slope angle increases.No liquefaction is observed under a dynamic excitation of 0.2 g in the coral sand site.Under a dynamic excitation of 0.4 g,the site liquefies quickly,the acceleration amplification factor decreases,and the lateral movement and the settlement of the slope surface both increase compared with that under 0.2 g excitation.For the slope with an angle of 15°at 0.4 g,the flow distance of the sand strip increase by 289.47%compared with that in the 5°case.The lateral movement of the slope surface near the water level line is substantially larger than that away from the water line.The largest settlement is observed near the middle section of the slope(below the water level)under a dynamic excitation of 0.2 g.In contrast,the largest settlement under a dynamic excitation of 0.4 g occurs at the top of the slope.
基金supported by the National Natural Science Foundation of China (Grant Nos.41272297,41401195)the Applied Basic Research Fund of the Science and Technology Department of Sichuan Province (2014JY0121)the Key Research Fund of the Education Department of Sichuan Province (14ZA0095)
文摘The mass-front velocities of granular flows results from the joint action of particle size gradations and the underlying surfaces.However,because of the complexity of friction during flow movement,details such as the slope-toe impedance effects and momentum-transfer mechanisms have not been completely explained by theoretical analyses,numerical simulations,or field investigations.To study the mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradations we conducted model experiments that recorded the motion of rapid and long-runout rockslides or avalanches.Flume tests were conducted using slope angles of 25°,35°,45°,and 55° and three particle size gradations.The resulting mass-front motions consisted of three stages:acceleration,velocity maintenance,and deceleration.The existing methods of velocity prediction could not explain the slowing effect of the slope toe or the momentum-transfer steady velocity stage.When the slope angle increased from 25° to 55°,the mass-front velocities dropped significantly to between 44.4% and59.6% of the peak velocities and energy lossesincreased from 69.1% to 83.7% of the initial,respectively.The velocity maintenance stages occurred after the slope-toe and mass-front velocity fluctuations.During this stage,travel distances increased as the angles increased,but the average velocity was greatest at 45°.At a slope angle of 45°,as the median particle size increased,energy loss around the slope toe decreased,the efficiency of momentum transfer increased,and the distance of the velocity maintenance stage increased.We presented an improved average velocity formula for granular flow and a geometrical model of the energy along the flow line.
基金supported by the special funds of Laoshan Laboratory(No.LSKJ202203604)the National Key Research and Development Program of China(No.2016 YFC0303901).
文摘The near-seabed multichannel seismic exploration systems have yielded remarkable successes in marine geological disaster assessment,marine gas hydrate investigation,and deep-sea mineral exploration owing to their high vertical and horizontal resolution.However,the quality of deep-towed seismic imaging hinges on accurate source-receiver positioning information.In light of existing technical problems,we propose a novel array geometry inversion method tailored for high-resolution deep-towed multichannel seismic exploration systems.This method is independent of the attitude and depth sensors along a deep-towed seismic streamer,accounting for variations in seawater velocity and seabed slope angle.Our approach decomposes the towed line array into multiline segments and characterizes its geometric shape using the line segment distance and pitch angle.Introducing optimization parameters for seawater velocity and seabed slope angle,we establish an objective function based on the model,yielding results that align with objective reality.Employing the particle swarm optimization algorithm enables synchronous acquisition of optimized inversion results for array geometry and seawater velocity.Experimental validation using theoretical models and practical data verifies that our approach effectively enhances source and receiver positioning inversion accuracy.The algorithm exhibits robust stability and reliability,addressing uncertainties in seismic traveltime picking and complex seabed topography conditions.
基金Project(JJKH20180450KJ)supported by Education Department of Jilin Province,ChinaProject(20166008)supported by the Science and Technology Bureau of Jilin Province,China
文摘A new method is proposed for slope optimization design based on the limit curve method, where the slope is in the limit equilibrium state when the limit slope curve determined by the slip-line field theory and the slope intersect at the toe of the slope. Compared with the strength reduction (SR) method, finite element limit analysis method, and the SR method based on Davis algorithm, the new method is suitable for determining the slope stability and limit slope angle (LSA). The optimal slope shape is determined based on a series of slope heights and LSA values, which increases the LSA by 2.45°-11.14° and reduces an invalid overburden amount of rocks by 9.15%, compared with the space mechanics theory. The proposed method gives the objective quantification index of instability criterion, and results in a significant engineering economy.
基金Supported by the National Basic Research Program of China("973"Program)(2009CB72400401A)
文摘The influence of laser beam divergence angle on the positioning accuracy of scanning airborne light detection and ranging (LIDAR) is analyzed and simulated. Based on the data process and positioning principle of airborne LIDAR, the errors from pulse broadening induced by laser beam di vergence angle are modeled and qualitatively analyzed for different terrain surfaces. Simulated results of positioning errors and suggestions to reduce them are given for the flat surface, the downhill of slope surface, and the uphill surface.
基金support from the Natural Science Foundation of China(Grant Nos.42177165 and 41672302)the Opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology)(Grant No.SKLGP2018K018).
文摘Lateral dispersion significantly directs the assessment of rockfall hazard and design of countermeasures. In the present study, the dependence of lateral dispersion on different controlling factors has been systematically evaluated by performing laboratory tests using three different rock block types, namely circular block, and two types of elliptical block. The three types of rock block are released onto an inclined surface with the identical initial status. Parallel, anti-parallel, and oblique impact tests set at slope angles of 22.5° and 45°are conducted to study the block-slope interaction of rockfall. Lateral dispersion of rockfall is less influenced by the block shape for the oblique impact, while the post-impact behaviors are greatly affected by the block shape. The key factors influencing the deviation of the post-impact trajectory direction are the slope angle (θ) and direction difference (Δφ). An empirical model is then developed to characterize the deviation distribution of lateral dispersion by 5th and 95th percentile values with the inclusion of the two key factors. Linear function can be used to describe the 5th percentile boundary, while hyperbolic function is good for the 95th percentile boundary, which need to be validated by field tests in the subsequent research.
文摘The aim of the research work is to increase the yield of cotton fiber by improving the processing technology of germinated seeds, to improve the quality indicators of seeds and lint. In order to achieve this goal, a mesh surface device was created to sort the seeds into fractions. Sorting technology was developed on this device and operating modes were determined. In addition, the law of surface distribution of the fractions separated from the cotton stream moving along the surface of the net was determined, and based on the results of practical and theoretical research, a mode of sorting of cotton seeds was developed. As a result, differential equations of the law of oscillation of seeds on parallel bases, taking into account the angle of inclination for the movement of cotton seeds on the sorting surface, were constructed and programmed on a computer to construct the trajectory of seeds. On the basis of the laws of motion, the optimal value of the angle of inclination on the horizontal, which gives the state of sorting of seeds, as well as the values of the amplitude and frequency of vibrations, was determined.
基金supported by the Key Program of National Natural Science Foundation of China (Grant No.U2142206)the Shanghai Science and Technology Commission Project (Grant No.23DZ204701)the Natural Science Foundation of Shanghai (Grant No.19ZR1469200).
文摘Traditionally,an empirical speed-up factor was introduced to reflect the effects of nonflat terrain on near-surface wind speeds.In this paper,the resistance effects of nonflat terrain are considered by introducing the terrain drag coefficient in the parametric wind field model for tropical cyclones(TCs)with a theoretical method.Terrain effects on wind fields are investigated in complex areas along the coastal zone in China under TC conditions.The results show that the terrain drag coefficient is the function of the slope angle and is sensitive to the spatial resolution.After including the resistance effect of nonflat terrain,the TC intensities weaken overall during landfall,with a slight enhancement near the coastal zone.The wind speeds outside the radius of the maximum wind speed decrease,while the wind speeds within the radius of the maximum wind speed increase.Both the TC eye and the radius of maximum wind speed shrink,which is more obvious when the TC center is entirely over land.As a result,the location and magnitude of the maximum wind speed are affected by the nonflat terrain.The changed structure of the wind fields demonstrates the necessity of considering the effects of nonflat terrain in simulating the wind fields under TC conditions.