The casing deformation prevention technology based on the optimization of cement slurry is proposed to reduce the casing deformation of shale oil and gas wells during hydraulic fracturing. In this paper, the fracture ...The casing deformation prevention technology based on the optimization of cement slurry is proposed to reduce the casing deformation of shale oil and gas wells during hydraulic fracturing. In this paper, the fracture mechanism of hollow particles in cement sheath was firstly analyzed by discrete element method, and the effect of hollow particles in cement on casing deformation was investigated by laboratory experiment method. Finally, field test was carried out to verify the improvement effect of the casing deformation based on cement slurry modification. The results show that the formation displacement can be absorbed effectively by hollow particles inside the cement transferring the excessive deformation away from casing. The particles in the uncemented state provide deformation space during formation slipping. The casing with diameter of 139.7 mm could be passed through by bridge plug with the diameter of 99 mm when the mass ratio of particle/cement reaches 1:4. According to the field test feedback, the method based on optimization of cement slurry can effectively reduce the risk of casing deformation, and the recommended range of hollow microbeads content in the cement slurry is between 15% and 25%.展开更多
The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of...The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of packed spheres under an alternating electric field is simulated,and the movement mechanism of catalyst particles is analysed.An"effective contact point"model is derived to predict the adsorption of filler contact points on catalyst particles under the alternating electric field,and the model is validated by simulations and experiments.The numerical calculation and experimental results indicate that the electrical properties of the filler spheres,the filler angleθ,and the frequency f of the alternating electric field affect the adsorption of catalyst particles.As the frequency of the electric field increases,the particle removal efficiency of the high-conductivity filler(silicon carbide)increases and then settles,and the separation efficiency of the low-conductivity filler(glass,zirconia)is not sensitive to the change in electric field frequency.展开更多
Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In thi...Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In this study,the slurry electrolysis technique was used to recover high-purity Fe powder from IREMR.The effects of IREMR and H2SO4 mass ratio,current density,reaction temper-ature,and electrolytic time on the leaching and current efficiencies of Fe were studied.According to the results,high-purity Fe powder can be recovered from the cathode plate,and the slurry electrolyte can be recycled.The leaching efficiency,current efficiency,and purity of Fe reached 92.58%,80.65%,and 98.72wt%,respectively,at a 1:2.5 mass ratio of H2SO4 and IREMR,reaction temperature of 60℃,electric current density of 30 mA/cm^(2),and reaction time of 8 h.In addition,vibrating sample magnetometer(VSM)analysis showed that the coercivity of electrolytic iron powder was 54.5 A/m,which reached the advanced magnetic grade of electrical pure-iron powder(DT4A coercivity standard).The slurry electrolytic method provides fundamental support for the industrial application of Fe resource recovery in IRMER.展开更多
Slurry electrolysis(SE),as a hydrometallurgical process,has the characteristic of a multitank series connection,which leads to various stirring conditions and a complex solid suspension state.The computational fluid d...Slurry electrolysis(SE),as a hydrometallurgical process,has the characteristic of a multitank series connection,which leads to various stirring conditions and a complex solid suspension state.The computational fluid dynamics(CFD),which requires high computing resources,and a combination with machine learning was proposed to construct a rapid prediction model for the liquid flow and solid concentration fields in a SE tank.Through scientific selection of calculation samples via orthogonal experiments,a comprehensive dataset covering a wide range of conditions was established while effectively reducing the number of simulations and providing reasonable weights for each factor.Then,a prediction model of the SE tank was constructed using the K-nearest neighbor algorithm.The results show that with the increase in levels of orthogonal experiments,the prediction accuracy of the model improved remarkably.The model established with four factors and nine levels can accurately predict the flow and concentration fields,and the regression coefficients of average velocity and solid concentration were 0.926 and 0.937,respectively.Compared with traditional CFD,the response time of field information prediction in this model was reduced from 75 h to 20 s,which solves the problem of serious lag in CFD applied alone to actual production and meets real-time production control requirements.展开更多
Take after the advantages of lithium-ion battery (LIB) and redox flow battery (RFB), semi-solid flow battery (SSFB) is a promising electrochemical energy storage device in renewable energy utilization. The flowable sl...Take after the advantages of lithium-ion battery (LIB) and redox flow battery (RFB), semi-solid flow battery (SSFB) is a promising electrochemical energy storage device in renewable energy utilization. The flowable slurry electrode realizes decouple of energy and power density, while it also brings about new challenge to SSFBs, electron transport between active material and the out circuit. In this consideration, three types of current collectors (CCs) are applied to study the resistance and electrochemical performances of slurry cathodes within pouch cells for the first time. It proves that the electronic resistance (Re) between slurry electrode and the CC plays a decisive role in SSFB operation, and it is so large when Al foil is adopted that the cell cannot even work. Contact angle between Ketjen black (KB) slurry without active material (AM) and the CC is a preliminarily sign for the Re, the smaller the angle, the lower the resistance, and the better electrochemical performance of the cell.展开更多
The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge wit...The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge with coal–water slurry(CWS)and generate resourceful fuel.In this study,a novel five-nozzle gasifier reactor was analyzed by means of a CFD(Computational fluid dynamic)method.Among several influential factors,special attention was paid to the height-to-diameter ratio of the gasifier and the mixing ratio of oil sludge,which are known to have a significant impact on the flow field,temperature distribution and gasifier performances.According to the numerical results,the optimal height-to-diameter ratio and oil mixing ratio are about 2.4:1 and 20%,respectively.Furthermore,the carbon conversion rate can become as high as 98.55%with the hydrolysis rate reaching a value of 53.88%.The consumption of raw coal and oxygen is generally reduced,while the effective gas production is increased to 50.93 mol/%.展开更多
Catalytic cracking oil slurry is a by-product of catalytic cracking projects,and the efficient conversion and sustainable utilization of this material are issues of continuous concern in the petroleum refining industr...Catalytic cracking oil slurry is a by-product of catalytic cracking projects,and the efficient conversion and sustainable utilization of this material are issues of continuous concern in the petroleum refining industry.In this study,oxygen-enriched activated carbon is prepared using a one-step KOH activation method with catalytic cracking oil slurry as the raw material.The as-prepared oil slurry-based activated carbon exhibits a high specific surface area of 2102 m^(2)/g,welldefined micropores with an average diameter of 2 nm,and a rich oxygen doping content of 32.97%.The electrochemical performance of the nitrogen-doped porous carbon is tested in a three-electrode system using a 6 mol/L KOH solution as the electrolyte.It achieves a specific capacitance of up to 230 F/g at a current density of 1 A/g.Moreover,the capacitance retention rate exceeds 89%after 10000 charge and discharge cycles,demonstrating excellent cycle stability.This method not only improves the utilization efficiency of industrial fuel waste but also reduces the production cost of supercapacitor electrode materials,thereby providing a simple and effective strategy for the resource utilization of catalytic cracking oil slurries.展开更多
A self-developed forced convection rheoforming (FCR) machine for the preparation of light alloy semisolid slurry was introduced. The microstructure characteristics of 7075 aluminium alloy semisolid slurry at differe...A self-developed forced convection rheoforming (FCR) machine for the preparation of light alloy semisolid slurry was introduced. The microstructure characteristics of 7075 aluminium alloy semisolid slurry at different stirring speeds prepared by the FCR process were analyzed. The experimental results suggest that with the increase of the stirring speed, the mean grain size of the semisolid decreases and the shape factor as well as the number of primary grains increase. Meanwhile, the preparation process of semisolid slurry was numerically simulated. The flow characteristics of the melt in the device and the effect of the stirring speed on temperature field and solid fraction of the melt were investigated. The simulated results show that during the preparation process of semisolid slurry, there is a complex convection within the FCR device that obviously changes the temperature field distribution and solid fraction of the melt. When the convection intensity increases, the scope of the undercooling gradient of the melt is reduced and temperature distribution is improved.展开更多
[Objective] The paper aimed to study highly efficient utilization of biogas slurry and the effect of highly efficient biogas slurry on vegetables,so as to provide basis for wide and effective application of biogas slu...[Objective] The paper aimed to study highly efficient utilization of biogas slurry and the effect of highly efficient biogas slurry on vegetables,so as to provide basis for wide and effective application of biogas slurry.[Method] Using secondary aerobic fermentation technology,a small amount of humic acid was added to biogas slurry to enhance the biological activity of biogas slurry.Through greenhouse experiment,the effect of highly efficient nutrient solution of biogas slurry on yield and quality of green pepper,tomato and cucumber was studied.[Result] Compared with control and traditional application of biogas slurry,application of highly efficient nutrient solution of biogas slurry increased the yield of green pepper,tomato and cucumber,and the increase extents were 12.4%,47.4%,19.9% and 2.7%,15.9%,9.1%,respectively.Compared with traditional application of biogas slurry,application of highly efficient nutrient solution of biogas slurry significantly increased Vc content of green pepper and cucumber with the increase extent of 16.8% and 43.8%,respectively.[Conclusion] Application of highly efficient nutrient solution of biogas slurry can effectively promote the yield of green pepper,tomato and cucumber and change the qualities of vegetables,and significantly enhance the biological activity of biogas slurry.展开更多
The semi-solid slurry of 7075 aluminum alloy was prepared by a serpentine pouring channel (SCP). Influences of pouring temperature and the number of turns on the microstructure of semi-solid 7075 alloy slurry were i...The semi-solid slurry of 7075 aluminum alloy was prepared by a serpentine pouring channel (SCP). Influences of pouring temperature and the number of turns on the microstructure of semi-solid 7075 alloy slurry were investigated. The results demonstrated that the semi-solid 7075 aluminum alloy slurry with satisfied quality could be generated by a serpentine pouring channel when the pouring temperature was in the range of 680-700 ℃. At a given pouring temperature, the equivalent size of the primaryα(Al) grains decreased and the shape factor increased with the increase of the number of turns. During the slurry preparation of semi-solid 7075 aluminum alloy, the flow direction of alloy melt changed many times when it flowed in a curved and closed serpentine channel. With the effect of“stirring”in it , the primary nuclei gradually evolved into spherical and near-spherical grains.展开更多
The semi-solid slurry of A380 aluminum alloy was prepared by the serpentine channel. The effects of pouring temperature, curve number and curve diameter of the serpentine channel on the microstructure of the semi-soli...The semi-solid slurry of A380 aluminum alloy was prepared by the serpentine channel. The effects of pouring temperature, curve number and curve diameter of the serpentine channel on the microstructure of the semi-solid A380 aluminum alloy slurry were investigated. The results show that the satisfactory semi-solid A380 aluminum alloy slurry could be obtained when the pouring temperature ranged from 630 to 650 °C. Under the same conditions, increasing the curve number or reducing the curve diameter of the serpentine channel would decrease the average diameter and increase the shape factor of the primary α(Al) grains. The "self-stirring" of the alloy melt in the serpentine channel was beneficial to the ripening of the dendrites and the spheroidizing of the primary α(Al) grains.展开更多
Semi-solid 7075 Al slurry was prepared by inverted cone-shaped pouring channel process (ICSPC) and temperature homogenization (TH) treatment was combined to make the slurry uniform and have a controllable solid fr...Semi-solid 7075 Al slurry was prepared by inverted cone-shaped pouring channel process (ICSPC) and temperature homogenization (TH) treatment was combined to make the slurry uniform and have a controllable solid fraction suitable for the follow-up rheocasting. The influence of cooling rate on the microstructure evolution of primary α(Al) during TH treatment was investigated. The results show that as the cooling rate of the slurry after being prepared reduces, the growth of primaryα(Al) in the slurry tends to be nearly spherical and the uniformity of the organization is also enhanced. This may be due to the fact that lower cooling rate plays an important role in achieving the uniformity of temperature and composition in the remaining liquid, which is crucial to the formation of the spherical and homogeneous microstructure. However, a too low cooling rate will lead to a significant increase in grain growth time, which makes too coarse grains and more particles coalesce, so a certain abnormal growth of grain appears and the shape factor decreases slightly.展开更多
The semi-solid slurry of AZ91 D magnesium alloy was prepared by gas bubbling process.The effect of processing parameters,including gas flow rate,cooling rate and stirring end temperature,on microstructure of AZ91 D se...The semi-solid slurry of AZ91 D magnesium alloy was prepared by gas bubbling process.The effect of processing parameters,including gas flow rate,cooling rate and stirring end temperature,on microstructure of AZ91 D semi-solid slurry was investigated.With increasing the gas flow rate from 0 to 5 L/min,the average size of primary α-Mg particles decreases from 119.1 to77.2μm and the average shape factor increases continuously from 0.1 to 0.596.The formation of non-dendritic primary α-Mg particles during gas bubbling is the result of combined effects of dendrite fragmentation and copious nucleation.With increasing the cooling rate from 3.6 to 14.6℃/min,the average particle size of primary α-Mg phase decreases from 105.0 to 68.1μm while the average shape factor peaks at 9.1℃/min.Both high and low cooling rates can induce dendritic growth of primary α-Mg particles.Changing the stirring end temperature from 590 to 595℃ has little effect on the average size and shape factor of primary α-Mg particles in AZ91 D semi-solid slurry.The insensitivity of semi-solid microstructures to the stirring end temperature is attributed to the sufficient quantity of primary particles formed in the melt.展开更多
[Objective] This study was to provide scientific basis for the security application of biogas slurry in agriculture through the analysis on the security risk of nu- trients and heavy metals of biogas slurry in agricul...[Objective] This study was to provide scientific basis for the security application of biogas slurry in agriculture through the analysis on the security risk of nu- trients and heavy metals of biogas slurry in agricultural application. [Method] The components of the slurry produced by the anaerobic digestion of straws and manures were systematically analyzed. Different types of biogas slurry with different concentrations were used to conduct the germination test. [Result] The types and proportions of raw materials, and alkali pretreatment affected the compositions and nature of the biogas slurry. Alkali pretreatment could reduce the contents of heavy metals and improved the contents of nitrogen, phosphorous, organic matter and available components. The contents of heavy metals in the biogas slurry were as follows: Cd of 8.76 μg/kg, Cr of 52μg/kg, Pb of 210 μg/kg, Hg of 0.512 μg/kg, As of 140μg/kg, and the contents of Cu and Zn were the highest among the heavy metals, respectively, 279 and 680 μg/kg. All the contents were under the limit standards of the urban wastes for agricultural use. The germination tests of the seeds verified that the slurry with the concentration of lower than 5% could accelerate the germination, while the salt stress could inhibit the growth of seedlings in the slurry. [Conclusion] When the dung are uses as the raw materials for fermentation, appropriate control should be conducted on the feeding proportion or the heavy metals should be pre-removed; when the slurry is used as the liquid fertilizer to apply in the farmland, the dilution or desalting treatment should be conducted at first.展开更多
In the research, pot experiment and field testing were conducted to study the effect of different crops, soil types, and irrigation modes on biogas slurry diges- tions. The results showed that when silage maize, sweet...In the research, pot experiment and field testing were conducted to study the effect of different crops, soil types, and irrigation modes on biogas slurry diges- tions. The results showed that when silage maize, sweet sorghum and Chinese cabbage were planted in purple soils, the quantities of digested biogas slurry were of 57, 157.5, and 34.5 t/hm2, respectively, while the quantities of digested biogas slurry were 70.5, 157.5 and 40.5 t/hm2 in yellow soils. Besides, the digested biogas slurries reached 36 and 27 t/hm2 as per flood irrigation and sprinkling irrigation when Chinese cabbages were planted in yellow soils. The research indicated crop variety, soil type, and irrigation method all have effects on farmland digestion of biogas slurry.展开更多
In order to improve the wear resistance properties of copper substrate, a layer of electroplated nickel was firstly deposited on copper substrate, subsequently these electroplated specimens were treated by slurry pack...In order to improve the wear resistance properties of copper substrate, a layer of electroplated nickel was firstly deposited on copper substrate, subsequently these electroplated specimens were treated by slurry pack cementation process with a slurry pack cementation mixture composed of TiO2 as titanizing source, pure Al powder as aluminzing source and also a reducer for titanizing, an activator of NH4Cl and albumen (egg white) as cohesive agent. The Ti-Al coating was fabricated on the surface of electro-deposited nickel layer on copper matrix followed by the slurry pack cementation process. The effects of slurry pack cementation temperature on the microstructures and wear resistance of Ti-Al coating were studied. The results show that the microstructure of the coating changed from NiAl+Ni3(Ti,Al) to NiAl +Ni3(Ti,Al)+Ni4Ti3 to Ni4Ti3+NiAl, and to NiAl+Ni3(Ti,Al)+NiTi with slurry pack cementation temperature ranging from 800 ℃ to 950 ℃ in 12 h. The friction coefficient of Ti-Al coating decreased and the hardness increased with increasing the slurry pack cementation temperature. The minimum friction coefficient was 1/3 and the minimum hardness was 5 times larger than that of pure copper.展开更多
The microstructure and mechanical properties of rheocasting AZ91 magnesium alloy were investigated. The semisolid slurry of this alloy was prepared by ultrasonic vibration (USV) process and then shaped by high press...The microstructure and mechanical properties of rheocasting AZ91 magnesium alloy were investigated. The semisolid slurry of this alloy was prepared by ultrasonic vibration (USV) process and then shaped by high pressure diecasting (HPDC). The results show that fine and spherical a-Mg particles were obtained by USV at the nucleation stage, which was mainly attributed to the cavitation and acoustic streaming induced by the USV. Extending USV treatment time increased the solid volume fraction and average particle size, the shape factors were nearly the same, about 0.7. Excellent semisolid slurry of AZ91 magnesium alloy could be obtained within 6 rain by USV near its liquidus temperature. The rheo-HPDC samples treated by USV for 6 min had the maximum ultimate tensile strength and elongation, which were 248 MPa and 7.4%, respectively. It was also found that the ductile fracture mode prevailed in the rheocasting AZ91 magnesium alloy.展开更多
Due to the fact that the conventional ice slurry production system using supercooled water suffers from ice block and depends heavily on electric power,a novel ice slurry production system is proposed.The new system c...Due to the fact that the conventional ice slurry production system using supercooled water suffers from ice block and depends heavily on electric power,a novel ice slurry production system is proposed.The new system consists of two major parts:the evaporative supercooling process and the liquid dehumidification process.The classical diffusion-control equation is improved by introducing an impact factor into the simulation analysis in the evaporative supercooling process.Meanwhile,experiments are carried out by adopting the particle analyzer to detect the radii and the velocities of the droplets,and an infrared camera to examine the temperature profile of the physical process.It is found that the theoretical conclusion agrees well with the experimental results.Compared with the conventional system,the new system can alleviate the burden on electric power and raise efficiency.These improvements are essentially attributed to the reutilization of the inner waste heat generated from the system itself.展开更多
Through indoor culture experiments, the effects of continuous irrigation of biogas slurry on the forms and biological availability of Pb in soil of a tea garden were studied. The results show that continuous irrigatio...Through indoor culture experiments, the effects of continuous irrigation of biogas slurry on the forms and biological availability of Pb in soil of a tea garden were studied. The results show that continuous irrigation of biogas slurry could change the forms of Pb in the soil, and exchangeable Pb, Pb bonded to iron and manganese oxides, and Pb bonded to carbonates transformed to Pb bonded to or- ganic matter and residual Pb in the soil. Among various forms of Pb in the soil, the content of residual Pb was the highest in the soil irrigated with biogas slurry contin- uously in various treatments, accounting for 54.56%, 60.00% and 60.70% in the treatments T1, T2 and T3 respectively. Compared with the CK, the application of bio- gas slurry could decrease the biological activity and biological availability of Pb in the soil obviously, and the reduction of the biological activity was 21.26%-22.83%. In a word, the application of biogas slurry in soil of the tea garden could inhibit the biological activity and biological availability of Pb.展开更多
The volume change and shear strength behaviour of tailings slurry with the changes in gravimetric moisture content is important to effectively utilise the storage volume and analysis of dam failure potential.Consolida...The volume change and shear strength behaviour of tailings slurry with the changes in gravimetric moisture content is important to effectively utilise the storage volume and analysis of dam failure potential.Consolidation testing of tailings from a slurry-like to soil-like state is a critical task,and conventional consolidation apparatus does not have the capability of doing such testing,as the tailings slurries contain high water content.Settling tests conducted on slurries having a 25%solids concentration showed very low efficiency;final sediment was still slurry-like.An intrinsic point was identified based on pore water pressure dissipation during consolidation tests in a slurry consolidometer that can define two states of the tailings i.e.slurry-like and soil-like.In the slurry-like state,the volume change was greater for Slurry 2 than Slurry 1,while the inverse was observed in the soil-like state.The evolution of peak vane shear strength with the changes in moisture content was almost similar for both samples and obeyed the power function.Regression models have been developed and validated to predict the shear strength of materials at any gravimetric moisture content or void ratio.展开更多
基金the supports of project funded by China Postdoctoral Science Foundation(2023M743886)Project of Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province(YSK2023004)youth project funded by Shaanxi Province Natural Science Basic Research Program(2024JC-YBQN-0522)。
文摘The casing deformation prevention technology based on the optimization of cement slurry is proposed to reduce the casing deformation of shale oil and gas wells during hydraulic fracturing. In this paper, the fracture mechanism of hollow particles in cement sheath was firstly analyzed by discrete element method, and the effect of hollow particles in cement on casing deformation was investigated by laboratory experiment method. Finally, field test was carried out to verify the improvement effect of the casing deformation based on cement slurry modification. The results show that the formation displacement can be absorbed effectively by hollow particles inside the cement transferring the excessive deformation away from casing. The particles in the uncemented state provide deformation space during formation slipping. The casing with diameter of 139.7 mm could be passed through by bridge plug with the diameter of 99 mm when the mass ratio of particle/cement reaches 1:4. According to the field test feedback, the method based on optimization of cement slurry can effectively reduce the risk of casing deformation, and the recommended range of hollow microbeads content in the cement slurry is between 15% and 25%.
基金supported by the Natural Scienceof Shandong Province,China(ZR2019MEE033)。
文摘The characteristics of the packing material under an alternating electric field are an important factor in the removal of FCCS particles.In this study,the electric field distribution of a separation unit consisting of packed spheres under an alternating electric field is simulated,and the movement mechanism of catalyst particles is analysed.An"effective contact point"model is derived to predict the adsorption of filler contact points on catalyst particles under the alternating electric field,and the model is validated by simulations and experiments.The numerical calculation and experimental results indicate that the electrical properties of the filler spheres,the filler angleθ,and the frequency f of the alternating electric field affect the adsorption of catalyst particles.As the frequency of the electric field increases,the particle removal efficiency of the high-conductivity filler(silicon carbide)increases and then settles,and the separation efficiency of the low-conductivity filler(glass,zirconia)is not sensitive to the change in electric field frequency.
基金supported by the Key Research and Development Program of Guangxi Province,China (No.AB23075174)the National Natural Science Foundation of China (No.52174386)the Science and Technology Plan Project of Sichuan Province,China (No.2022YFS0459).
文摘Iron-rich electrolytic manganese residue(IREMR)is an industrial waste produced during the processing of electrolytic metal manganese,and it contains certain amounts of Fe and Mn resources and other heavy metals.In this study,the slurry electrolysis technique was used to recover high-purity Fe powder from IREMR.The effects of IREMR and H2SO4 mass ratio,current density,reaction temper-ature,and electrolytic time on the leaching and current efficiencies of Fe were studied.According to the results,high-purity Fe powder can be recovered from the cathode plate,and the slurry electrolyte can be recycled.The leaching efficiency,current efficiency,and purity of Fe reached 92.58%,80.65%,and 98.72wt%,respectively,at a 1:2.5 mass ratio of H2SO4 and IREMR,reaction temperature of 60℃,electric current density of 30 mA/cm^(2),and reaction time of 8 h.In addition,vibrating sample magnetometer(VSM)analysis showed that the coercivity of electrolytic iron powder was 54.5 A/m,which reached the advanced magnetic grade of electrical pure-iron powder(DT4A coercivity standard).The slurry electrolytic method provides fundamental support for the industrial application of Fe resource recovery in IRMER.
基金financially supported by the National Natural Science Foundation of China(No.51974018the Open Foundation of the State Key Laboratory of Process Automation in Mining and Metallurgy(No.BGRIMM-KZSKL-2022-9).
文摘Slurry electrolysis(SE),as a hydrometallurgical process,has the characteristic of a multitank series connection,which leads to various stirring conditions and a complex solid suspension state.The computational fluid dynamics(CFD),which requires high computing resources,and a combination with machine learning was proposed to construct a rapid prediction model for the liquid flow and solid concentration fields in a SE tank.Through scientific selection of calculation samples via orthogonal experiments,a comprehensive dataset covering a wide range of conditions was established while effectively reducing the number of simulations and providing reasonable weights for each factor.Then,a prediction model of the SE tank was constructed using the K-nearest neighbor algorithm.The results show that with the increase in levels of orthogonal experiments,the prediction accuracy of the model improved remarkably.The model established with four factors and nine levels can accurately predict the flow and concentration fields,and the regression coefficients of average velocity and solid concentration were 0.926 and 0.937,respectively.Compared with traditional CFD,the response time of field information prediction in this model was reduced from 75 h to 20 s,which solves the problem of serious lag in CFD applied alone to actual production and meets real-time production control requirements.
基金supported by the National Key Research and Development Program of China(No.2019YFA0705603)the Heibei Natural Science Foundation of China,China,the National Natural Science Foundation of China(No.22078341)+1 种基金the Hebei Natural Science Foundation(No.B2020103028)Sincerely appreciate Prof.Suojiang Zhang(IPE,CAS)for his careful academic guidance and great support.
文摘Take after the advantages of lithium-ion battery (LIB) and redox flow battery (RFB), semi-solid flow battery (SSFB) is a promising electrochemical energy storage device in renewable energy utilization. The flowable slurry electrode realizes decouple of energy and power density, while it also brings about new challenge to SSFBs, electron transport between active material and the out circuit. In this consideration, three types of current collectors (CCs) are applied to study the resistance and electrochemical performances of slurry cathodes within pouch cells for the first time. It proves that the electronic resistance (Re) between slurry electrode and the CC plays a decisive role in SSFB operation, and it is so large when Al foil is adopted that the cell cannot even work. Contact angle between Ketjen black (KB) slurry without active material (AM) and the CC is a preliminarily sign for the Re, the smaller the angle, the lower the resistance, and the better electrochemical performance of the cell.
基金Enterprise Horizontal Project(Project Contract No.2021K2450)Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(SJCX22_1437).
文摘The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge with coal–water slurry(CWS)and generate resourceful fuel.In this study,a novel five-nozzle gasifier reactor was analyzed by means of a CFD(Computational fluid dynamic)method.Among several influential factors,special attention was paid to the height-to-diameter ratio of the gasifier and the mixing ratio of oil sludge,which are known to have a significant impact on the flow field,temperature distribution and gasifier performances.According to the numerical results,the optimal height-to-diameter ratio and oil mixing ratio are about 2.4:1 and 20%,respectively.Furthermore,the carbon conversion rate can become as high as 98.55%with the hydrolysis rate reaching a value of 53.88%.The consumption of raw coal and oxygen is generally reduced,while the effective gas production is increased to 50.93 mol/%.
基金the National Natural Science Foundation of China(52206262)Small and Medium-sized Sci-tech Enterprises Innovation Capability Improvement Project of Shandong Province,China(2022TSGC2248,2023TSGC0579)+1 种基金Talent Research Project of Qilu University of Technology(Shandong Academy of Sciences)(2023RCKY170)Natural Science Foundation of Shandong Province,China(ZR2020ME191).
文摘Catalytic cracking oil slurry is a by-product of catalytic cracking projects,and the efficient conversion and sustainable utilization of this material are issues of continuous concern in the petroleum refining industry.In this study,oxygen-enriched activated carbon is prepared using a one-step KOH activation method with catalytic cracking oil slurry as the raw material.The as-prepared oil slurry-based activated carbon exhibits a high specific surface area of 2102 m^(2)/g,welldefined micropores with an average diameter of 2 nm,and a rich oxygen doping content of 32.97%.The electrochemical performance of the nitrogen-doped porous carbon is tested in a three-electrode system using a 6 mol/L KOH solution as the electrolyte.It achieves a specific capacitance of up to 230 F/g at a current density of 1 A/g.Moreover,the capacitance retention rate exceeds 89%after 10000 charge and discharge cycles,demonstrating excellent cycle stability.This method not only improves the utilization efficiency of industrial fuel waste but also reduces the production cost of supercapacitor electrode materials,thereby providing a simple and effective strategy for the resource utilization of catalytic cracking oil slurries.
基金Project (2011CB606302-1) supported by the National Basic Research Program of ChinaProject (2013AA031001) supported by Hi-Tech Research and Development Program of China
文摘A self-developed forced convection rheoforming (FCR) machine for the preparation of light alloy semisolid slurry was introduced. The microstructure characteristics of 7075 aluminium alloy semisolid slurry at different stirring speeds prepared by the FCR process were analyzed. The experimental results suggest that with the increase of the stirring speed, the mean grain size of the semisolid decreases and the shape factor as well as the number of primary grains increase. Meanwhile, the preparation process of semisolid slurry was numerically simulated. The flow characteristics of the melt in the device and the effect of the stirring speed on temperature field and solid fraction of the melt were investigated. The simulated results show that during the preparation process of semisolid slurry, there is a complex convection within the FCR device that obviously changes the temperature field distribution and solid fraction of the melt. When the convection intensity increases, the scope of the undercooling gradient of the melt is reduced and temperature distribution is improved.
基金Supported by"Eleventh Five-Year"National Technology Support Program(2008BADC4B17)~~
文摘[Objective] The paper aimed to study highly efficient utilization of biogas slurry and the effect of highly efficient biogas slurry on vegetables,so as to provide basis for wide and effective application of biogas slurry.[Method] Using secondary aerobic fermentation technology,a small amount of humic acid was added to biogas slurry to enhance the biological activity of biogas slurry.Through greenhouse experiment,the effect of highly efficient nutrient solution of biogas slurry on yield and quality of green pepper,tomato and cucumber was studied.[Result] Compared with control and traditional application of biogas slurry,application of highly efficient nutrient solution of biogas slurry increased the yield of green pepper,tomato and cucumber,and the increase extents were 12.4%,47.4%,19.9% and 2.7%,15.9%,9.1%,respectively.Compared with traditional application of biogas slurry,application of highly efficient nutrient solution of biogas slurry significantly increased Vc content of green pepper and cucumber with the increase extent of 16.8% and 43.8%,respectively.[Conclusion] Application of highly efficient nutrient solution of biogas slurry can effectively promote the yield of green pepper,tomato and cucumber and change the qualities of vegetables,and significantly enhance the biological activity of biogas slurry.
基金Project (2011CB606302-1) supported by the National Basic Research Program of China
文摘The semi-solid slurry of 7075 aluminum alloy was prepared by a serpentine pouring channel (SCP). Influences of pouring temperature and the number of turns on the microstructure of semi-solid 7075 alloy slurry were investigated. The results demonstrated that the semi-solid 7075 aluminum alloy slurry with satisfied quality could be generated by a serpentine pouring channel when the pouring temperature was in the range of 680-700 ℃. At a given pouring temperature, the equivalent size of the primaryα(Al) grains decreased and the shape factor increased with the increase of the number of turns. During the slurry preparation of semi-solid 7075 aluminum alloy, the flow direction of alloy melt changed many times when it flowed in a curved and closed serpentine channel. With the effect of“stirring”in it , the primary nuclei gradually evolved into spherical and near-spherical grains.
基金Project(2011CB606300)supported by the National Basic Research Program of ChinaProject(5077400)supported by the National Natural Science Foundation of China
文摘The semi-solid slurry of A380 aluminum alloy was prepared by the serpentine channel. The effects of pouring temperature, curve number and curve diameter of the serpentine channel on the microstructure of the semi-solid A380 aluminum alloy slurry were investigated. The results show that the satisfactory semi-solid A380 aluminum alloy slurry could be obtained when the pouring temperature ranged from 630 to 650 °C. Under the same conditions, increasing the curve number or reducing the curve diameter of the serpentine channel would decrease the average diameter and increase the shape factor of the primary α(Al) grains. The "self-stirring" of the alloy melt in the serpentine channel was beneficial to the ripening of the dendrites and the spheroidizing of the primary α(Al) grains.
基金Project (2011CB606302-1) supported by the National Basic Research Program of ChinaProject (51074024) supported by the National Natural Science Foundation of China
文摘Semi-solid 7075 Al slurry was prepared by inverted cone-shaped pouring channel process (ICSPC) and temperature homogenization (TH) treatment was combined to make the slurry uniform and have a controllable solid fraction suitable for the follow-up rheocasting. The influence of cooling rate on the microstructure evolution of primary α(Al) during TH treatment was investigated. The results show that as the cooling rate of the slurry after being prepared reduces, the growth of primaryα(Al) in the slurry tends to be nearly spherical and the uniformity of the organization is also enhanced. This may be due to the fact that lower cooling rate plays an important role in achieving the uniformity of temperature and composition in the remaining liquid, which is crucial to the formation of the spherical and homogeneous microstructure. However, a too low cooling rate will lead to a significant increase in grain growth time, which makes too coarse grains and more particles coalesce, so a certain abnormal growth of grain appears and the shape factor decreases slightly.
基金Project(51275295)supported by the National Natural Science Foundation of ChinaProjects(20120073120011,20130073110052)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘The semi-solid slurry of AZ91 D magnesium alloy was prepared by gas bubbling process.The effect of processing parameters,including gas flow rate,cooling rate and stirring end temperature,on microstructure of AZ91 D semi-solid slurry was investigated.With increasing the gas flow rate from 0 to 5 L/min,the average size of primary α-Mg particles decreases from 119.1 to77.2μm and the average shape factor increases continuously from 0.1 to 0.596.The formation of non-dendritic primary α-Mg particles during gas bubbling is the result of combined effects of dendrite fragmentation and copious nucleation.With increasing the cooling rate from 3.6 to 14.6℃/min,the average particle size of primary α-Mg phase decreases from 105.0 to 68.1μm while the average shape factor peaks at 9.1℃/min.Both high and low cooling rates can induce dendritic growth of primary α-Mg particles.Changing the stirring end temperature from 590 to 595℃ has little effect on the average size and shape factor of primary α-Mg particles in AZ91 D semi-solid slurry.The insensitivity of semi-solid microstructures to the stirring end temperature is attributed to the sufficient quantity of primary particles formed in the melt.
基金Supported by the National Key Technology R&D Program of China during the 11th Five-year Plan Period (2008BAC4B13)the Fundamental Research Fund for the Central Universities (ZZ1101)~~
文摘[Objective] This study was to provide scientific basis for the security application of biogas slurry in agriculture through the analysis on the security risk of nu- trients and heavy metals of biogas slurry in agricultural application. [Method] The components of the slurry produced by the anaerobic digestion of straws and manures were systematically analyzed. Different types of biogas slurry with different concentrations were used to conduct the germination test. [Result] The types and proportions of raw materials, and alkali pretreatment affected the compositions and nature of the biogas slurry. Alkali pretreatment could reduce the contents of heavy metals and improved the contents of nitrogen, phosphorous, organic matter and available components. The contents of heavy metals in the biogas slurry were as follows: Cd of 8.76 μg/kg, Cr of 52μg/kg, Pb of 210 μg/kg, Hg of 0.512 μg/kg, As of 140μg/kg, and the contents of Cu and Zn were the highest among the heavy metals, respectively, 279 and 680 μg/kg. All the contents were under the limit standards of the urban wastes for agricultural use. The germination tests of the seeds verified that the slurry with the concentration of lower than 5% could accelerate the germination, while the salt stress could inhibit the growth of seedlings in the slurry. [Conclusion] When the dung are uses as the raw materials for fermentation, appropriate control should be conducted on the feeding proportion or the heavy metals should be pre-removed; when the slurry is used as the liquid fertilizer to apply in the farmland, the dilution or desalting treatment should be conducted at first.
基金Supported by International Science&Technology Cooperation Program of China(2013DFA61260)Sub-project of National Science and Technology Planning in Rural Areas during the 12th Five-year Plan(2011BAD36B01)~~
文摘In the research, pot experiment and field testing were conducted to study the effect of different crops, soil types, and irrigation modes on biogas slurry diges- tions. The results showed that when silage maize, sweet sorghum and Chinese cabbage were planted in purple soils, the quantities of digested biogas slurry were of 57, 157.5, and 34.5 t/hm2, respectively, while the quantities of digested biogas slurry were 70.5, 157.5 and 40.5 t/hm2 in yellow soils. Besides, the digested biogas slurries reached 36 and 27 t/hm2 as per flood irrigation and sprinkling irrigation when Chinese cabbages were planted in yellow soils. The research indicated crop variety, soil type, and irrigation method all have effects on farmland digestion of biogas slurry.
基金Projects(YKJ201203,CKJB201205)supported by the Nanjing Institute of Technology,China
文摘In order to improve the wear resistance properties of copper substrate, a layer of electroplated nickel was firstly deposited on copper substrate, subsequently these electroplated specimens were treated by slurry pack cementation process with a slurry pack cementation mixture composed of TiO2 as titanizing source, pure Al powder as aluminzing source and also a reducer for titanizing, an activator of NH4Cl and albumen (egg white) as cohesive agent. The Ti-Al coating was fabricated on the surface of electro-deposited nickel layer on copper matrix followed by the slurry pack cementation process. The effects of slurry pack cementation temperature on the microstructures and wear resistance of Ti-Al coating were studied. The results show that the microstructure of the coating changed from NiAl+Ni3(Ti,Al) to NiAl +Ni3(Ti,Al)+Ni4Ti3 to Ni4Ti3+NiAl, and to NiAl+Ni3(Ti,Al)+NiTi with slurry pack cementation temperature ranging from 800 ℃ to 950 ℃ in 12 h. The friction coefficient of Ti-Al coating decreased and the hardness increased with increasing the slurry pack cementation temperature. The minimum friction coefficient was 1/3 and the minimum hardness was 5 times larger than that of pure copper.
文摘The microstructure and mechanical properties of rheocasting AZ91 magnesium alloy were investigated. The semisolid slurry of this alloy was prepared by ultrasonic vibration (USV) process and then shaped by high pressure diecasting (HPDC). The results show that fine and spherical a-Mg particles were obtained by USV at the nucleation stage, which was mainly attributed to the cavitation and acoustic streaming induced by the USV. Extending USV treatment time increased the solid volume fraction and average particle size, the shape factors were nearly the same, about 0.7. Excellent semisolid slurry of AZ91 magnesium alloy could be obtained within 6 rain by USV near its liquidus temperature. The rheo-HPDC samples treated by USV for 6 min had the maximum ultimate tensile strength and elongation, which were 248 MPa and 7.4%, respectively. It was also found that the ductile fracture mode prevailed in the rheocasting AZ91 magnesium alloy.
文摘Due to the fact that the conventional ice slurry production system using supercooled water suffers from ice block and depends heavily on electric power,a novel ice slurry production system is proposed.The new system consists of two major parts:the evaporative supercooling process and the liquid dehumidification process.The classical diffusion-control equation is improved by introducing an impact factor into the simulation analysis in the evaporative supercooling process.Meanwhile,experiments are carried out by adopting the particle analyzer to detect the radii and the velocities of the droplets,and an infrared camera to examine the temperature profile of the physical process.It is found that the theoretical conclusion agrees well with the experimental results.Compared with the conventional system,the new system can alleviate the burden on electric power and raise efficiency.These improvements are essentially attributed to the reutilization of the inner waste heat generated from the system itself.
基金Supported by Scientific Research Project of Education Department of Zhejiang Province(Y201328325)Public Welfare Project of Lishui City(2012JYZB47)+1 种基金Project for Highlevel Talents of Lishui City(2014RC04)Project for the Transformation of Agricultural Scientific and Technological Achievements(2012NZH0205)~~
文摘Through indoor culture experiments, the effects of continuous irrigation of biogas slurry on the forms and biological availability of Pb in soil of a tea garden were studied. The results show that continuous irrigation of biogas slurry could change the forms of Pb in the soil, and exchangeable Pb, Pb bonded to iron and manganese oxides, and Pb bonded to carbonates transformed to Pb bonded to or- ganic matter and residual Pb in the soil. Among various forms of Pb in the soil, the content of residual Pb was the highest in the soil irrigated with biogas slurry contin- uously in various treatments, accounting for 54.56%, 60.00% and 60.70% in the treatments T1, T2 and T3 respectively. Compared with the CK, the application of bio- gas slurry could decrease the biological activity and biological availability of Pb in the soil obviously, and the reduction of the biological activity was 21.26%-22.83%. In a word, the application of biogas slurry in soil of the tea garden could inhibit the biological activity and biological availability of Pb.
文摘The volume change and shear strength behaviour of tailings slurry with the changes in gravimetric moisture content is important to effectively utilise the storage volume and analysis of dam failure potential.Consolidation testing of tailings from a slurry-like to soil-like state is a critical task,and conventional consolidation apparatus does not have the capability of doing such testing,as the tailings slurries contain high water content.Settling tests conducted on slurries having a 25%solids concentration showed very low efficiency;final sediment was still slurry-like.An intrinsic point was identified based on pore water pressure dissipation during consolidation tests in a slurry consolidometer that can define two states of the tailings i.e.slurry-like and soil-like.In the slurry-like state,the volume change was greater for Slurry 2 than Slurry 1,while the inverse was observed in the soil-like state.The evolution of peak vane shear strength with the changes in moisture content was almost similar for both samples and obeyed the power function.Regression models have been developed and validated to predict the shear strength of materials at any gravimetric moisture content or void ratio.