The tribological behavior of aged Al-Sn-Cu alloy rubbed in the presence of lubricant over a range of sliding velocities and normal loads was investigated. The results showed that peak-aged (PA) alloy had a better tr...The tribological behavior of aged Al-Sn-Cu alloy rubbed in the presence of lubricant over a range of sliding velocities and normal loads was investigated. The results showed that peak-aged (PA) alloy had a better tribological behavior than under-aged (UA) and over-aged (OA) alloys, which could be attributed to the optimized strength-ductility matching and a better hardness under PA condition. Wear rate and friction coefficient showed great sensitivity to applied sliding velocity and normal load. The wear rate and friction coefficient of the alloy exhibited a reduction trend with the increase in sliding velocity. The low wear rate and friction coefficient of alloy at high velocities were due to the effectively protected film and homogeneous Sn on surface. However, an increase in normal load led to an obvious increment in wear rate. The friction coefficient exhibited a fluctuant trend with the increase of normal loads. The seriously destroyed film and abraded Sn resulted in poor tribological behavior at high normal loads. The Sn particles and lubricant film which includes low shear interfacial lubricating layer and oxide tribolayer are the key to the tribological behavior of Al-Sn-Cu alloy.展开更多
Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate...Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate was investigated. The microstructure and mechanical properties of the TZCC alloy plate were analyzed. The results show that Cu-4.7%Sn alloy plate with smooth surface can be obtained by means of reasonable matching the entrance temperature of two-phase zone mold and the continuous casting speed. The microstructure of the TZCC alloy is composed of grains-covered grains, small grains with self-closed grain boundaries, columnar grains and equiaxed grains. Compared with cold mold continuous casting Cu-4.7%Sn alloy plate, the room temperature tensile strength and ductility of the TZCC alloy plate are greatly improved.展开更多
The effect of Cu content on the microstructure,grain orientation and mechanical properties of Sn-xCu(x=0-4.0 wt.%)lead-free solder was studied.Results showed that added Cu induced the formation of intermetallic phases...The effect of Cu content on the microstructure,grain orientation and mechanical properties of Sn-xCu(x=0-4.0 wt.%)lead-free solder was studied.Results showed that added Cu induced the formation of intermetallic phases.Only theη-Cu;Sn;andε-Cu;Sn phases were present in theβ-Sn matrix.For all contents,the strongly preferred orientation of theβ-Sn phase was formed on the{001}plane.In Sn doped with 1.0 wt.%Cu,theη-Cu;Sn;phase exhibited the preferred orientation of{0001}plane,whereas doping with 3.0 or 4.0 wt.%Cu transformed the preferred orientation to the{010}plane.In addition,only the{0001}and{■}planes were present in theε-Cu;Sn phase.The high Cu contents contributed to an increased number of low-angle boundaries,high residual strain,tensile strength and microhardness.展开更多
The wetting of molten Sn-3.5Ag-0.5Cu alloy on the Ni-P(-SiC)coated SiCp/Al substrates was investigated by electroless Ni plating process,and the microstructures of the coating and the interfacial behavior of wetting s...The wetting of molten Sn-3.5Ag-0.5Cu alloy on the Ni-P(-SiC)coated SiCp/Al substrates was investigated by electroless Ni plating process,and the microstructures of the coating and the interfacial behavior of wetting systems were analyzed.The SiC particles are evenly distributed in the coating and enveloped with Ni.No reaction layer is observed at the coating/SiCp/Al composite interfaces.The contact angle increases from^19°with the Ni-P coating to 29°,43°and 113°with the corresponding Ni-P-3SiC,Ni-P-6SiC and Ni-P-9SiC coatings,respectively.An interaction layer containing Cu,Ni,Sn and P forms at the Sn-Ag-Cu/Ni-P-(0,3,6)SiC coated SiCp/Al interfaces,and the Cu-Ni-Sn and Ni-Sn-P phases are detected in the interaction layer.Moreover,the molten Sn-Ag-Cu can penetrate into the Ni-P(-SiC)coatings through the Ni-P/SiC interface and dissolve them to contact the SiCp/Al substrate.展开更多
Multiwalled carbon nanotubes (MWCNTs) reinforced Cu-Sn alloy based nanocomposite was developed by powder metallurgy route. The mass fraction of CNTs was varied from 0 to 2% in a step of 0.5%. The developed nanocompo...Multiwalled carbon nanotubes (MWCNTs) reinforced Cu-Sn alloy based nanocomposite was developed by powder metallurgy route. The mass fraction of CNTs was varied from 0 to 2% in a step of 0.5%. The developed nanocomposites were subjected to density, hardness, electrical conductivity, and friction and wear tests. The results reveal that the density of nanocomposite decreases with the increase of the mass fraction of CNTs. A significant improvement in the hardness is noticed in the nanocomposite with the addition of CNTs. The developed nanocomposites show low coefficient of friction and improved wear resistance when compared with unreinforced alloy. At an applied load of 5 N, the coefficient of friction and wear loss of 2%CNTs reinforced Cu-Sn alloy nanocomposite decrease by 72% and 68%, respectively, compared with those of Cu-Sn alloy. The wear mechanisms of worn surfaces of the composites are reported. In addition, the electrical conductivity reduces with the increase of the content of CNTs.展开更多
The Sn-Cu-Ni-Ge solder is a strong challenger to the Sn-Ag-Cu(SAC) solders as a replacement for the Sn-Pb eutectic solder. This research investigated the effects of addition of Ag, Bi, In, and Sb on the physical pro...The Sn-Cu-Ni-Ge solder is a strong challenger to the Sn-Ag-Cu(SAC) solders as a replacement for the Sn-Pb eutectic solder. This research investigated the effects of addition of Ag, Bi, In, and Sb on the physical properties of the Sn-0.6 Cu-0.05 Ni-Ge(SCNG) lead-free solder and the interfacial reaction with the Cu substrate. The melting behavior, microstructure, tensile strength, and wettability of the SCNG-x(x=Ag, Bi, In, Sb) solders were examined. The findings revealed that the introduction of Ag, Bi, In, and Sb minimally altered the solidus temperature, liquidus temperature, and tensile strength of the solder. However, the cooling behavior and solidified microstructure of the solder were affected by the concentration of the alloying elements. The wettability of the SCNG solder was improved with the doping of the alloying elements except Sb. The thickness of intermetallic layer was increased by the addition of the alloying elements and was related to the cooling behavior of the solder. The morphology of intermetallic layer between the SCNG-x solders and the Cu substrate was different from that of the typical SAC solders. In conclusion, alloying the SCNG solder with Ag, Bi, In or Sb is able to improve particular properties of the solder.展开更多
The segregation of Sn and discontinuous precipitation at grain boundaries are detrimental to the strength,ductility,and machinability of the Cu−Ni−Sn alloy.A strategy to solve the above problems is multi-component com...The segregation of Sn and discontinuous precipitation at grain boundaries are detrimental to the strength,ductility,and machinability of the Cu−Ni−Sn alloy.A strategy to solve the above problems is multi-component composition design by introducing strong enthalpic interaction element.In this work,a series of Cu_(80)Ni_(15)Sn_(5−x)Ti_(x)(at.%)alloys were designed by cluster-plus-glue-atom model,and the effects of Ti content on the microstructure and properties of the alloys were systematically investigated using TEM and other analysis methods.The results demonstrate that Ti can effectively inhibit the segregation and discontinuous precipitation while promoting continuous precipitation to improve the high-temperature stability of the alloys.As the Ti content increases,the distribution of Ti changes from uniform distribution to predominant precipitation.The hardness and conductivity of the alloy exceed those of the C72900(Cu−15Ni−8Sn(wt.%))commercial alloy and the Cu_(80)Ni_(15)Sn_(5)(at.%)reference alloy when Ti is in the solution state.展开更多
Liquid ternary Fe47.5Cu47.5Sn5 alloy displayed dual solidification mechanisms when it was undercooled by up to 329 K (0.19TL). Below a critical undercooling of about 196 K, it solidified just like a normal peritecti...Liquid ternary Fe47.5Cu47.5Sn5 alloy displayed dual solidification mechanisms when it was undercooled by up to 329 K (0.19TL). Below a critical undercooling of about 196 K, it solidified just like a normal peritectic alloy, even though metastable phase separation occurred to a microscopic extent. Once bulk undercooling exceeds 196 K, macroscopic segregation played a domi- nant role in solidification. In both cases, the solidification process was always characterized by two successive peritectic trans- formations: firstly primary yFe dendrites reacted with liquid phase to form (Cu) phase, and subsequently the (Cu) phase reacted with residual liquid phase to yield β-Cu5.6Sn intermetallic compound. The primary yFe dendrites achieved a maximum growth velocity of 400 mm/s and experienced a growth kinetics transition as a result of macrosegregation. Since the (Cu) phase was both the product phase of the first peritectic transformation and also the reactant phase for the second peritectic transformation, it appeared as two layers in solidification microstructures due to the microsegregation of Sn solute. The boundary continuity between the macroscopically separated Fe-rich and Cu-ricb zones was enhanced with the increase of undercooling.展开更多
基金Project(2013AH100055)supported by the Special Foundation for Science and Technology Innovation of Foshan,China
文摘The tribological behavior of aged Al-Sn-Cu alloy rubbed in the presence of lubricant over a range of sliding velocities and normal loads was investigated. The results showed that peak-aged (PA) alloy had a better tribological behavior than under-aged (UA) and over-aged (OA) alloys, which could be attributed to the optimized strength-ductility matching and a better hardness under PA condition. Wear rate and friction coefficient showed great sensitivity to applied sliding velocity and normal load. The wear rate and friction coefficient of the alloy exhibited a reduction trend with the increase in sliding velocity. The low wear rate and friction coefficient of alloy at high velocities were due to the effectively protected film and homogeneous Sn on surface. However, an increase in normal load led to an obvious increment in wear rate. The friction coefficient exhibited a fluctuant trend with the increase of normal loads. The seriously destroyed film and abraded Sn resulted in poor tribological behavior at high normal loads. The Sn particles and lubricant film which includes low shear interfacial lubricating layer and oxide tribolayer are the key to the tribological behavior of Al-Sn-Cu alloy.
基金Project(51374025) supported by the National Natural Science Foundation of ChinaProject(2014Z-05) supported by the State Key Laboratory for Advanced Metals and Materials,University of Science and Technology Beijing,ChinaProject(2152020) supported by the Beijing Natural Science Foundation,China
文摘Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate was investigated. The microstructure and mechanical properties of the TZCC alloy plate were analyzed. The results show that Cu-4.7%Sn alloy plate with smooth surface can be obtained by means of reasonable matching the entrance temperature of two-phase zone mold and the continuous casting speed. The microstructure of the TZCC alloy is composed of grains-covered grains, small grains with self-closed grain boundaries, columnar grains and equiaxed grains. Compared with cold mold continuous casting Cu-4.7%Sn alloy plate, the room temperature tensile strength and ductility of the TZCC alloy plate are greatly improved.
基金Rajamangala University of Technology Rattanakosin and School of Engineering,King Mongkut’s Institute of Technology Ladkrabang for the laboratory support of this research。
文摘The effect of Cu content on the microstructure,grain orientation and mechanical properties of Sn-xCu(x=0-4.0 wt.%)lead-free solder was studied.Results showed that added Cu induced the formation of intermetallic phases.Only theη-Cu;Sn;andε-Cu;Sn phases were present in theβ-Sn matrix.For all contents,the strongly preferred orientation of theβ-Sn phase was formed on the{001}plane.In Sn doped with 1.0 wt.%Cu,theη-Cu;Sn;phase exhibited the preferred orientation of{0001}plane,whereas doping with 3.0 or 4.0 wt.%Cu transformed the preferred orientation to the{010}plane.In addition,only the{0001}and{■}planes were present in theε-Cu;Sn phase.The high Cu contents contributed to an increased number of low-angle boundaries,high residual strain,tensile strength and microhardness.
基金Projects(51572112,51401034)supported by the National Natural Science Foundation of ChinaProject(BK20151340)supported by the Natural Science Foundation of Jiangsu Province,China+3 种基金Projects(2014-XCL-002,TD-XCL-004)supported by the Six Talent Peaks Project of Jiangsu Province,ChinaProject(BRA2017387)supported by the 333 Talents Project of Jiangsu Province,ChinaProject([2015]26)supported by the Innovation/Entrepreneurship Program of Jiangsu Province,ChinaProject([2016]15)supported by the Qing Lan Project,China
文摘The wetting of molten Sn-3.5Ag-0.5Cu alloy on the Ni-P(-SiC)coated SiCp/Al substrates was investigated by electroless Ni plating process,and the microstructures of the coating and the interfacial behavior of wetting systems were analyzed.The SiC particles are evenly distributed in the coating and enveloped with Ni.No reaction layer is observed at the coating/SiCp/Al composite interfaces.The contact angle increases from^19°with the Ni-P coating to 29°,43°and 113°with the corresponding Ni-P-3SiC,Ni-P-6SiC and Ni-P-9SiC coatings,respectively.An interaction layer containing Cu,Ni,Sn and P forms at the Sn-Ag-Cu/Ni-P-(0,3,6)SiC coated SiCp/Al interfaces,and the Cu-Ni-Sn and Ni-Sn-P phases are detected in the interaction layer.Moreover,the molten Sn-Ag-Cu can penetrate into the Ni-P(-SiC)coatings through the Ni-P/SiC interface and dissolve them to contact the SiCp/Al substrate.
文摘Multiwalled carbon nanotubes (MWCNTs) reinforced Cu-Sn alloy based nanocomposite was developed by powder metallurgy route. The mass fraction of CNTs was varied from 0 to 2% in a step of 0.5%. The developed nanocomposites were subjected to density, hardness, electrical conductivity, and friction and wear tests. The results reveal that the density of nanocomposite decreases with the increase of the mass fraction of CNTs. A significant improvement in the hardness is noticed in the nanocomposite with the addition of CNTs. The developed nanocomposites show low coefficient of friction and improved wear resistance when compared with unreinforced alloy. At an applied load of 5 N, the coefficient of friction and wear loss of 2%CNTs reinforced Cu-Sn alloy nanocomposite decrease by 72% and 68%, respectively, compared with those of Cu-Sn alloy. The wear mechanisms of worn surfaces of the composites are reported. In addition, the electrical conductivity reduces with the increase of the content of CNTs.
基金King Mongkut’s Institute of Technology Ladkrabang and the National Research Council of Thailand for the financial sponsorship of this project
文摘The Sn-Cu-Ni-Ge solder is a strong challenger to the Sn-Ag-Cu(SAC) solders as a replacement for the Sn-Pb eutectic solder. This research investigated the effects of addition of Ag, Bi, In, and Sb on the physical properties of the Sn-0.6 Cu-0.05 Ni-Ge(SCNG) lead-free solder and the interfacial reaction with the Cu substrate. The melting behavior, microstructure, tensile strength, and wettability of the SCNG-x(x=Ag, Bi, In, Sb) solders were examined. The findings revealed that the introduction of Ag, Bi, In, and Sb minimally altered the solidus temperature, liquidus temperature, and tensile strength of the solder. However, the cooling behavior and solidified microstructure of the solder were affected by the concentration of the alloying elements. The wettability of the SCNG solder was improved with the doping of the alloying elements except Sb. The thickness of intermetallic layer was increased by the addition of the alloying elements and was related to the cooling behavior of the solder. The morphology of intermetallic layer between the SCNG-x solders and the Cu substrate was different from that of the typical SAC solders. In conclusion, alloying the SCNG solder with Ag, Bi, In or Sb is able to improve particular properties of the solder.
基金support from the National Natural Science Foundation of China(No.52071052).
文摘The segregation of Sn and discontinuous precipitation at grain boundaries are detrimental to the strength,ductility,and machinability of the Cu−Ni−Sn alloy.A strategy to solve the above problems is multi-component composition design by introducing strong enthalpic interaction element.In this work,a series of Cu_(80)Ni_(15)Sn_(5−x)Ti_(x)(at.%)alloys were designed by cluster-plus-glue-atom model,and the effects of Ti content on the microstructure and properties of the alloys were systematically investigated using TEM and other analysis methods.The results demonstrate that Ti can effectively inhibit the segregation and discontinuous precipitation while promoting continuous precipitation to improve the high-temperature stability of the alloys.As the Ti content increases,the distribution of Ti changes from uniform distribution to predominant precipitation.The hardness and conductivity of the alloy exceed those of the C72900(Cu−15Ni−8Sn(wt.%))commercial alloy and the Cu_(80)Ni_(15)Sn_(5)(at.%)reference alloy when Ti is in the solution state.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51101123 and 50971105)the Fundamental Research Fund of Northwestern Polytechnical University (GrantNo. JC201050)
文摘Liquid ternary Fe47.5Cu47.5Sn5 alloy displayed dual solidification mechanisms when it was undercooled by up to 329 K (0.19TL). Below a critical undercooling of about 196 K, it solidified just like a normal peritectic alloy, even though metastable phase separation occurred to a microscopic extent. Once bulk undercooling exceeds 196 K, macroscopic segregation played a domi- nant role in solidification. In both cases, the solidification process was always characterized by two successive peritectic trans- formations: firstly primary yFe dendrites reacted with liquid phase to form (Cu) phase, and subsequently the (Cu) phase reacted with residual liquid phase to yield β-Cu5.6Sn intermetallic compound. The primary yFe dendrites achieved a maximum growth velocity of 400 mm/s and experienced a growth kinetics transition as a result of macrosegregation. Since the (Cu) phase was both the product phase of the first peritectic transformation and also the reactant phase for the second peritectic transformation, it appeared as two layers in solidification microstructures due to the microsegregation of Sn solute. The boundary continuity between the macroscopically separated Fe-rich and Cu-ricb zones was enhanced with the increase of undercooling.