The bimetallic catalyst Ru-Pt/ γ -Al 2O 3 was prepared by impregnating H 2PtCl 6 and RuCl 3 aqueous solution in the presence of PVP(40 000). Its catalytic performance in selective hydrogenation of \{ p -chloronitrobe...The bimetallic catalyst Ru-Pt/ γ -Al 2O 3 was prepared by impregnating H 2PtCl 6 and RuCl 3 aqueous solution in the presence of PVP(40 000). Its catalytic performance in selective hydrogenation of \{ p -chloronitrobenzene\}( p -CNB) was studied. The results indicate that the activity of Ru-Pt/ γ -Al 2O 3[\{ n (ruthenium)\}∶ n (platinum)=4∶1] is much higher than that of Ru/ γ -Al 2O 3,while the amount of dehalogenation product(aniline) and other by-products are much fewer than that by using Pt/ γ -Al 2O 3 as the catalyst. There is synergistic effect of ruthenium and platinum in bimetallic catalyst for selective hydrogenation of p -CNB. Under the reaction conditions t =50 ℃, p H 2 = 1.0 MPa, reaction time 60 min,\{ n (substrate)∶\} n (total amount of metal content)=1000∶1,the conversion of p -CNB and the selectivity to p -chloroaniline( p -CNA) by using Ru-Pt/ γ -Al 2O 3 as the catalyst are 48.2% and 85.9%,respectively. The effect of other metal cations(introduced to the reaction system with the corresponding metal chloride solution) on the reaction was investigated. It was found that catalytic performance of Ru-Pt/ γ -Al 2O 3 could be greatly improved by modfication of some metal cations. When Co 2+ and Ni 2+ were used as modifiers for the catalyst Ru-Pt/ γ -Al 2O 3 under above mentioned reaction conditions,the conversions of p -CNB increase to 74.5% and 87.8%,as well as the selectivities of p -CAN increase to 98.9% and 99.4%,respectively. Fe 3+ and Sn 4+ were the best modifiers for Ru-Pt/ γ -Al 2O 3 under the same reaction conditions. The conversions of p -CNB and the selectivities of p -CAN can reach 100% and >99.0%,respectively. However,the catalysts can be poisoned by Zn 2+ and Sn 2+ .展开更多
In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can r...In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can reduce silver ions to generate crystalline silver nanoparticles(Ag NPs)of good dispersion and uniformity on the alumina surface,leading to the formation of Ag/γ-Al_(2)O_(3)catalysts in a green manner without traditional chemical reductants.Ag/γ-Al_(2)O_(3)exhibited good catalytic activity and stability in CO oxidation reactions,and the activity increased with increase in the Ag content.For catalysts with more than 2 wt%Ag,100%CO conversion can be achieved at 300°C.The catalytic activity of the Ag/γ-Al_(2)O_(3)catalysts is also closely related to the size of theγ-alumina,where Ag/nano-γ-Al_(2)O_(3)catalysts demonstrate better performance than Ag/micro-γ-Al_(2)O_(3)catalysts with the same Ag content.In addition,the catalytic properties of plasma-generated Ag/nano-γ-Al_(2)O_(3)(Ag/γ-Al_(2)O_(3)-P)catalysts were compared with those of Ag/nano-γ-Al_(2)O_(3)catalysts prepared by the traditional calcination approach(Ag/γ-Al_(2)O_(3)-C),with the plasma-generated samples demonstrating better overall performance.This simple,rapid and green plasma process is considered to be applicable for the synthesis of diverse noble metal-based catalysts.展开更多
文摘The bimetallic catalyst Ru-Pt/ γ -Al 2O 3 was prepared by impregnating H 2PtCl 6 and RuCl 3 aqueous solution in the presence of PVP(40 000). Its catalytic performance in selective hydrogenation of \{ p -chloronitrobenzene\}( p -CNB) was studied. The results indicate that the activity of Ru-Pt/ γ -Al 2O 3[\{ n (ruthenium)\}∶ n (platinum)=4∶1] is much higher than that of Ru/ γ -Al 2O 3,while the amount of dehalogenation product(aniline) and other by-products are much fewer than that by using Pt/ γ -Al 2O 3 as the catalyst. There is synergistic effect of ruthenium and platinum in bimetallic catalyst for selective hydrogenation of p -CNB. Under the reaction conditions t =50 ℃, p H 2 = 1.0 MPa, reaction time 60 min,\{ n (substrate)∶\} n (total amount of metal content)=1000∶1,the conversion of p -CNB and the selectivity to p -chloroaniline( p -CNA) by using Ru-Pt/ γ -Al 2O 3 as the catalyst are 48.2% and 85.9%,respectively. The effect of other metal cations(introduced to the reaction system with the corresponding metal chloride solution) on the reaction was investigated. It was found that catalytic performance of Ru-Pt/ γ -Al 2O 3 could be greatly improved by modfication of some metal cations. When Co 2+ and Ni 2+ were used as modifiers for the catalyst Ru-Pt/ γ -Al 2O 3 under above mentioned reaction conditions,the conversions of p -CNB increase to 74.5% and 87.8%,as well as the selectivities of p -CAN increase to 98.9% and 99.4%,respectively. Fe 3+ and Sn 4+ were the best modifiers for Ru-Pt/ γ -Al 2O 3 under the same reaction conditions. The conversions of p -CNB and the selectivities of p -CAN can reach 100% and >99.0%,respectively. However,the catalysts can be poisoned by Zn 2+ and Sn 2+ .
基金financial support from National Natural Science Foundation of China(Nos.52004102 and 22078125)Postdoctoral Science Foundation of China(No.2021M690068)+2 种基金Fundamental Research Funds for the Central Universities(Nos.JUSRP221018 and JUSRP622038)Key Laboratory of Green Cleaning Technology and Detergent of Zhejiang Province(No.Q202204)Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education(No.GCP202112)。
文摘In this study,Ag/γ-Al_(2)O_(3)catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source andγ-alumina(γ-Al_(2)O_(3))as the support.It is revealed that plasma can reduce silver ions to generate crystalline silver nanoparticles(Ag NPs)of good dispersion and uniformity on the alumina surface,leading to the formation of Ag/γ-Al_(2)O_(3)catalysts in a green manner without traditional chemical reductants.Ag/γ-Al_(2)O_(3)exhibited good catalytic activity and stability in CO oxidation reactions,and the activity increased with increase in the Ag content.For catalysts with more than 2 wt%Ag,100%CO conversion can be achieved at 300°C.The catalytic activity of the Ag/γ-Al_(2)O_(3)catalysts is also closely related to the size of theγ-alumina,where Ag/nano-γ-Al_(2)O_(3)catalysts demonstrate better performance than Ag/micro-γ-Al_(2)O_(3)catalysts with the same Ag content.In addition,the catalytic properties of plasma-generated Ag/nano-γ-Al_(2)O_(3)(Ag/γ-Al_(2)O_(3)-P)catalysts were compared with those of Ag/nano-γ-Al_(2)O_(3)catalysts prepared by the traditional calcination approach(Ag/γ-Al_(2)O_(3)-C),with the plasma-generated samples demonstrating better overall performance.This simple,rapid and green plasma process is considered to be applicable for the synthesis of diverse noble metal-based catalysts.