A series of natural rubber-snail shell powder vulcanizates were compounded on a two-roll mill, and moulded on a compression moulding machine. The mechanical and end-use properties of the natural rubber vulcanizates we...A series of natural rubber-snail shell powder vulcanizates were compounded on a two-roll mill, and moulded on a compression moulding machine. The mechanical and end-use properties of the natural rubber vulcanizates were investigated at snail shell powder contents, 0 to 20 pphr. The snail shell powder was characterized for filler properties and sieved to 0.075, and 0.30 μm particle sizes. Carbon black was used as the reference filler. Results showed that the tensile strength, modulus, elongation at break, and resilience of the rubber vulcanizates were not enhanced on addition of snail shell powder. The hardness of the rubber vulcanizes were marginally increased at high snail shell powder content. However, the specific gravity of the rubber vulcanizates showed increases with increase in snail shell powder content. At a filler content above 5 pphr, snail shell powder exhibited good flame retardant property in the vulcanizates. The swelling indices of snail shell powder (0.075 μm) filled natural rubber were generally good, and better than those of snail shell powder (0.30 μm) filled natural rubber. Carbon black was found to show more property improvement for the natural rubber vulcanizates when compared to snail shell powder. Although the mechanical properties of snail shell powder filled natural rubber vulcanizates were not good, there were improvements in the end-use properties, an indication that snail shell powder could still find utilization in the rubber industry where specific end-use property of a rubber product is required.展开更多
Polypropylene composites of snail shell powder were prepared at filler contents, 0 to 40 wt%. The particle sizes of the snail shell powder investigated were 0.150, 0.30, and 0.42 μm. Talc, of particle size, 0.150 μm...Polypropylene composites of snail shell powder were prepared at filler contents, 0 to 40 wt%. The particle sizes of the snail shell powder investigated were 0.150, 0.30, and 0.42 μm. Talc, of particle size, 0.150 μm was used as the reference filler. The polypropylene composites were prepared in an injection moulding machine and the resulting composites were extruded as sheets. Some mechanical and end-use properties of the prepared composites were determined. Results showed that the snail shell powder improved the tensile modulus, flexural strength, and impact strength of polypropylene and these properties increased with increases in the filler content and decreases in the filler particle size. The elongation at break of the composites was however observed to decrease with increases in the filler content, and particle size. The elongation at break of talc filled polypropylene was zero, an indication of the brittle nature of polypropylene composites of talc. The hardness, water sorption (24-hr) and specific gravity of the composites were found to increase with increases in the filler content, and decreases in the filler particle size. The level of water absorbed by snail shell powder composites of polypropylene is considerably higher than that of talc filled polypropylene. The flame retardant properties of the prepared composites were however found to decrease with increases in the filler content, and particle size. Generally, snail shell powder was found to show greater property improvement over talc in the prepared composites.展开更多
文摘A series of natural rubber-snail shell powder vulcanizates were compounded on a two-roll mill, and moulded on a compression moulding machine. The mechanical and end-use properties of the natural rubber vulcanizates were investigated at snail shell powder contents, 0 to 20 pphr. The snail shell powder was characterized for filler properties and sieved to 0.075, and 0.30 μm particle sizes. Carbon black was used as the reference filler. Results showed that the tensile strength, modulus, elongation at break, and resilience of the rubber vulcanizates were not enhanced on addition of snail shell powder. The hardness of the rubber vulcanizes were marginally increased at high snail shell powder content. However, the specific gravity of the rubber vulcanizates showed increases with increase in snail shell powder content. At a filler content above 5 pphr, snail shell powder exhibited good flame retardant property in the vulcanizates. The swelling indices of snail shell powder (0.075 μm) filled natural rubber were generally good, and better than those of snail shell powder (0.30 μm) filled natural rubber. Carbon black was found to show more property improvement for the natural rubber vulcanizates when compared to snail shell powder. Although the mechanical properties of snail shell powder filled natural rubber vulcanizates were not good, there were improvements in the end-use properties, an indication that snail shell powder could still find utilization in the rubber industry where specific end-use property of a rubber product is required.
文摘Polypropylene composites of snail shell powder were prepared at filler contents, 0 to 40 wt%. The particle sizes of the snail shell powder investigated were 0.150, 0.30, and 0.42 μm. Talc, of particle size, 0.150 μm was used as the reference filler. The polypropylene composites were prepared in an injection moulding machine and the resulting composites were extruded as sheets. Some mechanical and end-use properties of the prepared composites were determined. Results showed that the snail shell powder improved the tensile modulus, flexural strength, and impact strength of polypropylene and these properties increased with increases in the filler content and decreases in the filler particle size. The elongation at break of the composites was however observed to decrease with increases in the filler content, and particle size. The elongation at break of talc filled polypropylene was zero, an indication of the brittle nature of polypropylene composites of talc. The hardness, water sorption (24-hr) and specific gravity of the composites were found to increase with increases in the filler content, and decreases in the filler particle size. The level of water absorbed by snail shell powder composites of polypropylene is considerably higher than that of talc filled polypropylene. The flame retardant properties of the prepared composites were however found to decrease with increases in the filler content, and particle size. Generally, snail shell powder was found to show greater property improvement over talc in the prepared composites.