本文研究了一类带Hardy项和Sobolev临界指数的椭圆型方程。通过变分法,我们得到了方程的能量泛函在零点附近存在局部极小值点,且该极小值点为方程的正解。此外,当方程的扰动项趋于零时,该正解也趋于零。The elliptical equation with Ha...本文研究了一类带Hardy项和Sobolev临界指数的椭圆型方程。通过变分法,我们得到了方程的能量泛函在零点附近存在局部极小值点,且该极小值点为方程的正解。此外,当方程的扰动项趋于零时,该正解也趋于零。The elliptical equation with Hardy terms and Sobolev critical exponents is studied. By the variational methods, we have obtained that there exists a local minimum point of the energy functional related to the equation which is near zero, and the local minimum point is a positive solution of this equation. Moreover, this positive solution tends to zero when the perturbed term goes to zero.展开更多
In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality...In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality,this inequality contains a term involving the mean curvature.展开更多
In this paper,we firstly recall some basic results on pseudo S-asymptotically(ω,c)-periodic functions and Sobolev type fractional differential equation.We secondly investigate some existence of pseudo S-asymptotical...In this paper,we firstly recall some basic results on pseudo S-asymptotically(ω,c)-periodic functions and Sobolev type fractional differential equation.We secondly investigate some existence of pseudo S-asymptotically(ω,c)-periodic solutions for a semilinear fractional differential equations of Sobolev type.We finally present a simple example.展开更多
In this paper,by an approximating argument,we obtain two disjoint and infinite sets of solutions for the following elliptic equation with critical Hardy-Sobolev exponents■whereΩis a smooth bounded domain in RN with ...In this paper,by an approximating argument,we obtain two disjoint and infinite sets of solutions for the following elliptic equation with critical Hardy-Sobolev exponents■whereΩis a smooth bounded domain in RN with 0∈?Ωand all the principle curvatures of?Ωat 0 are negative,a∈C1(Ω,R*+),μ>0,0<s<2,1<q<2 and N>2(q+1)/(q-1).By2*:=2N/(N-2)and 2*(s):(2(N-s))/(N-2)we denote the critical Sobolev exponent and Hardy-Sobolev exponent,respectively.展开更多
As for the affine energy, Edir Junior and Ferreira Leite establish the existence of minimizers for particular restricted subcritical and critical variational issues on BV(Ω). Similar functionals exhibit deeper weak* ...As for the affine energy, Edir Junior and Ferreira Leite establish the existence of minimizers for particular restricted subcritical and critical variational issues on BV(Ω). Similar functionals exhibit deeper weak* topological traits including lower semicontinuity and affine compactness, and their geometry is non-coercive. Our work also proves the result that extremal functions exist for certain affine Poincaré-Sobolev inequalities.展开更多
文摘本文研究了一类带Hardy项和Sobolev临界指数的椭圆型方程。通过变分法,我们得到了方程的能量泛函在零点附近存在局部极小值点,且该极小值点为方程的正解。此外,当方程的扰动项趋于零时,该正解也趋于零。The elliptical equation with Hardy terms and Sobolev critical exponents is studied. By the variational methods, we have obtained that there exists a local minimum point of the energy functional related to the equation which is near zero, and the local minimum point is a positive solution of this equation. Moreover, this positive solution tends to zero when the perturbed term goes to zero.
基金Supported by the NSFC(11771087,12171091 and 11831005)。
文摘In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality,this inequality contains a term involving the mean curvature.
基金supported by NSF of Shaanxi Province(Grant No.2023-JC-YB-011).
文摘In this paper,we firstly recall some basic results on pseudo S-asymptotically(ω,c)-periodic functions and Sobolev type fractional differential equation.We secondly investigate some existence of pseudo S-asymptotically(ω,c)-periodic solutions for a semilinear fractional differential equations of Sobolev type.We finally present a simple example.
文摘In this paper,by an approximating argument,we obtain two disjoint and infinite sets of solutions for the following elliptic equation with critical Hardy-Sobolev exponents■whereΩis a smooth bounded domain in RN with 0∈?Ωand all the principle curvatures of?Ωat 0 are negative,a∈C1(Ω,R*+),μ>0,0<s<2,1<q<2 and N>2(q+1)/(q-1).By2*:=2N/(N-2)and 2*(s):(2(N-s))/(N-2)we denote the critical Sobolev exponent and Hardy-Sobolev exponent,respectively.
文摘As for the affine energy, Edir Junior and Ferreira Leite establish the existence of minimizers for particular restricted subcritical and critical variational issues on BV(Ω). Similar functionals exhibit deeper weak* topological traits including lower semicontinuity and affine compactness, and their geometry is non-coercive. Our work also proves the result that extremal functions exist for certain affine Poincaré-Sobolev inequalities.