In this paper, we study the logarithmic Sobolev inequalities for two-sided birth-death processes. An estimate of the logarithmic Sobolev constant α for a two-sided birth-death process is obtained by the Hardy-type in...In this paper, we study the logarithmic Sobolev inequalities for two-sided birth-death processes. An estimate of the logarithmic Sobolev constant α for a two-sided birth-death process is obtained by the Hardy-type inequality and a criteria for a is also presented.展开更多
As for the affine energy, Edir Junior and Ferreira Leite establish the existence of minimizers for particular restricted subcritical and critical variational issues on BV(Ω). Similar functionals exhibit deeper weak* ...As for the affine energy, Edir Junior and Ferreira Leite establish the existence of minimizers for particular restricted subcritical and critical variational issues on BV(Ω). Similar functionals exhibit deeper weak* topological traits including lower semicontinuity and affine compactness, and their geometry is non-coercive. Our work also proves the result that extremal functions exist for certain affine Poincaré-Sobolev inequalities.展开更多
In this paper, we will establish Poincare inequalities in variable exponent non-isotropic Sobolev spaces. The crucial part is that we prove the boundedness of the fractional integral operator on variable exponent Lebe...In this paper, we will establish Poincare inequalities in variable exponent non-isotropic Sobolev spaces. The crucial part is that we prove the boundedness of the fractional integral operator on variable exponent Lebesgue spaces on spaces of homogeneous type. We obtain the first order Poincare inequalities for vector fields satisfying Hormander's condition in variable non-isotropic Sobolev spaces. We also set up the higher order Poincare inequalities with variable exponents on stratified Lie groups. Moreover, we get the Sobolev inequalities in variable exponent Sobolev spaces on whole stratified Lie groups. These inequalities are important and basic tools in studying nonlinear subelliptic PDEs with variable exponents such as the p(x)-subLaplacian. Our results are only stated and proved for vector fields satisfying Hormander's condition, but they also hold for Grushin vector fields as well with obvious modifications.展开更多
We give two applications of logarithmic Sobolev inequalities to matrix models and free probability. We also provide a new characterization of semi-circular systems through a Poincaré-type inequality.
A number of results about deriving further Sobolev inequalities from a given Sobolev inequality are presented.Various techniques are employed,including Bessel potentials and Riesz transforms.Combining these results wi...A number of results about deriving further Sobolev inequalities from a given Sobolev inequality are presented.Various techniques are employed,including Bessel potentials and Riesz transforms.Combining these results with theW1,2 Sobolev inequality along the Ricci flow established by the author in earlier papers then yields various new Sobolev inequalities along the Ricci flow.展开更多
We derive the sharp Moser-Trudinger-Onofri inequalities on the standard n-sphere and CR(2n+1)-sphere as the limit of the sharp fractional Sobolev inequalities for all n≥1.On the 2-sphere and 4-sphere,this was establi...We derive the sharp Moser-Trudinger-Onofri inequalities on the standard n-sphere and CR(2n+1)-sphere as the limit of the sharp fractional Sobolev inequalities for all n≥1.On the 2-sphere and 4-sphere,this was established recently by Chang and Wang.Our proof uses an alternative and elementary argument.展开更多
Based on Perelman’s entropy monotonicity,uniform logarithmic Sobolev inequalities along the Ricci flow are derived.Then uniform Sobolev inequalities along theRicci floware derived via harmonic analysis of the integra...Based on Perelman’s entropy monotonicity,uniform logarithmic Sobolev inequalities along the Ricci flow are derived.Then uniform Sobolev inequalities along theRicci floware derived via harmonic analysis of the integral transform of the relevant heat operator.These inequalities are fundamental analytic properties of the Ricci flow.They are also extended to the volume-normalized Ricci flow and the Kähler-Ricci flow.展开更多
We prove some Trudinger-type inequalities and Brezis-Gallouet-Wainger inequality on the Heisenberg group, extending to this context the Euclidean results by T. Ozawa.
Poincaréinequality has been studied by Bobkov for radial measures,but few are known about the logarithmic Sobolev inequality in the radial case.We try to fill this gap here using different methods:Bobkov's ar...Poincaréinequality has been studied by Bobkov for radial measures,but few are known about the logarithmic Sobolev inequality in the radial case.We try to fill this gap here using different methods:Bobkov's argument and super-Poincaréinequalities,direct approach via L_(1)-logarithmic Sobolev inequalities.We also give various examples where the obtained bounds are quite sharp.Recent bounds obtained by Lee–Vempala in the log-concave bounded case are refined for radial measures.展开更多
In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality...In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality,this inequality contains a term involving the mean curvature.展开更多
Motivated by the idea of M. Ledoux who brings out the connection between Sobolev embeddings and heat kernel bounds, we prove an analogous result for Kohn’s sub-Laplacian on the Heisenberg type groups. The main result...Motivated by the idea of M. Ledoux who brings out the connection between Sobolev embeddings and heat kernel bounds, we prove an analogous result for Kohn’s sub-Laplacian on the Heisenberg type groups. The main result includes features of an inequality of either Sobolev or Galiardo-Nirenberg type.展开更多
Here we consider some weighted logarithmic Sobolev inequalities which can be used in the theory of singular Riemanian manifolds.We give the necessary and sufficient conditions such that the 1-dimension weighted logari...Here we consider some weighted logarithmic Sobolev inequalities which can be used in the theory of singular Riemanian manifolds.We give the necessary and sufficient conditions such that the 1-dimension weighted logarithmic Sobolev inequality is true and obtain a new estimate on the entropy.展开更多
In this paper, we study the global existence of the smooth solution for a reduced quantum Zakharov system in two spatial dimensions. Using energy estimates and the logarithmic type Sobolev inequality, we show the glob...In this paper, we study the global existence of the smooth solution for a reduced quantum Zakharov system in two spatial dimensions. Using energy estimates and the logarithmic type Sobolev inequality, we show the global existence of the solution to this system without any small condition on the initial data.展开更多
We prove the L estimate for the isotropic version of the homogeneous landau problem, which was explored by M. Gualdani and N. Guillen. As shown in a region of the smooth potentials range under values of the interactio...We prove the L estimate for the isotropic version of the homogeneous landau problem, which was explored by M. Gualdani and N. Guillen. As shown in a region of the smooth potentials range under values of the interaction exponent (2), a weighted Poincaré inequality is a natural consequence of the traditional weighted Hardy inequality, which in turn implies that the norms of solutions propagate in the L1 space. Now, the L estimate is based on the work of De Giorgi, Nash, and Moser, as well as a few weighted Sobolev inequalities.展开更多
In this paper,we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:(−Δ)s u−γu|x|2s=|u|2∗s(β)−2 u|x|β+[Iμ∗Fα(⋅,u)](x)fα(x,u),u∈H...In this paper,we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:(−Δ)s u−γu|x|2s=|u|2∗s(β)−2 u|x|β+[Iμ∗Fα(⋅,u)](x)fα(x,u),u∈H˙s(R n),(0.1)(1)where s∈(0,1),0≤α,β<2s<n,μ∈(0,n),γ<γH,Iμ(x)=|x|−μ,Fα(x,u)=|u(x)|2#μ(α)|x|δμ(α),fα(x,u)=|u(x)|2#μ(α)−2 u(x)|x|δμ(α),2#μ(α)=(1−μ2n)⋅2∗s(α),δμ(α)=(1−μ2n)α,2∗s(α)=2(n−α)n−2s andγH=4 sΓ2(n+2s4)Γ2(n−2s4).We show that problem(0.1)admits at least a weak solution under some conditions.To prove the main result,we develop some useful tools based on a weighted Morrey space.To be precise,we discover the embeddings H˙s(R n)↪L 2∗s(α)(R n,|y|−α)↪L p,n−2s2 p+pr(R n,|y|−pr),(0.2)(2)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α))and r=α2∗s(α).We also establish an improved Sobolev inequality,(∫R n|u(y)|2∗s(α)|y|αdy)12∗s(α)≤C||u||θH˙s(R n)||u||1−θL p,n−2s2 p+pr(R n,|y|−pr),∀u∈H˙s(R n),(0.3)(3)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α)),r=α2∗s(α),0<max{22∗s(α),2∗s−12∗s(α)}<θ<1,2∗s=2nn−2s and C=C(n,s,α)>0 is a constant.Inequality(0.3)is a more general form of Theorem 1 in Palatucci,Pisante[1].By using the mountain pass lemma along with(0.2)and(0.3),we obtain a nontrivial weak solution to problem(0.1)in a direct way.It is worth pointing out that(0.2)and 0.3)could be applied to simplify the proof of the existence results in[2]and[3].展开更多
In this paper, we consider a class of superlinear elliptic problems involving trac- tional Laplacian (-△)s/2u = λf(u) in a bounded smooth domain with zero Diriehlet bound- ary condition. We use the method on har...In this paper, we consider a class of superlinear elliptic problems involving trac- tional Laplacian (-△)s/2u = λf(u) in a bounded smooth domain with zero Diriehlet bound- ary condition. We use the method on harmonic extension to study the dependence of the number of sign-changing solutions on the parameter λ.展开更多
Let X = (X1, ···, Xm) be an infinitely degenerate system of vector fields. The aim of this paper is to study the existence of infinitely many solutions for the sum of operators X =sum ( ) form j=1 t...Let X = (X1, ···, Xm) be an infinitely degenerate system of vector fields. The aim of this paper is to study the existence of infinitely many solutions for the sum of operators X =sum ( ) form j=1 to m Xj Xj.展开更多
In this paper,we study the existence and multiplicity of periodic solutions of the non-autonomous second-order Hamiltonian systems■where T> 0.Under suitable assumptions on F,some new existence and multiplicity the...In this paper,we study the existence and multiplicity of periodic solutions of the non-autonomous second-order Hamiltonian systems■where T> 0.Under suitable assumptions on F,some new existence and multiplicity theorems are obtained by using the least action principle and minimax methods in critical point theory.展开更多
In this paper, we study the relations between trace inequalities(Sobolev and Moser-Trudinger types), isocapacitary inequalities, and the regularity of the complex Hessian and Monge-Amp`ere equations with respect to a ...In this paper, we study the relations between trace inequalities(Sobolev and Moser-Trudinger types), isocapacitary inequalities, and the regularity of the complex Hessian and Monge-Amp`ere equations with respect to a general nonnegative Borel measure. We obtain a quantitative characterization for these relations through the properties of the capacity-minimizing functions.展开更多
基金the National Natural Science Foundation of China(10271091)
文摘In this paper, we study the logarithmic Sobolev inequalities for two-sided birth-death processes. An estimate of the logarithmic Sobolev constant α for a two-sided birth-death process is obtained by the Hardy-type inequality and a criteria for a is also presented.
文摘As for the affine energy, Edir Junior and Ferreira Leite establish the existence of minimizers for particular restricted subcritical and critical variational issues on BV(Ω). Similar functionals exhibit deeper weak* topological traits including lower semicontinuity and affine compactness, and their geometry is non-coercive. Our work also proves the result that extremal functions exist for certain affine Poincaré-Sobolev inequalities.
基金supported by NSFC(Grant No.11371056)supported by a US NSF grant
文摘In this paper, we will establish Poincare inequalities in variable exponent non-isotropic Sobolev spaces. The crucial part is that we prove the boundedness of the fractional integral operator on variable exponent Lebesgue spaces on spaces of homogeneous type. We obtain the first order Poincare inequalities for vector fields satisfying Hormander's condition in variable non-isotropic Sobolev spaces. We also set up the higher order Poincare inequalities with variable exponents on stratified Lie groups. Moreover, we get the Sobolev inequalities in variable exponent Sobolev spaces on whole stratified Lie groups. These inequalities are important and basic tools in studying nonlinear subelliptic PDEs with variable exponents such as the p(x)-subLaplacian. Our results are only stated and proved for vector fields satisfying Hormander's condition, but they also hold for Grushin vector fields as well with obvious modifications.
文摘We give two applications of logarithmic Sobolev inequalities to matrix models and free probability. We also provide a new characterization of semi-circular systems through a Poincaré-type inequality.
文摘A number of results about deriving further Sobolev inequalities from a given Sobolev inequality are presented.Various techniques are employed,including Bessel potentials and Riesz transforms.Combining these results with theW1,2 Sobolev inequality along the Ricci flow established by the author in earlier papers then yields various new Sobolev inequalities along the Ricci flow.
基金supported in part by NSFC 11501034,NSFC 11571019 and the key project NSFC 11631002.
文摘We derive the sharp Moser-Trudinger-Onofri inequalities on the standard n-sphere and CR(2n+1)-sphere as the limit of the sharp fractional Sobolev inequalities for all n≥1.On the 2-sphere and 4-sphere,this was established recently by Chang and Wang.Our proof uses an alternative and elementary argument.
文摘Based on Perelman’s entropy monotonicity,uniform logarithmic Sobolev inequalities along the Ricci flow are derived.Then uniform Sobolev inequalities along theRicci floware derived via harmonic analysis of the integral transform of the relevant heat operator.These inequalities are fundamental analytic properties of the Ricci flow.They are also extended to the volume-normalized Ricci flow and the Kähler-Ricci flow.
基金supported by the Fundamental Research Funds for the Central Universities (1082001)National Science Foundation of China (11101096)
文摘We prove some Trudinger-type inequalities and Brezis-Gallouet-Wainger inequality on the Heisenberg group, extending to this context the Euclidean results by T. Ozawa.
基金Supported by ANR(Grant No.EFI ANR-17-CE40-0030)。
文摘Poincaréinequality has been studied by Bobkov for radial measures,but few are known about the logarithmic Sobolev inequality in the radial case.We try to fill this gap here using different methods:Bobkov's argument and super-Poincaréinequalities,direct approach via L_(1)-logarithmic Sobolev inequalities.We also give various examples where the obtained bounds are quite sharp.Recent bounds obtained by Lee–Vempala in the log-concave bounded case are refined for radial measures.
基金Supported by the NSFC(11771087,12171091 and 11831005)。
文摘In this note,we prove a logarithmic Sobolev inequality which holds for compact submanifolds without a boundary in manifolds with asymptotically nonnegative sectional curvature.Like the Michale-Simon Sobolev inequality,this inequality contains a term involving the mean curvature.
基金supported by National Science Foundation of China (10771175)
文摘Motivated by the idea of M. Ledoux who brings out the connection between Sobolev embeddings and heat kernel bounds, we prove an analogous result for Kohn’s sub-Laplacian on the Heisenberg type groups. The main result includes features of an inequality of either Sobolev or Galiardo-Nirenberg type.
基金Supported by the National Natural Science Foundation of China(11871436)。
文摘Here we consider some weighted logarithmic Sobolev inequalities which can be used in the theory of singular Riemanian manifolds.We give the necessary and sufficient conditions such that the 1-dimension weighted logarithmic Sobolev inequality is true and obtain a new estimate on the entropy.
文摘In this paper, we study the global existence of the smooth solution for a reduced quantum Zakharov system in two spatial dimensions. Using energy estimates and the logarithmic type Sobolev inequality, we show the global existence of the solution to this system without any small condition on the initial data.
文摘We prove the L estimate for the isotropic version of the homogeneous landau problem, which was explored by M. Gualdani and N. Guillen. As shown in a region of the smooth potentials range under values of the interaction exponent (2), a weighted Poincaré inequality is a natural consequence of the traditional weighted Hardy inequality, which in turn implies that the norms of solutions propagate in the L1 space. Now, the L estimate is based on the work of De Giorgi, Nash, and Moser, as well as a few weighted Sobolev inequalities.
基金Natural Science Foundation of China(11771166)Hubei Key Laboratory of Mathematical Sciences and Program for Changjiang Scholars and Innovative Research Team in University#IRT17R46.
文摘In this paper,we consider the existence of nontrivial weak solutions to a double critical problem involving a fractional Laplacian with a Hardy term:(−Δ)s u−γu|x|2s=|u|2∗s(β)−2 u|x|β+[Iμ∗Fα(⋅,u)](x)fα(x,u),u∈H˙s(R n),(0.1)(1)where s∈(0,1),0≤α,β<2s<n,μ∈(0,n),γ<γH,Iμ(x)=|x|−μ,Fα(x,u)=|u(x)|2#μ(α)|x|δμ(α),fα(x,u)=|u(x)|2#μ(α)−2 u(x)|x|δμ(α),2#μ(α)=(1−μ2n)⋅2∗s(α),δμ(α)=(1−μ2n)α,2∗s(α)=2(n−α)n−2s andγH=4 sΓ2(n+2s4)Γ2(n−2s4).We show that problem(0.1)admits at least a weak solution under some conditions.To prove the main result,we develop some useful tools based on a weighted Morrey space.To be precise,we discover the embeddings H˙s(R n)↪L 2∗s(α)(R n,|y|−α)↪L p,n−2s2 p+pr(R n,|y|−pr),(0.2)(2)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α))and r=α2∗s(α).We also establish an improved Sobolev inequality,(∫R n|u(y)|2∗s(α)|y|αdy)12∗s(α)≤C||u||θH˙s(R n)||u||1−θL p,n−2s2 p+pr(R n,|y|−pr),∀u∈H˙s(R n),(0.3)(3)where s∈(0,1),0<α<2s<n,p∈[1,2∗s(α)),r=α2∗s(α),0<max{22∗s(α),2∗s−12∗s(α)}<θ<1,2∗s=2nn−2s and C=C(n,s,α)>0 is a constant.Inequality(0.3)is a more general form of Theorem 1 in Palatucci,Pisante[1].By using the mountain pass lemma along with(0.2)and(0.3),we obtain a nontrivial weak solution to problem(0.1)in a direct way.It is worth pointing out that(0.2)and 0.3)could be applied to simplify the proof of the existence results in[2]and[3].
基金supported by China Postdoctoral Science Foundation Funded Project(2016M592088)National Natural Science Foundation of China-NSAF(11271305)
文摘In this paper, we consider a class of superlinear elliptic problems involving trac- tional Laplacian (-△)s/2u = λf(u) in a bounded smooth domain with zero Diriehlet bound- ary condition. We use the method on harmonic extension to study the dependence of the number of sign-changing solutions on the parameter λ.
基金supported by Natural Science Foundation of China (10971199)Natural Science Foundations of Henan Province (092300410067)
文摘Let X = (X1, ···, Xm) be an infinitely degenerate system of vector fields. The aim of this paper is to study the existence of infinitely many solutions for the sum of operators X =sum ( ) form j=1 to m Xj Xj.
基金Supported by the Youth Foundation of Shangqiu Institute of Technology(No.2018XKQ01)
文摘In this paper,we study the existence and multiplicity of periodic solutions of the non-autonomous second-order Hamiltonian systems■where T> 0.Under suitable assumptions on F,some new existence and multiplicity theorems are obtained by using the least action principle and minimax methods in critical point theory.
基金supported by China Postdoctoral Science Foundation (Grant No. BX2021015)supported by National Key R&D Program of China (Grant No. SQ2020YFA0712800)National Natural Science Foundation of China (Grant No. 11822101)。
文摘In this paper, we study the relations between trace inequalities(Sobolev and Moser-Trudinger types), isocapacitary inequalities, and the regularity of the complex Hessian and Monge-Amp`ere equations with respect to a general nonnegative Borel measure. We obtain a quantitative characterization for these relations through the properties of the capacity-minimizing functions.