The solubility of zinc oxide in sodium hydroxide solution was measured in a closed polytetrafluoroethylene vessel from 25 to 100 ℃. The ZnO solubility was determined by employing the method of isothermal solution sat...The solubility of zinc oxide in sodium hydroxide solution was measured in a closed polytetrafluoroethylene vessel from 25 to 100 ℃. The ZnO solubility was determined by employing the method of isothermal solution saturation. The results show that only ZnO solid exists in the equilibrium state in the low concentration alkali regions, and the solubility of zinc oxide is almost invariable with temperature. With the increase of alkali concentration, equilibrium solid turns from ZnO to NaZn(OH)3 suddenly, this mutation is called invariant point. The alkali concentration of the invariant points increases with increasing temperature, but the solubility of NaZn(OH)3 decreases with increasing alkali concentration at the same temperature. At the same Na2O concentration, the higher the temperature is, the higher the solubility of NaZn(OH)3 is.展开更多
The reaction kinetics for the leaching of low-grade scheelite concentrate was investigated in an autoclave with sodium hydroxide in the presence of phosphate. The effects of stirring speed (300-600 r/min), reaction te...The reaction kinetics for the leaching of low-grade scheelite concentrate was investigated in an autoclave with sodium hydroxide in the presence of phosphate. The effects of stirring speed (300-600 r/min), reaction temperature (353-383 K), sodium hydroxide concentration (1.69-6.76 mol/L) and phosphate concentration (0.68-1.69 mol/L) on the WO3 dissolution ratio were studied. The results showed that the WO3 dissolution ratio was practically independent of stirring speed, while it increased with increasing the reaction temperature, and the concentrations of sodium hydroxide and phosphate. The experimental data were consistent with the shrinking core model, with a surface chemical reaction as the leaching rate-determining step. The apparent activation energy was calculated as 49.56 kJ/mol, and the reaction orders with respect to the concentrations of sodium hydroxide and phosphate were determined as 0.27 and 0.67, respectively. The kinetics equation of the leaching process was established.展开更多
A novel process was proposed for treating nickeliferous laterite ores with molten sodium hydroxide.The effect on silicon extraction caused by the factors,such as stirring speed,reaction temperature,particle size and N...A novel process was proposed for treating nickeliferous laterite ores with molten sodium hydroxide.The effect on silicon extraction caused by the factors,such as stirring speed,reaction temperature,particle size and NaOH-to-ore mass ratio,was investigated.The results show that increasing stirring speed,reaction temperature and NaOH-to-ore mass ratio while decreasing particle size increases silicon extraction rate.The desiliconization kinetics of nickeliferous laterite ores in molten sodium hydroxide system was described successfully by chemical reaction control model.The activation energy of the desiliconization process was found to be 44.01 kJ/mol,and the reaction rate based on a chemical reaction-controlled process can be expressed as:1-(1-α) 1/3 = 27.67exp[-44 010/(RT)]t.展开更多
Desilication kinetics of calcined boron mud(CBM) occurring in molten sodium hydroxide media was investigated. The effects of factors such as reaction temperature and Na OH-to-CBM mass ratio on silicon extraction effic...Desilication kinetics of calcined boron mud(CBM) occurring in molten sodium hydroxide media was investigated. The effects of factors such as reaction temperature and Na OH-to-CBM mass ratio on silicon extraction efficiency were studied. The results show that silicon extraction efficiency increases with increasing the reaction time and Na OH-to-CBM mass ratio. There are two stages for the desilication process of the calcined boron mud. The overall desilication process follows the shrinking-core model, and the first and second stages of the process were determined to obey the shrinking-core model for surface chemical reaction and the diffusion through the product layer, respectively. The activation energies of the first and second stages were calculated to be 44.78 k J/mol and 15.94 k J/mol, respectively.展开更多
A hydrometallurgical process was developed for recycling pharmaceutical blisters.Leaching aluminum from pharmaceutical blisters using sodium hydroxide(NaOH) solutions was investigated with respect to leaching behavior...A hydrometallurgical process was developed for recycling pharmaceutical blisters.Leaching aluminum from pharmaceutical blisters using sodium hydroxide(NaOH) solutions was investigated with respect to leaching behaviors and kinetics.AL9(34) orthogonal design of experiments suggests that the most significant factor is NaOH concentration followed by temperature and leaching time.Factorial experiments demonstrate that the leaching rate of aluminum increases with increasing of the factors.The optimum conditions are temperature of 70 °C,leaching time of 20 min,NaOH concentration of 1.25 mol/L,liquid-to-solid mass ratio of 15:1 and agitation speed of 400 r/min.Under optimum conditions,the leaching rate is up to 100%,implying that aluminum and polyvinyl chloride(PVC) plastic in pharmaceutical blisters are separated completely.Kinetics of leaching aluminum is best described by the product layer diffusion control model,and the activation energy is calculated to be 19.26 kJ/mol.展开更多
Steel slag which is mainly composed of γ-Ca2SiO4 and other silicates or alumino-silicates is activated by sodium sificates and sodium hydroxide. The powders of such steel slag are usually inert to hydrate and subsequ...Steel slag which is mainly composed of γ-Ca2SiO4 and other silicates or alumino-silicates is activated by sodium sificates and sodium hydroxide. The powders of such steel slag are usually inert to hydrate and subsequently have very low ability of cementing. But when sodium silicates and sodium hydroxide are used as activators the steel slag shows very good properties of cementing. When activated with NaOH solution the hardened slurry of the steel slag has a compressive strength of 11.13 MPa after being cured for 28 days. When activated with Na2SiO3 solution the samples after being cured for 28 days have an average compres- sive strength of 40.23 MPa. While the steel slag slurry which is only mixed with water has a compressive of 0.88 MPa after being cured for 28 days.展开更多
The effect of sodium hydroxide (NaOH) amount on phosphogypsum based cement was investigated. The mechanical performances and hydration mechanism of the phosphogypsum-based cement with different proportions of NaOH a...The effect of sodium hydroxide (NaOH) amount on phosphogypsum based cement was investigated. The mechanical performances and hydration mechanism of the phosphogypsum-based cement with different proportions of NaOH and steel slag were analyzed based on setting time, volume stability, strength test, XRD and SEM analyses. The experimental results show that, NaOH as an alkali activator significantly reduces the cement setting time and improves the cement early strength. But the acceleration of hydration proces produces coarse crystalline hydration products and the osteoporosis structure of hardened paste, which has a negative effect on later age strength. The combination of 1% NaOH and 5% steel slag as alkali activating agents is optimal with respect to early and later age strengths. Overdose of NaOH not only decreases the cement strength at later age, but also may cause problem of volume stability.展开更多
A new and effective strategy was proposed for preparing new organic-inorganic composite biosorbent with spherical silica as supporting core and chitosan(CS)-based hybrid layer as shell based on sol-gel reaction and ...A new and effective strategy was proposed for preparing new organic-inorganic composite biosorbent with spherical silica as supporting core and chitosan(CS)-based hybrid layer as shell based on sol-gel reaction and simple treatment with sodium hydroxide(NaOH). The coating layer was covalently bound on the supporting silica through polysaccharide incorporated sol-gel process starting from CS and inorganic precursor γ-glycidoxypropyltrimethoxysiloxane(GPTMS). GPTMS had epoxide groups and cross-linked amine groups of CS to avoid its acidic solubilization. The composite biosorbent had coarse surface due to the wet phase-inversion by treating in NaOH solution. The prepared biosorbent could be used in treating electric plating wastewater.展开更多
The corundum(α-alumina) core has been considered as a suitable candidate for investment casting of hollow, high pressure turbine engine airfoils due to its excellent properties. However, the efficiency of removing al...The corundum(α-alumina) core has been considered as a suitable candidate for investment casting of hollow, high pressure turbine engine airfoils due to its excellent properties. However, the efficiency of removing alumina cores in concentrated caustic solution cannot meet the needs of industrial production. In this paper, the effects of temperature and initial solution concentration on dissolution of α-alumina were studied by the classical weight-loss method. The fractal kinetic model was developed in order to describe α-alumina dissolution, assuming that the nonporous particles shrank during reaction process. The results show that the dissolution rate increases with increasing reaction temperature and initial solution concentration. Especially, the initial solution concentration has a significant influence on α-alumina dissolution rate at a higher reaction temperature. The activation energies decrease with increasing initial solution concentration, and the chemical reaction is the rate-controlling step.展开更多
A simple and general method for the synthesis of bi(acyl)disulfides is reported.Sulfur is allowed to react with sodium hydroxide to give sodium disulfide at 65℃ under PTC,which can react with acyl halides to afford b...A simple and general method for the synthesis of bi(acyl)disulfides is reported.Sulfur is allowed to react with sodium hydroxide to give sodium disulfide at 65℃ under PTC,which can react with acyl halides to afford bi(acyl)disulfides in good to excellent isolated yields.The effects of solvents and phase transfer catalysts are discussed.展开更多
Extracting B2O3 from calcined boron mud(CBM) was studied. The effect of factors such as reaction temperature and NaO H-to-CBM mass ratio on B2O3 extraction efficiency was investigated. The results show that increasing...Extracting B2O3 from calcined boron mud(CBM) was studied. The effect of factors such as reaction temperature and NaO H-to-CBM mass ratio on B2O3 extraction efficiency was investigated. The results show that increasing reaction temperature and NaO H-to-CBM mass ratio increases B2O3 extraction efficiency. There are two stages for the B2O3 extracting process: 0–20 min is the first stage, which is rapid; 20–50 min is the second stage, which is slower than the first stage. The overall extracting process follows the shrinking core model, and the first and second stages are determined to obey the surface chemical reaction model and the diffusion through the products layer model,respectively. The activation energies of the first and second stages are calculated to be 41.74 and 15.43 kJ·mol-1,respectively. The B2O3 extracting kinetics equations of the first and second stages are also obtained.展开更多
The morphology and composition are two key factors to determine the thermoelectric performance of aqueously synthesized tin selenide(SnSe)crystals;however,their controlling is still under exploring.In this study,we re...The morphology and composition are two key factors to determine the thermoelectric performance of aqueously synthesized tin selenide(SnSe)crystals;however,their controlling is still under exploring.In this study,we report a high figure-of-merit(ZT)of1.5 at 823 K in p-type polycrystalline Sn1−xSe resulted from a synergy of morphology control and vacancy optimization,realized by carefully tuning the sodium hydroxide(NaOH)concentration during solvothermal synthesis.After a comprehensive investigation on various NaOH concentrations,it was found that an optimized NaOH amount of 10 mL with a concentration of 10 mol L^−1 can simultaneously achieve a large average crystal size and a high Sn vacancy concentration of2.5%.The large microplate-like crystals lead to a considerable anisotropy in the sintered pellets,and the high Sn vacancy level contributes to an optimum hole concentration to the level of2.3×10^19 cm^−3,and in turn a high power factor of7.4μW cm^−1 K^−2 at 823 K,measured along the direction perpendicular to the sintering pressure.In addition,a low thermal conductivity of0.41 W m^−1 K^−1 is achieved by effective phonon scattering at localized crystal imperfections including lattice distortions,grain boundaries,and vacancy domains,as observed by detailed structural characterizations.Furthermore,a competitive compressive strength of52.1 MPa can be achieved along the direction of high thermoelectric performance,indicating a mechanically robust feature.This study provides a new avenue in achieving high thermoelectric performance in SnSe-based thermoelectric materials.展开更多
The preparation process of sodium molybdate has the disadvantages of high energy consumption,low thermal efficiency,and high raw material requirement of molybdenum trioxide,in order to realize the green and efficient ...The preparation process of sodium molybdate has the disadvantages of high energy consumption,low thermal efficiency,and high raw material requirement of molybdenum trioxide,in order to realize the green and efficient development of molybdenum concentrate resources,this paper proposes a new process for efficient recovery of molybdenum from molybdenum concentrate and preparation of sodium molybdate by microwave-enhanced roasting and alkali leaching.Thermodynamic analysis indicated the feasibility of oxidation roasting of molybdenum concentrate.The effects of roasting temperature,holding time,and power-to-mass ratio on the oxidation product and leaching product sodium molybdate (Na_(2)MoO_(4)·2H_(2)O) were investigated.Under the optimal process conditions:roasting temperature of 700℃,holding time of 110 min,and power-to-mass ratio of 110 W/g,the molybdenum state of existence was converted from MoS_(2) to Mo O3.The process of preparing sodium molybdate by alkali leaching of molybdenum calcine was investigated,the optimal leaching conditions include a solution concentration of 2.5 mol/L,a liquid-to-solid ratio of 2 mL/g,a leaching temperature of 60℃,and leaching solution termination at pH 8.The optimum conditions result in a leaching rate of sodium molybdate of 96.24%.Meanwhile,the content of sodium molybdate reaches 94.08wt%after leaching and removing impurities.Iron and aluminum impurities can be effectively separated by adjusting the pH of the leaching solution with sodium carbonate solution.This research avoids the shortcomings of the traditional process and utilizes the advantages of microwave metallurgy to prepare high-quality sodium molybdate,which provides a new idea for the highvalue utilization of molybdenum concentrate.展开更多
Alpha nickel hydroxide has better performances than commercial beta nickel hydroxide. However, the main defect is that α-phase is difficult to synthesize and easily transformed to β-phase Ni(OH)2 upon aging in a s...Alpha nickel hydroxide has better performances than commercial beta nickel hydroxide. However, the main defect is that α-phase is difficult to synthesize and easily transformed to β-phase Ni(OH)2 upon aging in a strong alkaline solution. In this study, the Al-Co, Al-Yb, Yb-Co and Al-Yb-Co multiple doping was used respectively. By controlling the amount of sodium carbonate, the α-Ni(OH)2 was prepared by ultrasonic-assisted precipitation. And the influence of sodium carbonate on the crystalline phase and structure stability for alpha nickel hydroxide was studied. The results demonstrate that, with increasing amount, the biphase nickel hydroxide transforms to pure alpha nickel hydroxide gradually, and the structure stability is also improved. When the amount of sodium carbonate is 2 g, the sample still keeps α-Ni(OH)2 after being aged for 30 days, for Al-Yb-Co-Ni(OH)2. And when the amount is less than 2 g, the phase transformations exist in the samples with different extents. These results demonstrated that the amount of sodium carbonate is a critical factor to maintain the structural stability of α-Ni(OH)2.展开更多
This study focuses on the preparation of corncob-based biosorbents. The chemical impregnation method was used to vary the chemical agent namely phosphoric acid H3PO4 (BA) and sodium hydroxide NaOH (BB). The physicoche...This study focuses on the preparation of corncob-based biosorbents. The chemical impregnation method was used to vary the chemical agent namely phosphoric acid H3PO4 (BA) and sodium hydroxide NaOH (BB). The physicochemical analysis of the two biosorbents indicated that under the same preparation conditions, the bio-sorbents have after activation yields lower than 50% (24.37% for BB and 49.09% for BA). In addition, the biosorbents have iodine index values between 444.17 mg/g and 418.79 mg/g and specific surfaces related to the adsorption of methylene blue ranging from 18.54 m2/g to 19.70 m2/g. The study of surface functional groups by using the Boehm test and pH zero point charge (pHPZC) confirmed the acidic nature of BA and BB biosorbents with respective values pHPZC = 4.01 and pHPZC = 4.90. The Langmuir method and BET analysis determined the specific surface areas by liquid phase adsorption of methylene blue as well as the porosity. The BET surface areas of BA and BB obtained are 72.01 m2/g and 63.10 m2/g respectively. The influence of the chemical activating agent on the formation of pores was confirmed by electron microscopy (SEM) analysis. From this study, it is found that the best activating agent for corn cobs was found to be phosphoric acid because the BA biosorbent was revealed to be the most favourable due to its surface area and good pore volume which are high compared to sodium hydroxide NaOH. Moreover, their application as adsorbent for effluent treatment could be explored.展开更多
This research investigates the mechanical and thermal properties of Morus alba combined with polylactic acid in comparison with other natural fibers. The study uses three different fiber and PLA compositions - 20%, 30...This research investigates the mechanical and thermal properties of Morus alba combined with polylactic acid in comparison with other natural fibers. The study uses three different fiber and PLA compositions - 20%, 30%, and 40% respectively - to produce composite materials. In addition, another composite with the same fiber volume is treated with a 4% NaOH solution to improve mechanical properties. The composites are processed by twin-screw extrusion, granulation, and injection molding. Tensile strength measurements of raw fibers and NaOH-treated fibers were carried out using a single-fiber tensile test with a gauge length of 40 mm. It was observed that the NaOH surface treatment increases the resistance against tensile loading and exhibited improved properties for raw fiber strands. The diameter of the fibers was measured using optical microscopy. During this research, flexural tests, impact tests, differential scanning calorimetry (DSC), and heat deflection temperature measurements (HDT) were conducted to evaluate the mechanical and thermal properties of the developed composite samples. The results indicate that the mechanical properties of NaOH-treated Morus alba-reinforced polylactic acid outperform both virgin PLA samples and untreated Morus alba samples.展开更多
Activation pretreatment of Cr-containing limonitic laterite ores by NaOH roasting to remove Cr, Al, and Si, as well as its effect on Ni and Co extraction in the subsequent pressure acid leaching process was investigat...Activation pretreatment of Cr-containing limonitic laterite ores by NaOH roasting to remove Cr, Al, and Si, as well as its effect on Ni and Co extraction in the subsequent pressure acid leaching process was investigated. Characterization results of X-ray diffraction (XRD) and scanning electron microscopy/X-ray energy dispersive spectroscopy (SEM/XEDS) show that goethite is the major Ni-bearing mineral, and chromite is the minor one. Experimental results show that the leaching rates of Cr, Al, and Si are 95.6wt%, 83.8wt%, and 40.1wt%, respectively, under the optimal alkali-roasting conditions. Compared with the direct pressure acid leaching of laterite ores, the leaching rates of Ni and Co increase from 80.1wt% to 96.9wt% and 70.2wt% to 95.1wt% after pretreatment, respectively. Meanwhile, the grade of acid leaching iron residues increases from 54.4wt% to 62.5wt%, and these residues with low Cr content are more suitable raw materials for iron making.展开更多
The geopolymer of fly ash (FA) and rice husk ash (RHA) was prepared. The burning temperature of rice husk, the RHA fineness and the ratio of FA to RHA were studied. The density and strength of the geopolymer morta...The geopolymer of fly ash (FA) and rice husk ash (RHA) was prepared. The burning temperature of rice husk, the RHA fineness and the ratio of FA to RHA were studied. The density and strength of the geopolymer mortars with RHA/FA mass ratios of 0/100, 20/80, 40/60, and 60/40 were tested. The geopolymers were activated with sodium hydroxide (NaOH), sodium silicate, and heat. It is revealed that the optimum burning temperature of RHA for making FA-RHA geopolymer is 690oC. The as-received FA and the ground RHA with 1%-5% retained on No.325 sieve are suitable source materials for making geopolymer, and the obtained compressive strengths are between 12.5-56.0 MPa and are dependent on the ratio of FA/RHA, the RHA fineness, and the ratio of sodium silicate to NaOH. Relatively high strength FA-RHA geopolymer mortars are obtained using a sodium silicate/NaOH mass ratio of 4.0, delay time before subjecting the samples to heat for 1 h, and heat curing at 60oC for 48 h.展开更多
Plasma electrolytic oxidation(PEO)of cast A356 aluminum alloy was carried out in 32 g/L NaAlO_(2) with the addition of different concentrations of NaOH.The stability of the aluminate solution is greatly enhanced by in...Plasma electrolytic oxidation(PEO)of cast A356 aluminum alloy was carried out in 32 g/L NaAlO_(2) with the addition of different concentrations of NaOH.The stability of the aluminate solution is greatly enhanced by increasing the concentration of NaOH.However,corresponding changes in the PEO behaviour occur due to the increment of NaOH concentration.Thicker precursor coatings are required for the PEO treatment in a more concentrated NaOH electrolyte.The results show that the optimal NaOH concentration is 5 g/L,which improves the stability of storage electrolyte to about 35 days,and leads to dense coatings with high wear performance(wear rate:4.1×10^(−7) mm^(3)·N^(−1)·m^(−1)).展开更多
Kaolin geopolymers were produced by the alkali-activation of kaolin with an activator solution (a mixture of NaOH and sodium silicate solutions). The NaOH solution was prepared at a concentration of 6-14 mol/L and w...Kaolin geopolymers were produced by the alkali-activation of kaolin with an activator solution (a mixture of NaOH and sodium silicate solutions). The NaOH solution was prepared at a concentration of 6-14 mol/L and was mixed with the sodium silicate solution at a Na2SiO3/NaOH mass ratio of 0.24 to prepare an activator solution. The kaolin-to-activator solution mass ratio used was 0.80. This paper aimed to analyze the effect of NaOH concentration on the compressive strength of kaolin geopolymers at 80℃ for 1, 2, and 3 d. Kaolin geopolymers were stable in water, and strength results showed that the kaolin binder had adequate compressive strength with 12 mol/L of NaOH concentration. When the NaOH concentration increased, the SiO2/Na20 decreased. The increased Na20 content enhanced the dissolution of kaolin as shown in X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses. However, excess in this content was not beneficial for the strength development of kaolin geopolymers. In addition, there was the formation of more geopolymeric gel in 12 mol/L samples. The XRD pattern of the samples showed a higher amorphous content and a more geopolymer bonding existed as proved by FTIR analysis.展开更多
基金Project (2007CB613603) supported by the National Basic Research Program of China
文摘The solubility of zinc oxide in sodium hydroxide solution was measured in a closed polytetrafluoroethylene vessel from 25 to 100 ℃. The ZnO solubility was determined by employing the method of isothermal solution saturation. The results show that only ZnO solid exists in the equilibrium state in the low concentration alkali regions, and the solubility of zinc oxide is almost invariable with temperature. With the increase of alkali concentration, equilibrium solid turns from ZnO to NaZn(OH)3 suddenly, this mutation is called invariant point. The alkali concentration of the invariant points increases with increasing temperature, but the solubility of NaZn(OH)3 decreases with increasing alkali concentration at the same temperature. At the same Na2O concentration, the higher the temperature is, the higher the solubility of NaZn(OH)3 is.
基金Projects(51674067,51422402) supported by the National Natural Science Foundation of ChinaProjects(N150101001,N160106004,N170106005) supported by the Fundamental Research Funds for the Central Universities,China
文摘The reaction kinetics for the leaching of low-grade scheelite concentrate was investigated in an autoclave with sodium hydroxide in the presence of phosphate. The effects of stirring speed (300-600 r/min), reaction temperature (353-383 K), sodium hydroxide concentration (1.69-6.76 mol/L) and phosphate concentration (0.68-1.69 mol/L) on the WO3 dissolution ratio were studied. The results showed that the WO3 dissolution ratio was practically independent of stirring speed, while it increased with increasing the reaction temperature, and the concentrations of sodium hydroxide and phosphate. The experimental data were consistent with the shrinking core model, with a surface chemical reaction as the leaching rate-determining step. The apparent activation energy was calculated as 49.56 kJ/mol, and the reaction orders with respect to the concentrations of sodium hydroxide and phosphate were determined as 0.27 and 0.67, respectively. The kinetics equation of the leaching process was established.
基金Project(2007CB613603)supported by the National Basic Research Program of China
文摘A novel process was proposed for treating nickeliferous laterite ores with molten sodium hydroxide.The effect on silicon extraction caused by the factors,such as stirring speed,reaction temperature,particle size and NaOH-to-ore mass ratio,was investigated.The results show that increasing stirring speed,reaction temperature and NaOH-to-ore mass ratio while decreasing particle size increases silicon extraction rate.The desiliconization kinetics of nickeliferous laterite ores in molten sodium hydroxide system was described successfully by chemical reaction control model.The activation energy of the desiliconization process was found to be 44.01 kJ/mol,and the reaction rate based on a chemical reaction-controlled process can be expressed as:1-(1-α) 1/3 = 27.67exp[-44 010/(RT)]t.
基金Project(51204037)supported by the National Natural Science Foundation of ChinaProject(N140204016)supported by the Fundamental Research Funds for the Central Universities,China
文摘Desilication kinetics of calcined boron mud(CBM) occurring in molten sodium hydroxide media was investigated. The effects of factors such as reaction temperature and Na OH-to-CBM mass ratio on silicon extraction efficiency were studied. The results show that silicon extraction efficiency increases with increasing the reaction time and Na OH-to-CBM mass ratio. There are two stages for the desilication process of the calcined boron mud. The overall desilication process follows the shrinking-core model, and the first and second stages of the process were determined to obey the shrinking-core model for surface chemical reaction and the diffusion through the product layer, respectively. The activation energies of the first and second stages were calculated to be 44.78 k J/mol and 15.94 k J/mol, respectively.
基金Project(2010CB630903)supported by the National Basic Research Program of China
文摘A hydrometallurgical process was developed for recycling pharmaceutical blisters.Leaching aluminum from pharmaceutical blisters using sodium hydroxide(NaOH) solutions was investigated with respect to leaching behaviors and kinetics.AL9(34) orthogonal design of experiments suggests that the most significant factor is NaOH concentration followed by temperature and leaching time.Factorial experiments demonstrate that the leaching rate of aluminum increases with increasing of the factors.The optimum conditions are temperature of 70 °C,leaching time of 20 min,NaOH concentration of 1.25 mol/L,liquid-to-solid mass ratio of 15:1 and agitation speed of 400 r/min.Under optimum conditions,the leaching rate is up to 100%,implying that aluminum and polyvinyl chloride(PVC) plastic in pharmaceutical blisters are separated completely.Kinetics of leaching aluminum is best described by the product layer diffusion control model,and the activation energy is calculated to be 19.26 kJ/mol.
文摘Steel slag which is mainly composed of γ-Ca2SiO4 and other silicates or alumino-silicates is activated by sodium sificates and sodium hydroxide. The powders of such steel slag are usually inert to hydrate and subsequently have very low ability of cementing. But when sodium silicates and sodium hydroxide are used as activators the steel slag shows very good properties of cementing. When activated with NaOH solution the hardened slurry of the steel slag has a compressive strength of 11.13 MPa after being cured for 28 days. When activated with Na2SiO3 solution the samples after being cured for 28 days have an average compres- sive strength of 40.23 MPa. While the steel slag slurry which is only mixed with water has a compressive of 0.88 MPa after being cured for 28 days.
文摘The effect of sodium hydroxide (NaOH) amount on phosphogypsum based cement was investigated. The mechanical performances and hydration mechanism of the phosphogypsum-based cement with different proportions of NaOH and steel slag were analyzed based on setting time, volume stability, strength test, XRD and SEM analyses. The experimental results show that, NaOH as an alkali activator significantly reduces the cement setting time and improves the cement early strength. But the acceleration of hydration proces produces coarse crystalline hydration products and the osteoporosis structure of hardened paste, which has a negative effect on later age strength. The combination of 1% NaOH and 5% steel slag as alkali activating agents is optimal with respect to early and later age strengths. Overdose of NaOH not only decreases the cement strength at later age, but also may cause problem of volume stability.
基金Supported by the National Natural Science Foundation of China(Nos.20775039 and 20602009)the Natural Science Founda-tion of Shandong Province of China(No.ZR2009BM031 and Q2008B05)+1 种基金the Public Welfare Project of Marine Science Research of China(Nos.200705011 and 200805039)the Science Research Fund of the First Institute of Oceanograph of China
文摘A new and effective strategy was proposed for preparing new organic-inorganic composite biosorbent with spherical silica as supporting core and chitosan(CS)-based hybrid layer as shell based on sol-gel reaction and simple treatment with sodium hydroxide(NaOH). The coating layer was covalently bound on the supporting silica through polysaccharide incorporated sol-gel process starting from CS and inorganic precursor γ-glycidoxypropyltrimethoxysiloxane(GPTMS). GPTMS had epoxide groups and cross-linked amine groups of CS to avoid its acidic solubilization. The composite biosorbent had coarse surface due to the wet phase-inversion by treating in NaOH solution. The prepared biosorbent could be used in treating electric plating wastewater.
基金financially supported by Special Project for High-end CNC Machine Tools and Basic Manufacturing Equipment of China(2012ZX04007-021)Liaoning Excellent Talents in University,China(LR2014004)
文摘The corundum(α-alumina) core has been considered as a suitable candidate for investment casting of hollow, high pressure turbine engine airfoils due to its excellent properties. However, the efficiency of removing alumina cores in concentrated caustic solution cannot meet the needs of industrial production. In this paper, the effects of temperature and initial solution concentration on dissolution of α-alumina were studied by the classical weight-loss method. The fractal kinetic model was developed in order to describe α-alumina dissolution, assuming that the nonporous particles shrank during reaction process. The results show that the dissolution rate increases with increasing reaction temperature and initial solution concentration. Especially, the initial solution concentration has a significant influence on α-alumina dissolution rate at a higher reaction temperature. The activation energies decrease with increasing initial solution concentration, and the chemical reaction is the rate-controlling step.
文摘A simple and general method for the synthesis of bi(acyl)disulfides is reported.Sulfur is allowed to react with sodium hydroxide to give sodium disulfide at 65℃ under PTC,which can react with acyl halides to afford bi(acyl)disulfides in good to excellent isolated yields.The effects of solvents and phase transfer catalysts are discussed.
基金financially supported by the National Natural Science Foundation of China(No.51204037)
文摘Extracting B2O3 from calcined boron mud(CBM) was studied. The effect of factors such as reaction temperature and NaO H-to-CBM mass ratio on B2O3 extraction efficiency was investigated. The results show that increasing reaction temperature and NaO H-to-CBM mass ratio increases B2O3 extraction efficiency. There are two stages for the B2O3 extracting process: 0–20 min is the first stage, which is rapid; 20–50 min is the second stage, which is slower than the first stage. The overall extracting process follows the shrinking core model, and the first and second stages are determined to obey the surface chemical reaction model and the diffusion through the products layer model,respectively. The activation energies of the first and second stages are calculated to be 41.74 and 15.43 kJ·mol-1,respectively. The B2O3 extracting kinetics equations of the first and second stages are also obtained.
文摘The morphology and composition are two key factors to determine the thermoelectric performance of aqueously synthesized tin selenide(SnSe)crystals;however,their controlling is still under exploring.In this study,we report a high figure-of-merit(ZT)of1.5 at 823 K in p-type polycrystalline Sn1−xSe resulted from a synergy of morphology control and vacancy optimization,realized by carefully tuning the sodium hydroxide(NaOH)concentration during solvothermal synthesis.After a comprehensive investigation on various NaOH concentrations,it was found that an optimized NaOH amount of 10 mL with a concentration of 10 mol L^−1 can simultaneously achieve a large average crystal size and a high Sn vacancy concentration of2.5%.The large microplate-like crystals lead to a considerable anisotropy in the sintered pellets,and the high Sn vacancy level contributes to an optimum hole concentration to the level of2.3×10^19 cm^−3,and in turn a high power factor of7.4μW cm^−1 K^−2 at 823 K,measured along the direction perpendicular to the sintering pressure.In addition,a low thermal conductivity of0.41 W m^−1 K^−1 is achieved by effective phonon scattering at localized crystal imperfections including lattice distortions,grain boundaries,and vacancy domains,as observed by detailed structural characterizations.Furthermore,a competitive compressive strength of52.1 MPa can be achieved along the direction of high thermoelectric performance,indicating a mechanically robust feature.This study provides a new avenue in achieving high thermoelectric performance in SnSe-based thermoelectric materials.
基金financially supported by the National Natural Science Foundation of China (No.51964046)。
文摘The preparation process of sodium molybdate has the disadvantages of high energy consumption,low thermal efficiency,and high raw material requirement of molybdenum trioxide,in order to realize the green and efficient development of molybdenum concentrate resources,this paper proposes a new process for efficient recovery of molybdenum from molybdenum concentrate and preparation of sodium molybdate by microwave-enhanced roasting and alkali leaching.Thermodynamic analysis indicated the feasibility of oxidation roasting of molybdenum concentrate.The effects of roasting temperature,holding time,and power-to-mass ratio on the oxidation product and leaching product sodium molybdate (Na_(2)MoO_(4)·2H_(2)O) were investigated.Under the optimal process conditions:roasting temperature of 700℃,holding time of 110 min,and power-to-mass ratio of 110 W/g,the molybdenum state of existence was converted from MoS_(2) to Mo O3.The process of preparing sodium molybdate by alkali leaching of molybdenum calcine was investigated,the optimal leaching conditions include a solution concentration of 2.5 mol/L,a liquid-to-solid ratio of 2 mL/g,a leaching temperature of 60℃,and leaching solution termination at pH 8.The optimum conditions result in a leaching rate of sodium molybdate of 96.24%.Meanwhile,the content of sodium molybdate reaches 94.08wt%after leaching and removing impurities.Iron and aluminum impurities can be effectively separated by adjusting the pH of the leaching solution with sodium carbonate solution.This research avoids the shortcomings of the traditional process and utilizes the advantages of microwave metallurgy to prepare high-quality sodium molybdate,which provides a new idea for the highvalue utilization of molybdenum concentrate.
基金Funded by the National Natural Science Foundation of China(No.51604087)the Science and Technology Program of Guangdong Province of China(No.2016A010104019)the Science and Technology Program of Guangzhou City of China(No.201607010001)
文摘Alpha nickel hydroxide has better performances than commercial beta nickel hydroxide. However, the main defect is that α-phase is difficult to synthesize and easily transformed to β-phase Ni(OH)2 upon aging in a strong alkaline solution. In this study, the Al-Co, Al-Yb, Yb-Co and Al-Yb-Co multiple doping was used respectively. By controlling the amount of sodium carbonate, the α-Ni(OH)2 was prepared by ultrasonic-assisted precipitation. And the influence of sodium carbonate on the crystalline phase and structure stability for alpha nickel hydroxide was studied. The results demonstrate that, with increasing amount, the biphase nickel hydroxide transforms to pure alpha nickel hydroxide gradually, and the structure stability is also improved. When the amount of sodium carbonate is 2 g, the sample still keeps α-Ni(OH)2 after being aged for 30 days, for Al-Yb-Co-Ni(OH)2. And when the amount is less than 2 g, the phase transformations exist in the samples with different extents. These results demonstrated that the amount of sodium carbonate is a critical factor to maintain the structural stability of α-Ni(OH)2.
文摘This study focuses on the preparation of corncob-based biosorbents. The chemical impregnation method was used to vary the chemical agent namely phosphoric acid H3PO4 (BA) and sodium hydroxide NaOH (BB). The physicochemical analysis of the two biosorbents indicated that under the same preparation conditions, the bio-sorbents have after activation yields lower than 50% (24.37% for BB and 49.09% for BA). In addition, the biosorbents have iodine index values between 444.17 mg/g and 418.79 mg/g and specific surfaces related to the adsorption of methylene blue ranging from 18.54 m2/g to 19.70 m2/g. The study of surface functional groups by using the Boehm test and pH zero point charge (pHPZC) confirmed the acidic nature of BA and BB biosorbents with respective values pHPZC = 4.01 and pHPZC = 4.90. The Langmuir method and BET analysis determined the specific surface areas by liquid phase adsorption of methylene blue as well as the porosity. The BET surface areas of BA and BB obtained are 72.01 m2/g and 63.10 m2/g respectively. The influence of the chemical activating agent on the formation of pores was confirmed by electron microscopy (SEM) analysis. From this study, it is found that the best activating agent for corn cobs was found to be phosphoric acid because the BA biosorbent was revealed to be the most favourable due to its surface area and good pore volume which are high compared to sodium hydroxide NaOH. Moreover, their application as adsorbent for effluent treatment could be explored.
文摘This research investigates the mechanical and thermal properties of Morus alba combined with polylactic acid in comparison with other natural fibers. The study uses three different fiber and PLA compositions - 20%, 30%, and 40% respectively - to produce composite materials. In addition, another composite with the same fiber volume is treated with a 4% NaOH solution to improve mechanical properties. The composites are processed by twin-screw extrusion, granulation, and injection molding. Tensile strength measurements of raw fibers and NaOH-treated fibers were carried out using a single-fiber tensile test with a gauge length of 40 mm. It was observed that the NaOH surface treatment increases the resistance against tensile loading and exhibited improved properties for raw fiber strands. The diameter of the fibers was measured using optical microscopy. During this research, flexural tests, impact tests, differential scanning calorimetry (DSC), and heat deflection temperature measurements (HDT) were conducted to evaluate the mechanical and thermal properties of the developed composite samples. The results indicate that the mechanical properties of NaOH-treated Morus alba-reinforced polylactic acid outperform both virgin PLA samples and untreated Morus alba samples.
基金supported by the National Key Technology R&D Program (No.2011BAC06B07)
文摘Activation pretreatment of Cr-containing limonitic laterite ores by NaOH roasting to remove Cr, Al, and Si, as well as its effect on Ni and Co extraction in the subsequent pressure acid leaching process was investigated. Characterization results of X-ray diffraction (XRD) and scanning electron microscopy/X-ray energy dispersive spectroscopy (SEM/XEDS) show that goethite is the major Ni-bearing mineral, and chromite is the minor one. Experimental results show that the leaching rates of Cr, Al, and Si are 95.6wt%, 83.8wt%, and 40.1wt%, respectively, under the optimal alkali-roasting conditions. Compared with the direct pressure acid leaching of laterite ores, the leaching rates of Ni and Co increase from 80.1wt% to 96.9wt% and 70.2wt% to 95.1wt% after pretreatment, respectively. Meanwhile, the grade of acid leaching iron residues increases from 54.4wt% to 62.5wt%, and these residues with low Cr content are more suitable raw materials for iron making.
基金supported by the National Science and Technology Development Agency (NSTDA) through the Reversed Brain Drain Program (No.01-49-005), Thailand
文摘The geopolymer of fly ash (FA) and rice husk ash (RHA) was prepared. The burning temperature of rice husk, the RHA fineness and the ratio of FA to RHA were studied. The density and strength of the geopolymer mortars with RHA/FA mass ratios of 0/100, 20/80, 40/60, and 60/40 were tested. The geopolymers were activated with sodium hydroxide (NaOH), sodium silicate, and heat. It is revealed that the optimum burning temperature of RHA for making FA-RHA geopolymer is 690oC. The as-received FA and the ground RHA with 1%-5% retained on No.325 sieve are suitable source materials for making geopolymer, and the obtained compressive strengths are between 12.5-56.0 MPa and are dependent on the ratio of FA/RHA, the RHA fineness, and the ratio of sodium silicate to NaOH. Relatively high strength FA-RHA geopolymer mortars are obtained using a sodium silicate/NaOH mass ratio of 4.0, delay time before subjecting the samples to heat for 1 h, and heat curing at 60oC for 48 h.
基金The authors are grateful for the financial support from the National Natural Science Foundation of China(No.51671084).
文摘Plasma electrolytic oxidation(PEO)of cast A356 aluminum alloy was carried out in 32 g/L NaAlO_(2) with the addition of different concentrations of NaOH.The stability of the aluminate solution is greatly enhanced by increasing the concentration of NaOH.However,corresponding changes in the PEO behaviour occur due to the increment of NaOH concentration.Thicker precursor coatings are required for the PEO treatment in a more concentrated NaOH electrolyte.The results show that the optimal NaOH concentration is 5 g/L,which improves the stability of storage electrolyte to about 35 days,and leads to dense coatings with high wear performance(wear rate:4.1×10^(−7) mm^(3)·N^(−1)·m^(−1)).
基金the King Abdulaziz City Science and Technology (KACST) for funding this study through collaboration between KACST-Universiti Malaysia Perlis (UniMAP)
文摘Kaolin geopolymers were produced by the alkali-activation of kaolin with an activator solution (a mixture of NaOH and sodium silicate solutions). The NaOH solution was prepared at a concentration of 6-14 mol/L and was mixed with the sodium silicate solution at a Na2SiO3/NaOH mass ratio of 0.24 to prepare an activator solution. The kaolin-to-activator solution mass ratio used was 0.80. This paper aimed to analyze the effect of NaOH concentration on the compressive strength of kaolin geopolymers at 80℃ for 1, 2, and 3 d. Kaolin geopolymers were stable in water, and strength results showed that the kaolin binder had adequate compressive strength with 12 mol/L of NaOH concentration. When the NaOH concentration increased, the SiO2/Na20 decreased. The increased Na20 content enhanced the dissolution of kaolin as shown in X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses. However, excess in this content was not beneficial for the strength development of kaolin geopolymers. In addition, there was the formation of more geopolymeric gel in 12 mol/L samples. The XRD pattern of the samples showed a higher amorphous content and a more geopolymer bonding existed as proved by FTIR analysis.