期刊文献+
共找到1,879篇文章
< 1 2 94 >
每页显示 20 50 100
Impact on Soil Organic C and Total Soil N from Cool- and Warm-Season Legumes Used in a Green Manure-Forage Cropping System
1
作者 Clark B. Neely Francis M. Rouquette Jr. +3 位作者 Cristine L.S. Morgan Frank M. Hons William L. Rooney Gerald R. Smith 《Agricultural Sciences》 2024年第3期333-357,共25页
Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their... Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition. 展开更多
关键词 Annual Legumes soil n soil Organic C Green Manure Deer Browse Forage Cropping Systems
下载PDF
Yield and Nicotine Content of Flue-Cured Tobacco as Affected by Soil Nitrogen Mineralization 被引量:43
2
作者 JU Xiao-Tang CHAO Feng-Chun +3 位作者 LI Chun-Jian JIANG Rong-Feng P. CHRISTIE ZHANG Fu-Suo 《Pedosphere》 SCIE CAS CSCD 2008年第2期227-235,共9页
Nitrogen(N)supply is the most important factor affecting yield and quality of flue-cured tobacco(FCT).A field experiment and an in situ incubation method were used to study the effects of soil N mineralization in the ... Nitrogen(N)supply is the most important factor affecting yield and quality of flue-cured tobacco(FCT).A field experiment and an in situ incubation method were used to study the effects of soil N mineralization in the later stages of growth on yield and nicotine content of FCT in Fenggang and Jinsha,Guizhou Province.The yield and market value of FCT at Fenggang were much lower than those at Jinsha.However,the nicotine content of middle and upper leaves was much higher at Fenggang than at Jinsha when the same rate of fertilizer N was applied,which might be due to a higher N supply capacity at the Fenggang site.At later stages of growth(7-16 weeks after transplanting),the soil net N mineralization at Fenggang(56 kg N ha^(-1))was almost double that at Jinsha(30 kg N ha^(-1)).While soil NH_4-N and NO_3-N were almost exhausted by the plants or leached 5 weeks after transplanting,the N taken up at the later growth stages at Fenggang were mainly derived from soil N mineralization,which contributed to a high nicotine content in the upper leaves.The order of soil N contribution to N buildup in different leaves was:upper leaves>middle leaves>lower leaves.Thus,soil N mineralization at late growth stages was an important factor affecting N accumulation and therefore the nicotine content in the upper leaves. 展开更多
关键词 flue cured tobacco nicotine content soil n mineralization tobacco quality tobacco yield
下载PDF
Interactive effects of soil temperature and moisture on soil N mineralization in a Stipa krylovii grassland in Inner Mongolia, China 被引量:14
3
作者 Yue LI YingHui LIU +3 位作者 YaLin WANG Lei NIU Xia XU YuQiang TIAN 《Journal of Arid Land》 SCIE CSCD 2014年第5期571-580,共10页
Determining soil N mineralization response to soil temperature and moisture changes is challenging in the field due to complicated effects from other factors. In the laboratory, N mineralization is highly dependent on... Determining soil N mineralization response to soil temperature and moisture changes is challenging in the field due to complicated effects from other factors. In the laboratory, N mineralization is highly dependent on temperature, moisture and sample size. In this study, a laboratory incubation experiment was carefully designed and conducted under controlled conditions to examine the effects of soil temperature and moisture on soil N mineralization using soil samples obtained from the Stipa krylovii grassland in Inner Mongolia, China. Five temperature(i.e. 9℃, 14℃, 22℃, 30℃ and 40℃) and five moisture levels(i.e. 20%, 40%, 60%, 80% and 100% WHC, where WHC is the soil water holding capacity) were included in a full-factorial design. During the 71-day incubation period, microbial biomass carbon(MBC), ammonium nitrogen(NH4 ^+-N) and nitrate nitrogen(NO3^--N) were measured approximately every 18 days; soil basal respiration for qCO2 index was measured once every 2 days(once a week near the end of the incubation period). The results showed that the mineral N production and net N mineralization rates were positively correlated with temperature; the strongest correlation was observed for temperatures between 30℃ and 40℃. The relationships between moisture levels and both the mineral N production and net N mineralization rates were quadratic. The interaction between soil temperature and moisture was significant on N mineralization, i.e. increasing temperatures(moisture) enhanced the sensitivity of N mineralization to moisture(temperature). Our results also showed a positive correlation between the net nitrification rate and temperature, while the correlation between the NH4 ^+-N content and temperature was insignificant. The net nitrification rate was negatively correlated with high NH4 ^+-N contents at 80%–100% WHC, suggesting an active denitrification in moist conditions. Moreover, qCO2 index was positively correlated with temperature, especially at 80% WHC. With a low net nitrification rate and high soil basal respiration rate, it was likely that the denitrification concealed the microbial gross mineralization activity; therefore, active soil N mineralization occurred in 60%–80% WHC conditions. 展开更多
关键词 soil n mineralization soil temperature soil moisture Stipa krylovii grassland
下载PDF
Soil mineral nitrogen and yield-scaled soil N2O emissions lowered by reducing nitrogen application and intercropping with soybean for sweet maize production in southern China 被引量:4
4
作者 TANG Yi-ling YU Ling-ling +4 位作者 GUAN Ao-mei ZHOU Xian-yu WANG Zhi-guo GOU Yong-gang WANG Jian-wu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第11期2586-2596,共11页
The increasing demand for fresh sweet maize (Zea mays L. saccharata) in southern China has prioritized the need to find solutions to the environmental pollution caused by its continuous production and high inputs of... The increasing demand for fresh sweet maize (Zea mays L. saccharata) in southern China has prioritized the need to find solutions to the environmental pollution caused by its continuous production and high inputs of chemical nitrogen fertilizers. A promising method for improving crop production and environmental conditions is to intercrop sweet maize with legumes. Here, a three-year field experiment was conducted to assess the influence of four different cropping systems (sole sweet maize (SS), sole soybean (SB), two rows sweet maize-three rows soybean (S2B3) intercropping, and two rows sweet maize-four rows soybean (S2B4) intercropping), together with two rates of N fertilizer application (300 and 360 kg N ha-1) on grain yield, residual soil mineral N, and soil N2O emissions in southern China. Results showed that in most case, inter- cropping achieved yield advantages (total land equivalent ratio (TLER=0.87-1.25) was above one). Moreover, intercropping resulted in 39.8% less soil mineral N than SS at the time of crop harvest, averaged over six seasons (spring and autumn in each of the three years of the field experiment). Generally, intercropping and reduced-N application (300 kg N ha-1) produced lower cumulative soil N20 and yield-scaled soil N20 emissions than SS and conventionaI-N application (360 kg N ha-l), respectively. $2B4 intercropping with reduced-N rate (300 kg N ha-~) showed the lowest cumulative soil N20 (mean value=0.61 kg ha-1) and yield-scaled soil N20 (mean value=0.04 kg t-1) emissions. Overall, intercropping with reduced-N rate maintained sweet maize production, while also reducing environmental impacts. The system of S2B4 intercropping with reduced-N rate may be the most sustainable and environmentally friendly cropping system. 展开更多
关键词 sweet maize-soybean intercrop cropping system n fertilizer rate grain yield soil mineral n soil nzO emissions
下载PDF
Distribution and accumulation of zinc and nitrogen in wheat grain pearling fractions in response to foliar zinc and soil nitrogen applications 被引量:4
5
作者 ZHANG Pan-pan CHEN Yu-lu +4 位作者 WANG Chen-yang MA Geng LU Jun-jie LIU Jing-bao GUO Tian-cai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第12期3277-3288,共12页
Increasing zinc(Zn)concentration in wheat grain is important to minimize human dietary Zn deficiency.This study aimed to investigate the effect of foliar Zn and soil nitrogen(N)applications on the accumulation and dis... Increasing zinc(Zn)concentration in wheat grain is important to minimize human dietary Zn deficiency.This study aimed to investigate the effect of foliar Zn and soil nitrogen(N)applications on the accumulation and distribution of N and Zn in grain pearling fractions,N remobilization,and the relationships between nutrient concentration in the vegetative tissues and grain or its fractions in two cropping years in the North China Plain.The results showed a progressive decrease in N and Zn concentrations from the outer to the inner parts of grain,with most of the accumulation in the core endosperm.Foliar Zn application significantly increased N concentration in the pericarp,and soil N application increased N concentration in each grain fraction.Both treatments significantly increased core endosperm Zn concentration.Foliar Zn had no effect on grain N and Zn distribution.Soil N application made N concentrated in the aleurone,promoted Zn translocation to the core endosperm and also increased N remobilization and its efficiency from the shoot to the grain,but no improved contribution to grain was found.N concentration in grain and its fractions were positively correlated with N in vegetative organs at anthesis and maturity,while positive correlations were obtained between N concentration in the pericarp and progressive central area of the endosperm and Zn concentration in the core endosperm.Thus,foliar Zn and soil N applications effectively increased yield and N and Zn concentrations in the wheat grain,particularly in the endosperm,and could be promising strategies to address Zn deficiency. 展开更多
关键词 foliar Zn application soil n application winter wheat nutrient distribution n remobilization
下载PDF
Effects of six years of simulated N deposition on gross soil N transformation rates in an old-growth temperate forest 被引量:3
6
作者 Peng Tian Jinbo Zhang +2 位作者 Christoph Müller Zucong Cai Guangze Jin 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第3期644-653,共10页
Elevated atmospheric nitrogen(N) deposition has been detected in many regions of China, but its effects on soil N transformation in temperate forest ecosystems are not well known. We therefore simulated N deposition w... Elevated atmospheric nitrogen(N) deposition has been detected in many regions of China, but its effects on soil N transformation in temperate forest ecosystems are not well known. We therefore simulated N deposition with four levels of N addition rate(N0, N30, N60, and N120) for6 years in an old-growth temperate forest in Xiaoxing’an Mountains in Northeastern China. We measured gross N transformation rates in the laboratory usingN tracing technology to explore the effects of N deposition on soil gross N transformations taking advantage of N deposition soils. No significant differences in gross soil N transformation rates were observed after 6 years of N deposition with various levels of N addition rate. For all N deposition soils, the gross NH~+ immobilization rates were consistently lower than the gross N mineralization rates,leading to net N mineralization. Nitrate(NO~-) was primarily produced via oxidation of NH~+(i.e., autotrophic nitrification), whereas oxidation of organic N(i.e., heterotrophic nitrification) was negligible. Differences between the quantity of ammonia-oxidizing bacteria and ammonia-oxidizing archaea were not significant for any treatment, which likely explains the lack of a significant effect on gross nitrification rates. Gross nitrification rates were much higher than the total NO~- consumption rates,resulting in a build-up of NO~-, which highlights the high risk of N losses via NO~- leaching or gaseous N emissions from soils. This response is opposite that of typical N-limited temperate forests suffering from N deposition,suggesting that the investigated old-growth temperate forest ecosystem is likely to approach N saturation. 展开更多
关键词 n deposition Gross soil n transformation Temperate forest ecosystem ^(15)n tracing technology
下载PDF
Effects of Soluble Organic N on Evaluating Soil N-Supplying Capacity 被引量:4
7
作者 LU Hong-ling LI Shi-qing +1 位作者 JIN Fa-hui SHAO Ming-an 《Agricultural Sciences in China》 CAS CSCD 2008年第7期860-870,共11页
It is important to study the soluble organic N (SON) extracted during water-logged incubation for evaluating soil Nsupplying capacity. Soil initial SON and mineral N (Nmin), cumulative soluble organic N and NH4+-... It is important to study the soluble organic N (SON) extracted during water-logged incubation for evaluating soil Nsupplying capacity. Soil initial SON and mineral N (Nmin), cumulative soluble organic N and NH4+-N in leachates during water-logged incubation, mineralization potentials of both easily decomposable N (ND) and resistant N (NR), and their relationships with N uptake by crop in pot experiment were investigated by using 10 kinds of farmland soils with widely different physical and chemical properties on the Loess Plateau, China, and the effects of SON on evaluating soil Nsupplying capacity were studied. The results showed that the average content of initial SON (23.9 mg kg^-1) of 10 soils was 28.8% of initial total soluble N and 2.4% of soil total N. The percentage of cumulative SON in leaching total soluble N (118.1 mg kg^-1 was 46.4%, higher than the percentage of initial SON (28.8%), and almost close to the percentage of cumulative NH4^+-N in the leachates. ND had close correlation with total N, and the correlation coefficients were 0.92 (P 〈 0.01, excluding SON in estimating ND) and 0.88 (P 〈 0.01, including SON in estimating ND), respectively. N mineralization potential and mineralization rate constant were different with the soil types. ND of Los-Orthic Entisols and Ust-Sandiic Entisols were lower than that of Eum-Orthrosols. Mineralization rate constant for the fast decomposable N-fraction (kD) decreased and the mineralization rate constant of resistant materials (kR) increased when SON was taken into account. Cumulative NH4^+-N was a better evaluation index of soil N-supplying capacity, and it is not only suitable for the first season crops but also for two successive season crops. Cumulative SON alone was not a satisfactory index for the potential of mineralizable N. But it would be more accurate for ND in revealing the potential mineralizable N when SON was taken into account. Cumulative TSN, to some extent, could also be taken as an index for the potential mineralizable N. Cumulative NH4+-N, total soluble N, and ND were good indexes for estimating soil potential mineralizable N, especially for soils of two successive season crops. And cumulative total soluble N and ND in evaluating the permanence of soil N-supply is of greater significance when SON was included. 展开更多
关键词 water-logged incubation n mineralization soluble organic n soil n-supplying capacity
下载PDF
Effects of soil nitrogen:phosphorus ratio on growth rate of Artemisia ordosica seedlings 被引量:1
8
作者 Wei Wu XingDong He +4 位作者 HuaCong Ci Rong Li PingPing Xue YuBao Gao HaLin Zhao 《Research in Cold and Arid Regions》 2010年第4期328-334,共7页
To address how the ratios of nitrogen and phosphorus (N:P ratios) in soil affect plant growth, we performed a two-factor (soil available N:P ratios and plant density) randomized block pot experiment to examine the rel... To address how the ratios of nitrogen and phosphorus (N:P ratios) in soil affect plant growth, we performed a two-factor (soil available N:P ratios and plant density) randomized block pot experiment to examine the relationships between soil N:P ratios, and the N:P ratios and growth rate of Artemisia ordosica seedlings. Under moderate water stress and adequate nutrient status, both soil N:P and plant density influenced the N:P ratios and growth rates of A. ordosica. With the increase of soil N:P ratios, the growth rates of A. ordosica seedlings decreased significantly. With the increase of soil N:P ratios, N:P ratios in A. ordosica seedlings increased significantly. While the nitrogen concentrations in the plant increased slightly, the phosphorus concentrations significantly decreased. With the increase of plant density, the shoot N:P ratios and growth rates significantly decreased, which resulted from soil N:P ratios. Thus, soil N:P ratios influenced the N:P ratios in A. ordosica seedlings, and hence, influenced its growth. Our results suggest that, under adequate nutrient environment, soil N:P ratios can be a limiting factor for plant growth. 展开更多
关键词 Artemisia ordosica soil n:P ratio plant n:P ratio plant growth rate nutrient limitation
下载PDF
Small Scale Spatio-Temporal Variabilities in Soil Nitrogen, Leaf Nitrogen, and Canopy Normalized Difference Vegetation Index of Cotton 被引量:1
9
作者 Xinhua Yin 《Journal of Geoscience and Environment Protection》 2016年第12期56-74,共20页
Strip plots have been increasingly used in agricultural field experiments to better reflect the true situation of crop production on farmers’ fields, but failure to account for spatially and temporally related errors... Strip plots have been increasingly used in agricultural field experiments to better reflect the true situation of crop production on farmers’ fields, but failure to account for spatially and temporally related errors when present in the data analysis of strip plot field experiments may cause inefficient assessment of treatment effect significance. The objective of this study was to investigate patterns and degrees of the spatial and temporal variabilities in soil inorganic N level, leaf N concentration, and Normalized Difference Vegetation Index (NDVI) of cotton under no-tillage and the influences of N treatments on these variabilities. A strip plot experiment was conducted on a private farm near Brazil, Gibson County, Tennessee from 2009 through 2011. Five N treatments of 0, 45, 90, 134, and 179 kg N ha<sup>-1</sup> were implemented as side dress N in strip plots under a randomized complete block design with three replicates after 45 kg N ha<sup>-1</sup> was applied in the form of chicken litter before cotton planting. Spatial variability was present in soil inorganic N before cotton planting and after harvest, and in leaf N and canopy NDVI at the early square and early, mid-, and late bloom stages although the patterns and degrees of the spatial variabilities sometimes varied with growth stages and years. Application of the in-season side-dress N treatments often reduced the spatial variations of leaf N and NDVI, but increased those of post-harvest soil inorganic N. Out results suggest that the spatial and temporal variabilities of soil inorganic N, leaf N, and NDVI are high, and should be taken into account if possible in the data analyses of N treatment effects on related soil properties and plant characteristics of cotton in strip plot field experiment research. 展开更多
关键词 VARIABILITY soil n Leaf n nDVI n Rate COTTOn
下载PDF
Comparison of Soil Nitrogen Availability Indices under Two Temperate Forest Types
10
作者 ZHONG Zhe-Ke F. MAKESCHIN 《Pedosphere》 SCIE CAS CSCD 2006年第3期273-283,共11页
To evaluate the validity of different indices in estimating soil readily mineralizable N, soil microbial biomass (Nmic), soil active N (SAN), soluble organic N (SON), net N mineralization rate (NNR) and gross ... To evaluate the validity of different indices in estimating soil readily mineralizable N, soil microbial biomass (Nmic), soil active N (SAN), soluble organic N (SON), net N mineralization rate (NNR) and gross N mineralization rate (GNR) in mineral soils (0-10 cm) from six forest stands located in central Germany were determined and compared with two sampling times: April and November. Additionally, soil density fractionation was conducted for incubated soils (with addition of ^15NH4-N and glucose, 40 days) to observe the sink of added ^15N in different soil fractions. The study showed that Nmic and NNR in most stands differed significantly (P 〈 0.05) between the two sampling times, but not GNR, SAN and SON. In November, no close relationships were found between GNR and other N indices, or between Nrnic, SON, and SAN and forest type. However, in April, GNR was significantly correlated (P 〈 0.05) with Nmic, SAN, and NNR along with Nmlc under beech being significantly higher (P 〈 0.05) than under conifers. Furthermore, density fractionation revealed that the light fraction (LF, 0.063-2 mm, 〉 1.7 gcm^-3) was not correlated with the other N indices. In contrast, results from the incubation study proved that more 15N was incorporated into the heavy fraction (HF 〈 0.063 ram, 〉 1.7 g cm^-3) than into LF, indicaing that more labile N existed in HF than in LF. These findings suggested that attention should be paid to the differences existing in N status between agricultural and forest soils. 展开更多
关键词 density fractionation forest soils n availability soil n indices
下载PDF
Availability of Nonhydrolyzable Soil Nitrogen
11
作者 ZHUOSU-NENG CHENGLI-LI 《Pedosphere》 SCIE CAS CSCD 1995年第2期183-186,共4页
AvailabilityofNonhydrolyzableSoilNitrogenZHUOSU-NENG ̄1;WENQI-XIAO ̄1andCHENGLI-LI ̄2(LMCP,InstituteofSoilScien... AvailabilityofNonhydrolyzableSoilNitrogenZHUOSU-NENG ̄1;WENQI-XIAO ̄1andCHENGLI-LI ̄2(LMCP,InstituteofSoilScience,P.O.Box821,Nan... 展开更多
关键词 availability of n BIODEGRADABILITY nonhydrolyzable soil n
下载PDF
Estimation of the Biological Methods of Assessing Soil N-Supplying Capacity in Calcareous Soil
12
作者 JIN Fa-hui LI Shi-qing +1 位作者 LU Hong-ling LI Sheng-xiu 《Agricultural Sciences in China》 CAS CSCD 2007年第10期1224-1234,共11页
Although many biological methods are used to determine soil nitrogen supplying capacity, there are certain differences in the results for different types of soils and various ways of measurement due to the complexity ... Although many biological methods are used to determine soil nitrogen supplying capacity, there are certain differences in the results for different types of soils and various ways of measurement due to the complexity of soil N conformation, the high variance of soil and microorganism, and the difference of environment. Therefore, it is not clear about which biologic incubation method is better for calcareous soil. In this study, pot experiments were performed by using 25 different calcareous surface soil samples on the Loess Plateau and taking the N uptake of wheat and corn with leaching soil initial nitrate and without leaching in pot experiments as the control to investigate the difference of eight biological incubation methods for reflecting soil nitrogen supply capacity. The eight biological methods are waterlogged incubation, aerobic incubation for 2 weeks and for 4 weeks, dry-wet alternation aerobic incubation for 2 weeks, long-term alternate leaching aerobic incubation (and N mineralization potential, No), short-term leaching aerobic incubation, microbial biomass carbon (Bc), and microbial biomass nitrogen (BN) method, respectively. Among these methods, the dry-wet alternation aerobic incubation and aerobic incubation for 4 weeks were the modification of the method of aerobic incubation for 2 weeks according to the actual farmland moisture. The results showed that the correlation coefficients between these methods and crop uptake N with leaching soil initial nitrate were 0.530, 0.700, 0.777, 0.768, 0.764 (and 0.790, No), 0.650, 0.555, and 0.465, respectively (r0.05 = 0.369, r0.0l = 0.505). While without leaching soil initial nitrate, their coefficients were 0.351, 0.963, 0.962, 0.959, 0.825 (and0.812, No), 0.963, 0.289, and 0.095, respectively (r0.05 = 0.369, r0.01 = 0.505). In conclusion, excluding the soil initial nitrate, the correlation coefficients between the eight methods and crop uptake N were, from high to low, N0, aerobic incubation for 4 weeks, dry-wet alternation aerobic incubation for 2 weeks, and long-term alternate leaching aerobic incubation, while including the soil initial nitrate the correlation coefficients between them increased significantly and the values were all beyond 0.950 for these four methods, including aerobic incubation for 2 weeks and for 4 weeks, dry-wet alternation aerobic incubation for 2 weeks and short-term leaching aerobic incubation. The waterlogged incubation method, Bc and BN in the calcareous soil, had lower correlation coefficient with crop uptake nitrogen compared with other methods. Thus, dry-wet alternation aerobic incubation for 2 weeks was a better index for evaluating calcareous soil N supply capacity due to some other methods having disadvantages and not suitable for the actual farmland characteristics. 展开更多
关键词 soil nitrogen supplying index biological methods mineralized n
下载PDF
Insights into Ecological Effects of Invasive Plants on Soil Nitrogen Cycles 被引量:6
13
作者 Congyan Wang Hongguang Xiao +2 位作者 Jun Liu Lei Wang Daolin Du 《American Journal of Plant Sciences》 2015年第1期34-46,共13页
The increasing degree of plant invasion is an expanding problem that affects the functioning and composition of forest ecosystems with increasing anthropogenic activities, particularly soil nitrogen (N) cycles. Numero... The increasing degree of plant invasion is an expanding problem that affects the functioning and composition of forest ecosystems with increasing anthropogenic activities, particularly soil nitrogen (N) cycles. Numerous studies have revealed that one of the main factors for successful plant invasion is that plants could pose significant effects on soil N cycles via direct and/or indirect ways, such as changes in soil microbial communities, litter decomposition rates, and/or soil physicochemical properties. We thereby summarize the ecological effects of invasive plants on soil N cycles, including the aforementioned changes, to understand the mechanism of successful invasion. We also discuss the needs for further research on the relationship between invasive plants and soil N cycles. 展开更多
关键词 InVASIVEnESS InVASIVE Plants LITTER Decomposition soil n Cycles soil MICROBIAL Community
下载PDF
Effect of synergistic urea by nitrification inhibitor coated with resin on wheat growth and soil nitrogen supply
14
作者 Yaru GE Yu LI +2 位作者 Yuanjie DONG Mingrong HE Xinglong DAI 《Pedosphere》 SCIE CAS CSCD 2024年第5期960-970,共11页
Combining nitrification inhibitor and urea can improve crop yield and nitrogen(N)use efficiency(NUE).However,the inhibitor easily gets inactivated in soil,making it difficult to achieve the desired effect.To develop a... Combining nitrification inhibitor and urea can improve crop yield and nitrogen(N)use efficiency(NUE).However,the inhibitor easily gets inactivated in soil,making it difficult to achieve the desired effect.To develop a synergistic urea for increasing the inhibitor action time,soil N supply,and wheat growth,dicyandiamide(DCD)was coated after granulation with epoxy resin and then mixed with urea to develop new resin-coated DCD(RCD)synergistic urea.Scanning electron microscopy(SEM)and hydrostatic release tests were used to evaluate the membrane microstructure and the controlled-release performance of RCD.Five fertilization treatments were set up in the field:zero-N control(CK),urea(U),urea+common DCD particles(SUD1),urea+RCD(SUD2),and urea+both common DCD particles and RCD(3:7,weight/weight)(SUD3)to investigate the effects of the DCD synergistic urea on wheat growth,yield,and NUE and soil available N content.The SEM results showed that RCD had a complete coating,smooth surface,and small and rugged channels for DCD release in the profile.The hydrostatic release test at 25?C showed that the release period of DCD was extended to ten days due to resin coating.In the three DCD synergistic urea treatments,only SUD3 resulted in a significant increase in wheat yield(18.47%)compared with U.The NUE in SUD3 was significantly higher than those in SUD2,U,and SUD1.The treatment SUD3 had higher soil available N content than the other treatments during the key wheat growth stages,while effectively reducing the risk of soil nitrate leaching during wheat maturity.In summary,SUD3,a mixture of urea,DCD particles,and RCD,was the best treatment for significantly increasing wheat growth,yield,and NUE and soil N supply. 展开更多
关键词 coated DCD controlled-release fertilizer n fertilizer n use efficiency soil available n wheat yield
原文传递
Effects of Vegetation Restoration Age on Soil C:N:P Stoichiometry in Yellow River Delta Coastal Wetland of China
15
作者 CAO Qixue WANG Xiaojie +7 位作者 CHU Xiaojing ZHAO Mingliang WANG Lianjing SONG Weimin LI Peiguang ZHANG Xiaoshuai XU Shendong HAN Guangxuan 《Chinese Geographical Science》 SCIE CSCD 2024年第6期1045-1059,共15页
Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this s... Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this study,we examined the re-sponses of soil C,N,and P contents and their stoichiometric ratios to vegetation restoration age,focusing on below-ground processes and their relationships to aboveground vegetation community characteristics.We conducted an analysis of temporal gradients based on the'space for time'method to synthesize the effects of restoration age on soil C:N:P stoichiometry in the Yellow River Delta wetland of China.The findings suggest that the combined effects of restoration age and soil depth create complex patterns of shifting soil C:N:P stoichiometry.Specifically,restoration age significantly increased all topsoil C:N:P stoichiometries,except for soil total phosphorus(TP)and the C:N ratio,and slightly affected subsoil C:N:P stoichiometry.The effects of restoration age on the soil C:N ratio was well constrained owing to the coupled relationship between soil organic carbon(SOC)and total nitrogen(TN)contents,while soil TP con-tent was closely related to changes in plant species diversity.Importantly,we found that the topsoil C:N:P stoichiometry was signific-antly affected by plant species diversity,whereas the subsoil C:N:P stoichiometry was more easily regulated by pH and electric con-ductivity(EC).Overall,this study shows that vegetation restoration age elevated SOC and N contents and alleviated N limitation,which is useful for further assessing soil C:N:P stoichiometry in coastal restoration wetlands. 展开更多
关键词 coastal wetland restoration age soil C:n:P stoichiometry soil properties plant species diversity Yellow River Delta of China
下载PDF
Soil Organic Nitrogen and Its Contribution to Crop Production 被引量:19
16
作者 LI Sheng-xiu WANG Zhao-hui +1 位作者 MIAO Yan-fang LI Shi-qing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第10期2061-2080,共20页
Plant growth and crop production depend to a large extent on soil N supplying capacity (SNSC): The higher the SNSC, the higher the dependence of crops on soil and the lower the N fertilizer recovery. Of the SNSC, s... Plant growth and crop production depend to a large extent on soil N supplying capacity (SNSC): The higher the SNSC, the higher the dependence of crops on soil and the lower the N fertilizer recovery. Of the SNSC, soil organic N (ON) played a key role in supplying N nutrient to crop production and still does in many subsistence and low-input farming systems. In this paper, soil ON contents, types, chemical components and its contribution to plant production are reviewed up to date in details, the characteristics of ON in dryland soils discussed together with its chemical components, and the mineralization and availability to plants of some important chemical components are emphasized at the last part for practical considerations. 展开更多
关键词 organic nitrogen in soil chemical components soil n supplying capacity MInERALIZATIOn COnTRIBUTIOn
下载PDF
Changes in Soil C and N Contents and Mineralization Across a Cultivation Chronosequence of Paddy Fields in Subtropical China 被引量:17
17
作者 LI Zhong-Pei ZHANG Tao-Lin +1 位作者 HAN Feng-Xiang P. FELIX-HENNINGSEN 《Pedosphere》 SCIE CAS CSCD 2005年第5期554-562,共9页
Dynamics of soil organic matter in a cultivation chronosequence of paddy fields were studied in subtropical China.Mineralization of soil organic matter was determined by measuring CO2 evolution from soil during 20 day... Dynamics of soil organic matter in a cultivation chronosequence of paddy fields were studied in subtropical China.Mineralization of soil organic matter was determined by measuring CO2 evolution from soil during 20 days of laboratoryincubation. In the first 30 years of cultivation, soil organic C and N contents increased rapidly. After 30 years, 0-10 cmsoil contained 19.6 g kg-1 organic C and 1.62 g kg-1 total N, with the corresponding values of 18.1 g kg-1 and 1.50g kg-1 for 10-20 cm, and then remained stable even after 80 years of rice cultivation. During 20 days incubation themineralization rates of organic C and N in surface soil (0-10 cm) ranged from 2.2% to 3.3% and from 2.8% to 6.7%,respectively, of organic C and total N contents. Biologically active C size generally increased with increasing soil organicC and N contents. Soil dissolved organic C decreased after cultivation of wasteland to 10 years paddy field and thenincreased. Soil microbial biomass C increased with number of years under cultivation, while soil microbial biomass Nincreased during the first 30 years of cultivation and then stabilized. After 30 years of cultivation surface soil (0-10 cm)contained 332.8 mg kg-1 of microbial biomass C and 23.85 mg kg-1 of microbial biomass N, which were 111% and 47%higher than those in soil cultivated for 3 years. It was suggested that surface soil with 30 years of rice cultivation insubtropical China would have attained a steady state of organic C content, being about 19 g kg-1. 展开更多
关键词 cultivation chronosequence MInERALIZATIOn paddy fields soil C soil n
下载PDF
Effect of Reducing Chemical Fertilizer on Rice Yield,Output Value,Content of Soil Carbon and Nitrogen after Utilizing the Milk Vetch 被引量:6
18
作者 周兴 李再明 +5 位作者 谢坚 廖育林 杨曾平 鲁艳红 聂军 曹卫东 《Agricultural Science & Technology》 CAS 2015年第2期266-271,共6页
A located field experiment was carried out to study the effects of different amount of chemical fertilizer usage on rice yield,economic benefits of rice,soil carbon(C) and total nitrogen(TN) under ploughing back o... A located field experiment was carried out to study the effects of different amount of chemical fertilizer usage on rice yield,economic benefits of rice,soil carbon(C) and total nitrogen(TN) under ploughing back of Chinese milk vetch for 5consecutive years.Six treatments were included in the experiment,they are CK(unfertilized),CF(100% chemical fertilizer with the amount of N,P2O5,K2 O being150,75,120 kg/hm^2respectively),A1(22 500 kg/hm^2 Chinese milk vetch and 100%chemical fertilizer),A2(Chinese milk vetch and 80% nitrogen and potassium fertilizer and 100% phosphate fertilizer),A3(Chinese milk vetch and 60% nitrogen and potassium fertilizer and 100% phosphate fertilizer),A4(Chinese milk vetch and 40% nitrogen and potassium fertilizer and 100% phosphate fertilizer).The results were as follows:application of fertilizer could increase the yield of rice,while Chinese milk vetch combined with fertilizer application had a much more increase effect in rice yield.Under the condition of milk vetch application with 22 500 kg/hm^2,the early rice yield of the treatment A1 was significantly increased by 7.7% compared with that of CF.And the yield of treatment A3 was basically identical to or slight increase in comparison with that of CF.Decreasing amount of fertilizers cloud improve output value of rice in the case of the utilization of Chinese milk vetch.The treatment A1 increased output value of rice by 5.92% in comparison of CF,and treatment A2 was by 4.08% in the next.Treatment A4 showed much better effect in increasing soil organic carbon and total nitrogen in the paddy soil than those of treatments applying mineral fertilizer only.There was a significant reduction on soil organic carbon and TN in treatment A2 in comparison with that of CF.In general,amount of application of milk vetch with 22 500 kg/hm^2 could replace chemical fertilizer partially,it also could improve rice yield,decrease the production cost,and raise the utilization efficiency of nutrients. 展开更多
关键词 Chinese milk vetch Chemical fertilizer amounts RICE YIELD Economic benefits Content of soil C and total n
下载PDF
Carbon and Nitrogen Transformations in Surface Soils Under Ermans Birch and Dark Coniferous Forests 被引量:5
19
作者 DENG Xiao-Wen HAN Shi-Jie +1 位作者 HU Yan-Ling ZHOU Yu-Mei 《Pedosphere》 SCIE CAS CSCD 2009年第2期230-237,共8页
Soil samples were taken from an Ermans birch (Betula ermanii)-dark coniferous forest (Picea jezoensis and Abies nephrolepis) ecotone growing on volcanic ejecta in the northern slope of Changbai Mountains of Northe... Soil samples were taken from an Ermans birch (Betula ermanii)-dark coniferous forest (Picea jezoensis and Abies nephrolepis) ecotone growing on volcanic ejecta in the northern slope of Changbai Mountains of Northeast China, to compare soil carbon (C) and nitrogen (N) transformations in the two forests. The soil type is Umbri-Gelic Cambosols in Chinese Soil Taxonomy. Soil samples were incubated aerobically at 20℃ and field capacity of 700 g kg^-1 over a period of 27 weeks. The amount of soil microbial biomass and net N mineralization were higher in the Ermans birch than the dark coniferous forest (P 〈 0.05), whereas the cumulative C mineralization (as CO2 emission) in the dark coniferous forest exceeded that in the Ermans birch (P 〈 0.05). Release of the cumulative dissolved organic C and dissolved organic N were greater in the Ermans birch than the dark coniferous forest (P 〈 0.05). The results suggested that differences of forest types could result in considerable change in soil C and N transformations. 展开更多
关键词 dissolved organic C dissolved organic n Ermans birch-dark coniferous forest soil C transformation soil n transformation
下载PDF
Changes in soil organic carbon and nitrogen after 26 years of farmland management on the Loess Plateau of China 被引量:11
20
作者 ZHOU Zhengchao ZHANG Xiaoyan GAN Zhuoting 《Journal of Arid Land》 SCIE CSCD 2015年第6期806-813,共8页
Soil carbon(C) and nitrogen(N) play a crucial role in determining the soil and environmental quality. In this study, we investigated the effects of 26 years(from 1984 to 2010) of farmland management on soil orga... Soil carbon(C) and nitrogen(N) play a crucial role in determining the soil and environmental quality. In this study, we investigated the effects of 26 years(from 1984 to 2010) of farmland management on soil organic carbon(SOC) and soil N in abandoned, wheat(Triticum aestivum L.) non-fertilized, wheat fertilized(mineral fertilizer and organic manure) and alfalfa(Medicago Sativa L.) non-fertilized treatments in a semi-arid region of the Loess Plateau, China. Our results showed that SOC and soil total N contents in the 0–20 cm soil layer increased by 4.29(24.4%) and 1.39 Mg/hm2(100%), respectively, after the conversion of farmland to alfalfa land. Compared to the wheat non-fertilized treatment, SOC and soil total N contents in the 0–20 cm soil layer increased by 4.64(26.4%) and 1.18 Mg/hm2(85.5%), respectively, in the wheat fertilized treatment. In addition, we found that the extents of changes in SOC, soil total N and mineral N depended on soil depth were greater in the upper soil layer(0–30 cm) than in the deeper soil layer(30–100 cm) in the alfalfa land or fertilizer-applied wheat land. Fertilizer applied to winter wheat could increase the accumulation rates of SOC and soil total N. SOC concentration had a significant positive correlation with soil total N concentration. Therefore, this study suggested that farmland management, e.g. the conversion of farmland to alfalfa forage land and fertilizer application, could promote the sequestrations of C and N in soils in semi-arid regions. 展开更多
关键词 soil organic carbon(SOC) soil n fertilizer land use change semi-arid area
下载PDF
上一页 1 2 94 下一页 到第
使用帮助 返回顶部