Tomato is one of the most important fruit crops in the world which is consumed in a variety of ways. The high cost of chemical fertilizers has led to some farmers turning to alternative methods of production, such as ...Tomato is one of the most important fruit crops in the world which is consumed in a variety of ways. The high cost of chemical fertilizers has led to some farmers turning to alternative methods of production, such as the use of bio-fertilizers. Most organic waste may be changed into fertilizer at a low cost of production. The objectives of this study were to determine: 1) the effect of the application of bio-compost on growth, yield, and quality of tomato;2) to determine the effects of different bio-compost applications on growth, yield and quality of tomato. The field was marked out into eight blocks. It consisted of four treatments with two replications per treatment. The bio-fertilizer was applied to plots and incorporated into the soil. This study showed that the application of bio-fertilizers made from food waste only, cow dung only, and food waste and cow dung improved plant growth, number of leaves, plant height and fruit yield. However, the differences were not statistically significant except for the number of leaves. The study also revealed that the application of bio-fertilizer lowered the number of days to flowering, fruiting, and ripening by 50% as compared to the control group. Promoting the adoption and use of bio-compost made from different waste stream hold the promise to increase tomato production.展开更多
[Objective] This study aimed to determine the effects of supplemental irrigation on yield and nitrogen uptake in winter wheat. [Method] Three supplemental irrigation levels were set based on the target soil contents ...[Objective] This study aimed to determine the effects of supplemental irrigation on yield and nitrogen uptake in winter wheat. [Method] Three supplemental irrigation levels were set based on the target soil contents of 60%, 70% and 80%) at jointing stage of wheat. Moreover, three nitrogen levels (0, 195 and 255 kg/hm^2) were designed. The experimental plots were arranged fol owing a split-plot design. Zhoumai 18 was selected as the experimental material. [Result] Supplemental irrigation and nitrogen application in combination had significant or extremely significant effects on yield, yield components and nitrogen uptake in winter wheat. The interaction between irrigation and nitrogen fertilization had significant or extremely significant influence on the number of ears, number of grains per ear, 1 000-grain weight, grain yield and nitrogen accumulation in winter wheat. Under different combinations of supplemental irrigation and nitrogen application, the maximum yield of winter wheat was obtained at W2 N195, while the minimum at W1 N255. [Conclusion] With the increase of irrigation, negative effect of nitrogen on number of ears, number of grains per ear, 1 000-grain weight, grain yield and nitrogen accumulation decrease under lower nitrogen application rate.展开更多
Based on split plot design method of field test,the impacts of supplemental irrigation based on soil moisture measurement and nitrogen use on winter wheat yield and nitrogen absorption and distribution were studied.Su...Based on split plot design method of field test,the impacts of supplemental irrigation based on soil moisture measurement and nitrogen use on winter wheat yield and nitrogen absorption and distribution were studied.Supplemental irrigation had three levels: 60%(W_1),70%(W_2) and 80%(W3) of the targeted relative water content at 0-40 cm of soil layer during jointing period of winter wheat.Nitrogen fertilization had three levels: not using nitrogen(N_0),using pure nitrogen of 195 kg/hm^2(N_(195)) and 255 kg/hm^2(N_(255)).Results showed that:(i)different supplemental irrigation and nitrogen fertilization significantly affected plant height and leaf area of winter wheat during key growth period.Under the same supplemental irrigation treatment,both plant height and leaf area of winter wheat showed as N_(255)> N_(195)> N_0(P <0.05).Plant height in N_(195) and N_(255)treatments was significantly higher than that in N_0 treatment,but there was not significant difference between N_(195) and N_(255)(P >0.05).Under the same nitrogen fertilization,plant height in W_2(569.4 m^3/hm^2) and W3(873.45 m^3/hm^2) treatments was significant higher than that in W_1(265.2 m^3/hm^2),but there was not significant difference between W_2 and W3(P >0.05).It illustrated that excessive nitrogen fertilization and supplemental irrigation did not significantly affect plant height and leaf area of winter wheat.(ii) Under the same nitrogen fertilization level,yield increase effect of winter wheat by supplemental irrigation showed a declining trend with nitrogen application amount increased.It illustrated that nitrogen fertilization and supplemental irrigation had certain critical values on the yield of winter wheat.When surpassing the critical value,the yield declined.When nitrogen fertilization amount was 195 kg/hm^2,and supplemental irrigation amount was 70% of field moisture capacity(569.4 m^3/hm^2),the highest yield 8500 kg/hm^2 could be obtained.(iii) During mature period of winter wheat,nitrogen accumulation amount of plant treated by nitrogen was significantly higher than that not treated by nitrogen(P <0.05).But under the treatments of W_2 and W3,nitrogen accumulation amount in N_(255) significantly declined when compared with N_(195)(P <0.05).Especially under W3(873.45 m^3/hm^2) level,nitrogen accumulation amount in N_(255) was even lower than N_0.Under the treatments of N_0 and N_(195),nitrogen accumulation amount of plant significantly increased with supplemental irrigation increased(P < 0.05).But under N_(255) treatment,there was not significant difference(P > 0.05).It illustrated that moderate supplemental irrigation and nitrogen fertilization could improve nitrogen absorption ability of winter wheat,but excessive supplemental irrigation and nitrogen fertilization were not favorable for plant's nitrogen absorption.(iv) Although the increase of supplemental irrigation during jointing period improved nitrogen absorption ability of winter wheat and promoted winter wheat absorbing more nitrogen,it inhibited nitrogen transferring and distributing to seed.Comprehensively considering growth condition of winter wheat and nitrogen risk condition,it is suggested that nitrogen application amount was 195 kg/hm^2,and supplemental irrigation reached 70% of field moisture capacity(569.4 m^3/hm^2),which could be as the suitable water and fertilizer use amounts in the region.展开更多
文摘Tomato is one of the most important fruit crops in the world which is consumed in a variety of ways. The high cost of chemical fertilizers has led to some farmers turning to alternative methods of production, such as the use of bio-fertilizers. Most organic waste may be changed into fertilizer at a low cost of production. The objectives of this study were to determine: 1) the effect of the application of bio-compost on growth, yield, and quality of tomato;2) to determine the effects of different bio-compost applications on growth, yield and quality of tomato. The field was marked out into eight blocks. It consisted of four treatments with two replications per treatment. The bio-fertilizer was applied to plots and incorporated into the soil. This study showed that the application of bio-fertilizers made from food waste only, cow dung only, and food waste and cow dung improved plant growth, number of leaves, plant height and fruit yield. However, the differences were not statistically significant except for the number of leaves. The study also revealed that the application of bio-fertilizer lowered the number of days to flowering, fruiting, and ripening by 50% as compared to the control group. Promoting the adoption and use of bio-compost made from different waste stream hold the promise to increase tomato production.
基金Supported by the Water-and Fertilizer-saving Technology Demonstration for Wheat and Maize in Central Henan Province(2013BAD07B07-2)National Key Technology Research and Development Program during the 12th Five-year Plan Period(2012BAD04B07-2)~~
文摘[Objective] This study aimed to determine the effects of supplemental irrigation on yield and nitrogen uptake in winter wheat. [Method] Three supplemental irrigation levels were set based on the target soil contents of 60%, 70% and 80%) at jointing stage of wheat. Moreover, three nitrogen levels (0, 195 and 255 kg/hm^2) were designed. The experimental plots were arranged fol owing a split-plot design. Zhoumai 18 was selected as the experimental material. [Result] Supplemental irrigation and nitrogen application in combination had significant or extremely significant effects on yield, yield components and nitrogen uptake in winter wheat. The interaction between irrigation and nitrogen fertilization had significant or extremely significant influence on the number of ears, number of grains per ear, 1 000-grain weight, grain yield and nitrogen accumulation in winter wheat. Under different combinations of supplemental irrigation and nitrogen application, the maximum yield of winter wheat was obtained at W2 N195, while the minimum at W1 N255. [Conclusion] With the increase of irrigation, negative effect of nitrogen on number of ears, number of grains per ear, 1 000-grain weight, grain yield and nitrogen accumulation decrease under lower nitrogen application rate.
基金Supported by National Key Research Plan Project(2016YFD0801001,2016YFD0200103,2017YFD0800500)
文摘Based on split plot design method of field test,the impacts of supplemental irrigation based on soil moisture measurement and nitrogen use on winter wheat yield and nitrogen absorption and distribution were studied.Supplemental irrigation had three levels: 60%(W_1),70%(W_2) and 80%(W3) of the targeted relative water content at 0-40 cm of soil layer during jointing period of winter wheat.Nitrogen fertilization had three levels: not using nitrogen(N_0),using pure nitrogen of 195 kg/hm^2(N_(195)) and 255 kg/hm^2(N_(255)).Results showed that:(i)different supplemental irrigation and nitrogen fertilization significantly affected plant height and leaf area of winter wheat during key growth period.Under the same supplemental irrigation treatment,both plant height and leaf area of winter wheat showed as N_(255)> N_(195)> N_0(P <0.05).Plant height in N_(195) and N_(255)treatments was significantly higher than that in N_0 treatment,but there was not significant difference between N_(195) and N_(255)(P >0.05).Under the same nitrogen fertilization,plant height in W_2(569.4 m^3/hm^2) and W3(873.45 m^3/hm^2) treatments was significant higher than that in W_1(265.2 m^3/hm^2),but there was not significant difference between W_2 and W3(P >0.05).It illustrated that excessive nitrogen fertilization and supplemental irrigation did not significantly affect plant height and leaf area of winter wheat.(ii) Under the same nitrogen fertilization level,yield increase effect of winter wheat by supplemental irrigation showed a declining trend with nitrogen application amount increased.It illustrated that nitrogen fertilization and supplemental irrigation had certain critical values on the yield of winter wheat.When surpassing the critical value,the yield declined.When nitrogen fertilization amount was 195 kg/hm^2,and supplemental irrigation amount was 70% of field moisture capacity(569.4 m^3/hm^2),the highest yield 8500 kg/hm^2 could be obtained.(iii) During mature period of winter wheat,nitrogen accumulation amount of plant treated by nitrogen was significantly higher than that not treated by nitrogen(P <0.05).But under the treatments of W_2 and W3,nitrogen accumulation amount in N_(255) significantly declined when compared with N_(195)(P <0.05).Especially under W3(873.45 m^3/hm^2) level,nitrogen accumulation amount in N_(255) was even lower than N_0.Under the treatments of N_0 and N_(195),nitrogen accumulation amount of plant significantly increased with supplemental irrigation increased(P < 0.05).But under N_(255) treatment,there was not significant difference(P > 0.05).It illustrated that moderate supplemental irrigation and nitrogen fertilization could improve nitrogen absorption ability of winter wheat,but excessive supplemental irrigation and nitrogen fertilization were not favorable for plant's nitrogen absorption.(iv) Although the increase of supplemental irrigation during jointing period improved nitrogen absorption ability of winter wheat and promoted winter wheat absorbing more nitrogen,it inhibited nitrogen transferring and distributing to seed.Comprehensively considering growth condition of winter wheat and nitrogen risk condition,it is suggested that nitrogen application amount was 195 kg/hm^2,and supplemental irrigation reached 70% of field moisture capacity(569.4 m^3/hm^2),which could be as the suitable water and fertilizer use amounts in the region.