In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are susta...In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.展开更多
Biodiversity experiments have shown that soil organic carbon(SOC)is not only a function of plant diversity,but is also closely related to the nitrogen(N)-fixing plants.However,the effect of N-fixing trees on SOC chemi...Biodiversity experiments have shown that soil organic carbon(SOC)is not only a function of plant diversity,but is also closely related to the nitrogen(N)-fixing plants.However,the effect of N-fixing trees on SOC chemical stability is still little known,especially with the compounding effects of tree species diversity.An experimental field manipulation was established in subtropical plantations of southern China to explore the impacts of tree species richness(i.e.,one,two,four and six tree species)and with/without N-fixing trees on SOC chemical stability,as indicated by the ratio of easily oxidized organic carbon to SOC(EOC/SOC).Plant-derived C components in terms of hydrolysable plant lipids and lignin phenols were isolated from soils for evaluating their relative contributions to SOC chemical stability.The results showed that N-fixing tree species rather than tree species richness had a significant effect on EOC/SOC.Hydrolysable plant lipids and lignin phenols were negatively correlated with EOC/SOC,while hydrolysable plant lipids contributed more to EOC/SOC than lignin phenols,especially in the occurrence of N-fixing trees.The presence of N-fixing tree species led to an increase in soil N availability and a decrease in fungal abundance,promoting the selective retention of certain key components of hydrolysable plant lipids,thus enhancing SOC chemical stability.These findings underpin the crucial role of N-fixing trees in shaping SOC chemical stability,and therefore,preferential selection of N-fixing tree species in mixed plantations is an appropriate silvicultural strategy to improve SOC chemical stability in subtropical plantations.展开更多
The understanding of the spatial distribution of soil organic carbon(SOC)and its influencing factors is crucial for comprehending the global carbon cycle.However,the impact of soil geochemical and climatic conditions ...The understanding of the spatial distribution of soil organic carbon(SOC)and its influencing factors is crucial for comprehending the global carbon cycle.However,the impact of soil geochemical and climatic conditions on SOC remains limited,particularly in dryland farming areas.In this study,we aimed to enhance the understanding of the factors influencing the distribution of SOC in the drylands of the Songliao Plain,Northeast China.A dataset comprising 35,188 measured soil samples was used to map the SOC distribution in the region.Multiple linear regression(MLR)and random forest models(RFM)were employed to assess the importance of driving indicators for SOC.We also carried out partial correlation and path analyses to further investigate the relationship between climate and geochemistry.The SOC content in dryland soils of the Songliao Plain ranged from 0.05%to 11.63%,with a mean value of 1.47%±0.90%.There was a notable increasing trend in SOC content from the southwest to the northeast regions.The results of MLR and RFM revealed that temperature was the most critical factor,demonstrating a significant negative correlation with SOC content.Additionally,iron oxide was the most important soil geochemical indicator affecting SOC variability.Our research further suggested that climate may exert an indirect influence on SOC concentrations through its effect on geochemical properties of soil.These insights highlight the importance of considering both the direct and indirect impact of climate in predicting the SOC under future climate change.展开更多
Soil organic carbon(SOC)affects the function of terrestrial ecosystem and plays a vital role in global carbon cycle.Yet,large uncertainty still existed regarding the changes in SOC stock and quality with forest succes...Soil organic carbon(SOC)affects the function of terrestrial ecosystem and plays a vital role in global carbon cycle.Yet,large uncertainty still existed regarding the changes in SOC stock and quality with forest succession.Here,the stock and quality of SOC at 1-m soil profile were investigated across a subalpine forest series,including shrub,deciduous broad-leaved forest,broadleaf-conifer mixed forest,middle-age coniferous forest and mature coniferous forest,which located at southeast of Tibetan Plateau.The results showed that SOC stock ranged from 9.8 to29.9 kg·m^(-2),and exhibited a hump-shaped response pattern across the forest successional series.The highest and lowest SOC stock was observed in the mixed forest and shrub forest,respectively.The SOC stock had no significant relationships with soil temperature and litter stock,but was positively correlated with wood debris stock.Meanwhile,the average percentages of polysaccharides,lignins,aromatics and aliphatics based on FTIR spectroscopy were 79.89%,0.94%,18.87%and 0.29%,respectively.Furthermore,the percentage of polysaccharides exhibited an increasing pattern across the forest successional series except for the sudden decreasing in the mixed forest,while the proportions of lignins,aromatics and aliphatics exhibited a decreasing pattern across the forest successional series except for the sudden increasing in the mixed forest.Consequently,the humification indices(HIs)were highest in the mixed forest compared to the other four successional stages,which means that the SOC quality in mixed forest was worse than other successional stages.In addition,the SOC stock,recalcitrant fractions and HIs decreased with increasing soil depth,while the polysaccharides exhibited an increasing pattern.These findings demonstrate that the mixed forest had higher SOC stock and worse SOC quality than other successional stages.The high proportion of SOC stock(66%at depth of 20-100 cm)and better SOC quality(lower HIs)indicate that deep soil have tremendous potential to store SOC and needs more attention under global chan ge.展开更多
Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowled...Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowledge on how SOC and its fractions(POC:particulate organic carbon;MAOC:mineral-associated organic carbon)respond to different harvest residue managements is limited.Methods In this study,a randomized block experiment containing SOH and WTH was conducted in a Chinese fir(Cunninghamia lanceolata)plantation.The effect of harvest residue management on SOC and its fractions in topsoil(0–10cm)and subsoil(20–40cm)was determined.Plant inputs(harvest residue retaining mass and fine root biomass)and microbial and mineral properties were also measured.Results The responses of SOC and its fractions to different harvest residue managements varied with soil depth.Specifically,SOH enhanced the content of SOC and POC in topsoil with increases of 15.9%and 29.8%,respectively,compared with WTH.However,SOH had no significant effects on MAOC in topsoil and SOC and its fractions in subsoil.These results indicated that the increase in POC induced by the retention of harvest residue was the primary contributor to SOC accumulation,especially in topsoil.The harvest residue managements affected SOC and its fractions through different pathways in topsoil and subsoil.The plant inputs(the increase in fine root biomass induced by SOH)exerted a principal role in the SOC accumulation in topsoil,whereas mineral and microbial properties played a more important role in regulating SOC dynamics than plants inputs in subsoil.Conclusion The retention of harvest residues can promote SOC accumulation by increasing POC,and is thus suggested as an effective technology to enhance the soil carbon sink for mitigating climate change in plantation management.展开更多
Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains cont...Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area.展开更多
Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the ...Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the loss of soil-organic-carbon (SOC), which further enhances soil fertility. Different fractions of SOC pools react to the alterations in management practices and indicate changes in SOC dynamics as compared to total C in the soil. Higher SOC levels in soil have been observed in case of reduced/no-till (NT) practices than conventional tillage (CT). However, between CT and zero tillage/NT, total SOC stocks diminished with an increase in soil depth, which demonstrated that the benefits of SOC are more pronounced in the topsoil under NT. Soil aggregation provides physical protection to C associated with different-sized particles, thus, the improvement in soil aggregation through CA is an effective way to mitigate soil C loss. Along with less soil disturbance, residual management, suitable crop rotation, rational application of manures and fertilizers, and integrated nutrient management have been found to be effective in not only improving soil C stock but also enhancing the soil health and productivity. Thus, CA can be considered as a potential method in the build-up of SOC of soil in rice-wheat system.展开更多
Gabonese’s estuary is an important coastal mangrove setting and soil plays a key role in mangrove carbon storage in mangrove forests. However, the spatial variation in soil organic carbon (SOC) storage remain unclear...Gabonese’s estuary is an important coastal mangrove setting and soil plays a key role in mangrove carbon storage in mangrove forests. However, the spatial variation in soil organic carbon (SOC) storage remain unclear. To address this gap, determining the SOC spatial variation in Gabonese’s estuarine is essential for better understanding the global carbon cycle. The present study compared soil organic carbon between northern and southern sites in different mangrove forest, Rhizophora racemosa and Avicennia germinans. The results showed that the mean SOC stocks at 1 m depth were 256.28 ± 127.29 MgC ha<sup>−</sup><sup>1</sup>. Among the different regions, SOC in northern zone was significantly (p p < 0.001). The deeper layers contained higher SOC stocks (254.62 ± 128.09 MgC ha<sup>−</sup><sup>1</sup>) than upper layers (55.42 ± 25.37 MgC ha<sup>−</sup><sup>1</sup>). The study highlights that low deforestation rate have led to less CO<sub>2</sub> (705.3 Mg CO<sub>2</sub>e ha<sup>−</sup><sup>1</sup> - 922.62 Mg CO<sub>2</sub>e ha<sup>−</sup><sup>1</sup>) emissions than most sediment carbon-rich mangroves in the world. These results highlight the influence of soil texture and mangrove forest types on the mangrove SOC stocks. The first national comparison of soil organic carbon stocks between mangroves and upland tropical forests indicated SOC stocks were two times more in mangroves soils (51.21 ± 45.00 MgC ha<sup>−</sup><sup>1</sup>) than primary (20.33 ± 12.7 MgC ha<sup>−</sup><sup>1</sup>), savanna and cropland (21.71 ± 15.10 MgC ha<sup>−</sup><sup>1</sup>). We find that mangroves in this study emit lower dioxide-carbon equivalent emissions. This study highlights the importance of national inventories of soil organic carbon and can be used as a baseline on the role of mangroves in carbon sequestration and climate change mitigation but the variation in SOC stocks indicates the need for further national data.展开更多
Content and density of soil organic carbon(SOC) and labile and stable SOC fractions in peat mire soil in wetland, soybean field and rice paddy field reclaimed from the wetland around Xingkai Lake in Northeast China we...Content and density of soil organic carbon(SOC) and labile and stable SOC fractions in peat mire soil in wetland, soybean field and rice paddy field reclaimed from the wetland around Xingkai Lake in Northeast China were studied. Studies were designed to investigate the impact of reclamation of wetland for soybean and rice farming on stability of SOC. After reclamation, SOC content and density in the top 0–30 cm soil layer decreased, and SOC content and density in soybean field were higher than that in paddy field. Content and density of labile SOC fractions also decreased, and density of labile SOC fractions and their ratios with SOC in soybean field were lower than that observed in paddy field. In the 0–30 cm soil layer, densities of labile SOC fractions, namely, dissolved organic carbon(DOC), microbial biomass carbon(MBC), readily oxidized carbon(ROC) and readily mineralized carbon(RMC), in both soybean field and paddy field were all found to be lower than those in wetland by 34.00% and 13.83%, 51.74% and 35.13%, 62.24% and 59.00%, and 64.24% and 17.86%, respectively. After reclamation, SOC density of micro-aggregates(< 0.25 mm) as a stable SOC fraction and its ratio with SOC in 0–5, 5–10, 10–20 and 20–30 cm soil layers increased. SOC density of micro-aggregates in the 0–30 cm soil layer in soybean field was 50.83% higher than that in paddy field. Due to reclamation, SOC density and labile SOC fraction density decreased, but after reclamation, most SOC was stored in a more complex and stable form. Soybean farming is more friendly for sustainable SOC residence in the soils than rice farming.展开更多
[Objective]The aim was to study on the characteristics of soil organic carbon and nitrogen in rubber (Hevea brasiliensis Muell-Arg) plantations at different age stages in the western region of Hainan Island,so as to...[Objective]The aim was to study on the characteristics of soil organic carbon and nitrogen in rubber (Hevea brasiliensis Muell-Arg) plantations at different age stages in the western region of Hainan Island,so as to evaluate the ecological benefits of rubber plantations and provide basic data for studying the effect of tropical land utilization/cover change on the global carbon and nitrogen cycle. [Method]The situs was in Danzhou city,western region of Hainan Island,and the samples were four kinds of rubber plantations soil at different ages and one kind of control check (pepper,Piper nigrum L.) soil. In this research,four quadrats were set up in each sample,and the size of each was 20 cm×20 cm. Four specimens were gathered from four layers of 0-15,15-30,30-45,45-60,and the average of them was the last analysis result of each sample. Soil density was measured by cutting ring method,soil containing and hygroscopic water was detected by oven drying method,soil organic carbon (SOC) was measured by low temperature heated outside potassium dichromate oxidation-colorimetry method,and soil total nitrogen (STN) was detected by semimicro Kjeldahl method. [Result]SOC contents of different layers in rubber plantations soil at different age stages (including the CK pepper soil,the same as below) varied little,and the content of SOC in surface layer (0-15 cm) was higher,while the underlayer (45-60 cm) was lower than the average value; there was significant difference in SOC content among different kinds of soil,and the content was of 6.03-7.78 g/kg,tapping young trees (7 years) CK pepper mature age trees (30 years) prophase of young trees (2 years) tapping trees (16 years); there was no significant difference in SOC storage among different kinds of soil,and the storage was of 61.33-74.29 t/hm2,mature age trees (30 years) tapping young trees (7 years) prophase of young trees (2 years) CK pepper tapping trees (16 years); there was significant difference in STN content among rubber plantations soil at different age stages,the content was of 410.86-664.14 mg/kg2,CK pepper tapping young trees (7 years) prophase of young trees (2 years) mature age trees (30 years) tapping trees (16 years),and STN content of tapping trees (16 years) soil was extremely lowest; there was significant difference in C/N ratio among different kinds of soil,the ratio was of 10.94-14.47,and the ratio of tapping trees (16 years) mature age trees (30 years) tapping young trees (7 years) CK pepper prophase of young trees (2 years). [Conclusion]There wasn't unhealthy effect of rubber trees planted in tropical area on the content and storage of SOC,the content of STN and the ratio of C/N. there was no significant difference between rubber plantations and CK pepper soil,and the effects of rubber plantation on soil carbon-nitrogen was similar to that of other tropical crops (such as pepper).展开更多
Dynamic quantitative assessment of soil organic C and N is an available approach to understand the exact impact of land management on soils fertility. In this study the biomass of plants and content of soil organic C ...Dynamic quantitative assessment of soil organic C and N is an available approach to understand the exact impact of land management on soils fertility. In this study the biomass of plants and content of soil organic C and N were compared in four typical land use systems which were planted with Ryegrass (Lolium multiflorum Lam.), Bahiagrass (Paspalum notatum Flugge.), Citrus (Citrus reticulata Blanco.), and Masson pine (Pinus Massoniana Lamb.) during 10 years in south China. Although biomass of plants in these four land use systems was nearly at the same level in the former investigation, total biomass for Ryegrass (RG), Bahiagrass (BG) was 3.68 and 3.75 times higher than that for Citrus (CT), and 2.06 and 2.14 times higher than that for Masson pine (MP) over 10 years of cultivation, respectively. Especially, underground total biomass for both RG and BG was over 10 times larger than that for CT and MP, indicating that forage grasses was much more beneficial to increase organic C and N storage in soils than CT and MP. The change content of soil organic C and N mainly occurred within soil depth of the 0–40 cm. The increased content of soil organic carbon and nitrogen was for 1.5 t·hm?2 and 0.2 t·hm?2 in the soil with planting RG and BG, and was for 1.2 t·hm?2 and 0.02 t·hm?2 in the soil with planting CT. An average loss was for 0.4 t·hm?2 and 0.04 t·hm?2 in the soil with planting MP during 10-year period. Keywords Soil organic carbon - Soil organic nitrogen - Dynamic change - Land use - Quantitative assessment CLC number S153.61 Document code A Foundation item: This research was partly supported by National Natural Science Foundation of China (30100144), and by Scientific Committee of Shenyang City (1011501900).Biography: WANG Xiao-ju (1967-), mail, Ph.D. Researcher in Center for Environmental Science in Saitama. Saitama Prefecture 347 0115, Japan.Responsible editor: Zhu Hong展开更多
As the largest pool of terrestrial organic carbon, soils interact strongly with atmosphere composition, climate, and land change. Soil organic carbon dynamics in ecosystem plays a great role in global carbon cycle and...As the largest pool of terrestrial organic carbon, soils interact strongly with atmosphere composition, climate, and land change. Soil organic carbon dynamics in ecosystem plays a great role in global carbon cycle and global change. With development of mathematical models that simulate changes in soil organic carbon, there have been considerable advances in understanding soil organic carbon dynamics. This paper mainly reviewed the composition of soil organic matter and its influenced factors, and recommended some soil organic matter models worldwide. Based on the analyses of the developed results at home and abroad, it is suggested that future soil organic matter models should be developed toward based-process models, and not always empirical ones. The models are able to reveal their interaction between soil carbon systems, climate and land cover by technique and methods of GIS (Geographical Information System) and RS (Remote Sensing). These models should be developed at a global scale, in dynamically describing the spatial and temporal changes of soil organic matter cycle. Meanwhile, the further researches on models should be strengthen for providing theory basis and foundation in making policy of green house gas emission in China.展开更多
[Objective] The aim was to reveal changes of soil organic matter fraction and their corresponding carbon management indexes as affected by different land use types.[Method]Soil organic carbon,active soil organic carbo...[Objective] The aim was to reveal changes of soil organic matter fraction and their corresponding carbon management indexes as affected by different land use types.[Method]Soil organic carbon,active soil organic carbon and soil carbon management index(CMI)of different land use types in Guilin Maocun karst area were studied.Sampling with field investigation and laboratory testing was carried out.Heavy potassium chromate method was adopted to determine soil organic matter.333 mmol/L KMnO4 oxidation method was used to determine active organic carbon.[Result]With active soil organic matter increasing,the differences of CMI between different land use types were bigger.The CMI value of different land uses was shrubforest paddy fielddry farmland.The statistical analysis showed that labile organic matter was related with major soil properties at a significant level.[Conclusion]Labile organic matter could be used to reveal the influence of different land use types on soil organic matter and carbon management index in karst area.展开更多
Forest soil carbon (C) is an important compo- nent of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To un...Forest soil carbon (C) is an important compo- nent of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To understand the effect of tree species on soil C cycling, we assessed total, labile, and recalcitrant SOC pools, SOC chemical composition by 13C nuclear magnetic resonance spectroscopy, and SOC mineralization in four monoculture plantations. Labile and recalcitrant SOC pools in surface (0-10 cm) and deep (40-60 cm) soils in the four forests contained similar content. In contrast, these SOC pools exhibited differences in the subsurface soil (from 10 to 20 cm and from 20 to 40 cm). The alkyl C and O-alkyl C intensities of SOC were higher in Schima superba and Michelia macclurei forests than in Cunninghamia lanceolata and Pinus massoniana forests. In surface soil, S. superba and M. macclurei forests exhibited higher SOC mineralization rates than did P. massoniana and C.lanceolata forests. The slope of the straight line between C60 and labile SOC was steeper than that between C60 and total SOC. Our results suggest that roots affected the composition of SOC pools. Labile SOC pools also affected SOC mineralization to a greater extent than total SOC pools.展开更多
Objective] The research aimed to study soil organic carbon and total ni-trogen distribution in oasis cotton farmland. [Method] With the oasis cotton field of Manas River Val ey in Tianshan Mountains as the research ar...Objective] The research aimed to study soil organic carbon and total ni-trogen distribution in oasis cotton farmland. [Method] With the oasis cotton field of Manas River Val ey in Tianshan Mountains as the research area and abandoned farmland as a control, the distribution characteristics of soil organic carbon and total nitrogen content in the cotton field of Manas River Val ey in the last 23 years were investigated by using geographic methods. [Result] Presenting vertical distribution, cotton soil organic carbon and total nitrogen content in Manas River Val ey de-creased with the increase of soil depth, and those in 0-30 cm soil layer was sig-nificantly higher than those in soil layer of below 30 cm, while organic carbon stor-age showed the trend of increase. Also in vertical distribution, soil organic carbon and total nitrogen decreased significantly with the increase of soil depth, and soil organic carbon content in abandoned farmland decreased month by month. Howev-er, cotton soil organic carbon storage firstly decreased and then increased in the oasis cotton field that in the early growth of cotton, soil organic carbon in the layers of 0-30 and 30-100 cm decreased to the lowest in the bloom stage, and then or-ganic carbon increased with the reproductive growth of cotton into the later stages. However, due to no input of plant litter in the abandoned farmland, the soil organic carbon storage decreased month by month. There were significantly differences be-tween oasis cotton field and abandoned farmland in organic carbon contents. [Con-clusion] The soil organic carbon content and total nitrogen content in oasis cotton field were significantly higher than those in the abandoned farmland. The soil organ-ic carbon storage increased in the layer of 0-30 cm, while there was no significant change of soil organic carbon and total nitrogen content in the layer of 30-100 cm, which was consistent with the previous study on the distribution characteristics of soil organic carbon and total nitrogen content profile.展开更多
In this research,the contents of organic carbon in soil profiles in rubber forests in west of Hainan were measured and storage quantity of oganic carbon was estimated.The results indicated that contents of organic car...In this research,the contents of organic carbon in soil profiles in rubber forests in west of Hainan were measured and storage quantity of oganic carbon was estimated.The results indicated that contents of organic carbon in soils of ecosystem of rubber forests at different ages were 6.20-14.36 g/kg;organic carbon in soils of rubber forests reduced upon soil depth;the contents differed signigicantly in soils at 0-60 cm in rubber forest at 33 a,but differed little in soils in rubber forests at other ages;the contents were of significant differences in soils in rubber forests at different ages;organic carbon concentrated in soils at 0-30 cm;the storage quantities of organic carbon in rubber forests at 5,10,19 and 33 a were 76.85,74.48,81.74 and 85.31 t/hm^2.Climate,soil property,accumualtion and decomposition of fallen materials,forest age and management are dominant factors influencing accumulation of organic carbon in soils of rubber forest.展开更多
Patterns of soil organic carbon (SOC) storage and density in various soil types or locations are the foundation for examining the role of soil in the global carbon cycle. An assessment of SOC storage and density patte...Patterns of soil organic carbon (SOC) storage and density in various soil types or locations are the foundation for examining the role of soil in the global carbon cycle. An assessment of SOC storage and density patterns in China based on soil types as defined by Chinese Soil Taxonomy (CST) and the recently compiled digital 1:1000000 Soil Database of China was conducted to generate a rigorous database for the future study of SOC storage. First, SOC densities of 7 292 soil profiles were calculated and linked by soil type to polygons of a digital soil map using geographic information system resulting in a 1:1 000 000 SOC density distribution map of China. Further results showed that soils in China covered 9 281×103 km2 with a total SOC storage of 89.14 Gt and a mean SOC density 96.0 t ha-1. Among the 14 CST orders, Cambosols and Argosols constituted high percentage of China's total SOC storage, while Andosols, Vertosols, and Spodsols had a low percentage. As for SOC density, Histosols were the highest, while Primosols were the lowest. Specific patterns of SOC storage of various soil types at the CST suborder, group, and subgroup levels were also described. Results obtained from the study of SOC storage and density of all CST soil types would be not only useful for international comparative research, but also for more accurately estimating and monitoring of changes of SOC storage in China.展开更多
To probe the processes and mechanisms of soil organic carbon (SOC) changes during forest recovery, a 150-yearchronosequence study on SOC was conducted for various vegetation succession stages at the Ziwuling area, in ...To probe the processes and mechanisms of soil organic carbon (SOC) changes during forest recovery, a 150-yearchronosequence study on SOC was conducted for various vegetation succession stages at the Ziwuling area, in the centralpart of the Loess Plateau, China. Results showed that during the 150 years of local vegetation rehabilitation SOC increasedsignificantly (P < 0.05) over time in the initial period of 55-59 years, but slightly decreased afterwards. Average SOCdensities for the 0-100 cm layer of farmland, grassland, shrubland and forest were 4.46, 5.05, 9.95, and 7.49 kg C m-3,respectively. The decrease in SOC from 60 to 150 years of abandonment implied that the soil carbon pool was a sink forCO2 before the shrubland stage and became a source in the later period. This change resulted from the spatially variedcomposition and structure of the vegetation. Vegetation recovery had a maximum effect on the surface (0-20 cm) SOCpool. It. was concluded that vegetation recovery on the Loess Plateau could result in significantly increased sequestrationof atmospheric CO2 in soil and vegetation, which was ecologically important for mitigating the increase of atmosphericconcentration of CO2 and for ameliorating the local eco-environment.展开更多
Soil organic carbon (SOC) storage under different types of vegetations in China were estimated using measured data of 2 440 soil profiles to compare SOC density distribution between different estimates, to map the soi...Soil organic carbon (SOC) storage under different types of vegetations in China were estimated using measured data of 2 440 soil profiles to compare SOC density distribution between different estimates, to map the soil organic carbon stocks under different types of vegetation in China, and to analyze the relationships between soil organic carbon stocks and environmental variables using stepwise regression analyses. Soil organic carbon storage in China was estimated at 69.38 Gt (10 15 g). There was a big difference in SOC densities for various vegetation types, with SOC distribution closely related to climatic patterns in general. Stepwise regression analyses of SOC against environmental variables showed that SOC generally increased with increasing precipitation and elevation, while it decreased with increasing temperature.Furthermore, the important factor controlling SOC accumulation for forests was elevation, while for temperate steppes mean annual temperature dominated. The more specific the vegetation type used in the regression analysis, the greater was the effect of environmental variables on SOC. However, compared to native vegetation, cultivation activities in the croplands reduced the influence of environmental variables on SOC.展开更多
The combined use of chemical and organic fertilizers is considered a good method to sustain high crop yield and enhance soil organic carbon (SOC), but it is still unclear when and to what extent chemical fertilizers...The combined use of chemical and organic fertilizers is considered a good method to sustain high crop yield and enhance soil organic carbon (SOC), but it is still unclear when and to what extent chemical fertilizers could be replaced by organic fertilizers. We selected a long-term soil fertility experiment in Gongzhuling, Northeast China Plain to examine the temporal dynamics of crop yield and SOC in response to chemical nitrogen, phosphorus, and potassium (NPK) fertilizers and manure, applied both individually and in combination, over the course of three decades (1980-2010). We aimed to test 1) which fertilizer application is the best for increasing both maize yield and SOC in this region, and 2) whether chemical fertilizers can be replaced by manure to maintain high maize yield and enhance SOC, and if so, when this replacement should be implemented. We observed that NPK fertilizers induced a considerable increase in maize yield in the first 12 years after the initiation of the experiment, but manure addition did not. In the following years, the addition of both NPK fertilizers and manure led to an increase in maize yield. SOC increased considerably in treatments with manure but remained the same or even declined with NPK treatments. The increase in maize yield induced by NPK fertilizers alone declined greatly with increasing SOC, whereas the combination of NPK and manure resulted in high maize yield and a remarkable improvement in SOC stock. Based on these results we suggested that NPK fertilizers could be at least partially replaced by manure to sustain high maize yield after SOC stock has reached 41.96 Mg C ha^-1 in the Northeast China Plain and highly recommend the combined application of chemical fertilizers and manure (i.e., 60 Mg ha^-1).展开更多
基金supported by the National Nature Science Foundations of China(32160269)the International Science and Technology Cooperation Project of Qinghai province of China(2022-HZ-817).
文摘In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.
基金supported by the National Natural Science Foundation of China(31930078,32301559)the Ministry of Science and Technology of China(2021YFD2200405,2021YFD2200402)+1 种基金Fundamental Research Funds of CAF(CAFYBB2021ZW001)the program for scientific research start-up funds of Guangdong Ocean University。
文摘Biodiversity experiments have shown that soil organic carbon(SOC)is not only a function of plant diversity,but is also closely related to the nitrogen(N)-fixing plants.However,the effect of N-fixing trees on SOC chemical stability is still little known,especially with the compounding effects of tree species diversity.An experimental field manipulation was established in subtropical plantations of southern China to explore the impacts of tree species richness(i.e.,one,two,four and six tree species)and with/without N-fixing trees on SOC chemical stability,as indicated by the ratio of easily oxidized organic carbon to SOC(EOC/SOC).Plant-derived C components in terms of hydrolysable plant lipids and lignin phenols were isolated from soils for evaluating their relative contributions to SOC chemical stability.The results showed that N-fixing tree species rather than tree species richness had a significant effect on EOC/SOC.Hydrolysable plant lipids and lignin phenols were negatively correlated with EOC/SOC,while hydrolysable plant lipids contributed more to EOC/SOC than lignin phenols,especially in the occurrence of N-fixing trees.The presence of N-fixing tree species led to an increase in soil N availability and a decrease in fungal abundance,promoting the selective retention of certain key components of hydrolysable plant lipids,thus enhancing SOC chemical stability.These findings underpin the crucial role of N-fixing trees in shaping SOC chemical stability,and therefore,preferential selection of N-fixing tree species in mixed plantations is an appropriate silvicultural strategy to improve SOC chemical stability in subtropical plantations.
基金funded by the National Key Research and Development Program of China(Grant No.2023YFD1500801)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28020302)+1 种基金the Basic Geological Survey Project of China Geological Survey(Grant No.DD20230089)the project of Northeast Geological S&T Innovation Center of China Geological Survey(Grant Nos.QCJJ2023-53,QCJJ2023-54,QCJJ2022-41)。
文摘The understanding of the spatial distribution of soil organic carbon(SOC)and its influencing factors is crucial for comprehending the global carbon cycle.However,the impact of soil geochemical and climatic conditions on SOC remains limited,particularly in dryland farming areas.In this study,we aimed to enhance the understanding of the factors influencing the distribution of SOC in the drylands of the Songliao Plain,Northeast China.A dataset comprising 35,188 measured soil samples was used to map the SOC distribution in the region.Multiple linear regression(MLR)and random forest models(RFM)were employed to assess the importance of driving indicators for SOC.We also carried out partial correlation and path analyses to further investigate the relationship between climate and geochemistry.The SOC content in dryland soils of the Songliao Plain ranged from 0.05%to 11.63%,with a mean value of 1.47%±0.90%.There was a notable increasing trend in SOC content from the southwest to the northeast regions.The results of MLR and RFM revealed that temperature was the most critical factor,demonstrating a significant negative correlation with SOC content.Additionally,iron oxide was the most important soil geochemical indicator affecting SOC variability.Our research further suggested that climate may exert an indirect influence on SOC concentrations through its effect on geochemical properties of soil.These insights highlight the importance of considering both the direct and indirect impact of climate in predicting the SOC under future climate change.
基金the financial support from the National Natural Science Foundation of China(Nos.32001139,32071554)。
文摘Soil organic carbon(SOC)affects the function of terrestrial ecosystem and plays a vital role in global carbon cycle.Yet,large uncertainty still existed regarding the changes in SOC stock and quality with forest succession.Here,the stock and quality of SOC at 1-m soil profile were investigated across a subalpine forest series,including shrub,deciduous broad-leaved forest,broadleaf-conifer mixed forest,middle-age coniferous forest and mature coniferous forest,which located at southeast of Tibetan Plateau.The results showed that SOC stock ranged from 9.8 to29.9 kg·m^(-2),and exhibited a hump-shaped response pattern across the forest successional series.The highest and lowest SOC stock was observed in the mixed forest and shrub forest,respectively.The SOC stock had no significant relationships with soil temperature and litter stock,but was positively correlated with wood debris stock.Meanwhile,the average percentages of polysaccharides,lignins,aromatics and aliphatics based on FTIR spectroscopy were 79.89%,0.94%,18.87%and 0.29%,respectively.Furthermore,the percentage of polysaccharides exhibited an increasing pattern across the forest successional series except for the sudden decreasing in the mixed forest,while the proportions of lignins,aromatics and aliphatics exhibited a decreasing pattern across the forest successional series except for the sudden increasing in the mixed forest.Consequently,the humification indices(HIs)were highest in the mixed forest compared to the other four successional stages,which means that the SOC quality in mixed forest was worse than other successional stages.In addition,the SOC stock,recalcitrant fractions and HIs decreased with increasing soil depth,while the polysaccharides exhibited an increasing pattern.These findings demonstrate that the mixed forest had higher SOC stock and worse SOC quality than other successional stages.The high proportion of SOC stock(66%at depth of 20-100 cm)and better SOC quality(lower HIs)indicate that deep soil have tremendous potential to store SOC and needs more attention under global chan ge.
基金supported by the National Natural Science Foundation of China(No.32192434)the National Key Research and Development Program of China(No.2022YFF1303003).
文摘Background As commonly used harvest residue management practices in subtropical plantations,stem only harvesting(SOH)and whole tree harvesting(WTH)are expected to affect soil organic carbon(SOC)content.However,knowledge on how SOC and its fractions(POC:particulate organic carbon;MAOC:mineral-associated organic carbon)respond to different harvest residue managements is limited.Methods In this study,a randomized block experiment containing SOH and WTH was conducted in a Chinese fir(Cunninghamia lanceolata)plantation.The effect of harvest residue management on SOC and its fractions in topsoil(0–10cm)and subsoil(20–40cm)was determined.Plant inputs(harvest residue retaining mass and fine root biomass)and microbial and mineral properties were also measured.Results The responses of SOC and its fractions to different harvest residue managements varied with soil depth.Specifically,SOH enhanced the content of SOC and POC in topsoil with increases of 15.9%and 29.8%,respectively,compared with WTH.However,SOH had no significant effects on MAOC in topsoil and SOC and its fractions in subsoil.These results indicated that the increase in POC induced by the retention of harvest residue was the primary contributor to SOC accumulation,especially in topsoil.The harvest residue managements affected SOC and its fractions through different pathways in topsoil and subsoil.The plant inputs(the increase in fine root biomass induced by SOH)exerted a principal role in the SOC accumulation in topsoil,whereas mineral and microbial properties played a more important role in regulating SOC dynamics than plants inputs in subsoil.Conclusion The retention of harvest residues can promote SOC accumulation by increasing POC,and is thus suggested as an effective technology to enhance the soil carbon sink for mitigating climate change in plantation management.
基金This research was supported by the National Key Research and Development Program of China(2021YFE0101302and2021YFD1901102)the National Natural Science Foundation of China(31801314 and 31901475)。
文摘Plastic film mulching has been widely used to increase maize yield in the semiarid area of China.However, whether long-term plastic film mulching is conducive to agricultural sustainability in this region remains controversial.A field experiment was initiated in 2013 with five different film mulching methods:(i) control method, flat planting without mulching (CK),(ii) flat planting with half film mulching (P),(iii) film mulching on ridges and planting in narrow furrows(S),(iv) full film mulching on double ridges (D), and (v) film mulching on ridges and planting in wide furrows (R).The effects on soil organic carbon (SOC) content, storage, and fractions, and on the carbon management index (CMI)were evaluated after nine consecutive years of plastic film mulching.The results showed that long-term plastic film mulching generally maintained the initial SOC level.Compared with no mulching, plastic film mulching increased the average crop yield, biomass yield, and root biomass by 48.38, 35.06, and 37.32%, respectively, which led to the improvement of SOC sequestration.Specifically, plastic film mulching significantly improved CMI, and increased the SOC content by 13.59%, SOC storage by 7.47%and easily oxidizable organic carbon (EOC) by 13.78%on average,but it reduced the other labile fractions.SOC sequestration and CMI were improved by refining the plastic film mulching methods.The S treatment had the best effect among the four mulching methods, so it can be used as a reasonable film mulching method for sustainable agricultural development in the semiarid area.
文摘Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the loss of soil-organic-carbon (SOC), which further enhances soil fertility. Different fractions of SOC pools react to the alterations in management practices and indicate changes in SOC dynamics as compared to total C in the soil. Higher SOC levels in soil have been observed in case of reduced/no-till (NT) practices than conventional tillage (CT). However, between CT and zero tillage/NT, total SOC stocks diminished with an increase in soil depth, which demonstrated that the benefits of SOC are more pronounced in the topsoil under NT. Soil aggregation provides physical protection to C associated with different-sized particles, thus, the improvement in soil aggregation through CA is an effective way to mitigate soil C loss. Along with less soil disturbance, residual management, suitable crop rotation, rational application of manures and fertilizers, and integrated nutrient management have been found to be effective in not only improving soil C stock but also enhancing the soil health and productivity. Thus, CA can be considered as a potential method in the build-up of SOC of soil in rice-wheat system.
文摘Gabonese’s estuary is an important coastal mangrove setting and soil plays a key role in mangrove carbon storage in mangrove forests. However, the spatial variation in soil organic carbon (SOC) storage remain unclear. To address this gap, determining the SOC spatial variation in Gabonese’s estuarine is essential for better understanding the global carbon cycle. The present study compared soil organic carbon between northern and southern sites in different mangrove forest, Rhizophora racemosa and Avicennia germinans. The results showed that the mean SOC stocks at 1 m depth were 256.28 ± 127.29 MgC ha<sup>−</sup><sup>1</sup>. Among the different regions, SOC in northern zone was significantly (p p < 0.001). The deeper layers contained higher SOC stocks (254.62 ± 128.09 MgC ha<sup>−</sup><sup>1</sup>) than upper layers (55.42 ± 25.37 MgC ha<sup>−</sup><sup>1</sup>). The study highlights that low deforestation rate have led to less CO<sub>2</sub> (705.3 Mg CO<sub>2</sub>e ha<sup>−</sup><sup>1</sup> - 922.62 Mg CO<sub>2</sub>e ha<sup>−</sup><sup>1</sup>) emissions than most sediment carbon-rich mangroves in the world. These results highlight the influence of soil texture and mangrove forest types on the mangrove SOC stocks. The first national comparison of soil organic carbon stocks between mangroves and upland tropical forests indicated SOC stocks were two times more in mangroves soils (51.21 ± 45.00 MgC ha<sup>−</sup><sup>1</sup>) than primary (20.33 ± 12.7 MgC ha<sup>−</sup><sup>1</sup>), savanna and cropland (21.71 ± 15.10 MgC ha<sup>−</sup><sup>1</sup>). We find that mangroves in this study emit lower dioxide-carbon equivalent emissions. This study highlights the importance of national inventories of soil organic carbon and can be used as a baseline on the role of mangroves in carbon sequestration and climate change mitigation but the variation in SOC stocks indicates the need for further national data.
基金Under the auspices of National Natural Science Foundation of China(No.41501102,41471081,41601104)Science and Technology Innovation Project of China Academy of Agricultural Sciences(No.2017-cxgc-lyj)Science&Technology Project of Industry(No.201403014)
文摘Content and density of soil organic carbon(SOC) and labile and stable SOC fractions in peat mire soil in wetland, soybean field and rice paddy field reclaimed from the wetland around Xingkai Lake in Northeast China were studied. Studies were designed to investigate the impact of reclamation of wetland for soybean and rice farming on stability of SOC. After reclamation, SOC content and density in the top 0–30 cm soil layer decreased, and SOC content and density in soybean field were higher than that in paddy field. Content and density of labile SOC fractions also decreased, and density of labile SOC fractions and their ratios with SOC in soybean field were lower than that observed in paddy field. In the 0–30 cm soil layer, densities of labile SOC fractions, namely, dissolved organic carbon(DOC), microbial biomass carbon(MBC), readily oxidized carbon(ROC) and readily mineralized carbon(RMC), in both soybean field and paddy field were all found to be lower than those in wetland by 34.00% and 13.83%, 51.74% and 35.13%, 62.24% and 59.00%, and 64.24% and 17.86%, respectively. After reclamation, SOC density of micro-aggregates(< 0.25 mm) as a stable SOC fraction and its ratio with SOC in 0–5, 5–10, 10–20 and 20–30 cm soil layers increased. SOC density of micro-aggregates in the 0–30 cm soil layer in soybean field was 50.83% higher than that in paddy field. Due to reclamation, SOC density and labile SOC fraction density decreased, but after reclamation, most SOC was stored in a more complex and stable form. Soybean farming is more friendly for sustainable SOC residence in the soils than rice farming.
基金Supported by the Project of the Basic Research Operation Cost of State Level Research Institutes "Long-term Location Investigation of Basic Data for Rubber Production " ( XJSYWFZX-2008-14 and XJSYWFZX-2007-2)the Project Natural Sciences Fund of Hainan Province (807045)~~
文摘[Objective]The aim was to study on the characteristics of soil organic carbon and nitrogen in rubber (Hevea brasiliensis Muell-Arg) plantations at different age stages in the western region of Hainan Island,so as to evaluate the ecological benefits of rubber plantations and provide basic data for studying the effect of tropical land utilization/cover change on the global carbon and nitrogen cycle. [Method]The situs was in Danzhou city,western region of Hainan Island,and the samples were four kinds of rubber plantations soil at different ages and one kind of control check (pepper,Piper nigrum L.) soil. In this research,four quadrats were set up in each sample,and the size of each was 20 cm×20 cm. Four specimens were gathered from four layers of 0-15,15-30,30-45,45-60,and the average of them was the last analysis result of each sample. Soil density was measured by cutting ring method,soil containing and hygroscopic water was detected by oven drying method,soil organic carbon (SOC) was measured by low temperature heated outside potassium dichromate oxidation-colorimetry method,and soil total nitrogen (STN) was detected by semimicro Kjeldahl method. [Result]SOC contents of different layers in rubber plantations soil at different age stages (including the CK pepper soil,the same as below) varied little,and the content of SOC in surface layer (0-15 cm) was higher,while the underlayer (45-60 cm) was lower than the average value; there was significant difference in SOC content among different kinds of soil,and the content was of 6.03-7.78 g/kg,tapping young trees (7 years) CK pepper mature age trees (30 years) prophase of young trees (2 years) tapping trees (16 years); there was no significant difference in SOC storage among different kinds of soil,and the storage was of 61.33-74.29 t/hm2,mature age trees (30 years) tapping young trees (7 years) prophase of young trees (2 years) CK pepper tapping trees (16 years); there was significant difference in STN content among rubber plantations soil at different age stages,the content was of 410.86-664.14 mg/kg2,CK pepper tapping young trees (7 years) prophase of young trees (2 years) mature age trees (30 years) tapping trees (16 years),and STN content of tapping trees (16 years) soil was extremely lowest; there was significant difference in C/N ratio among different kinds of soil,the ratio was of 10.94-14.47,and the ratio of tapping trees (16 years) mature age trees (30 years) tapping young trees (7 years) CK pepper prophase of young trees (2 years). [Conclusion]There wasn't unhealthy effect of rubber trees planted in tropical area on the content and storage of SOC,the content of STN and the ratio of C/N. there was no significant difference between rubber plantations and CK pepper soil,and the effects of rubber plantation on soil carbon-nitrogen was similar to that of other tropical crops (such as pepper).
基金National Natural Science Foundation of China (30100144) and by Scientific Committee of Shenyang City (1011501900).
文摘Dynamic quantitative assessment of soil organic C and N is an available approach to understand the exact impact of land management on soils fertility. In this study the biomass of plants and content of soil organic C and N were compared in four typical land use systems which were planted with Ryegrass (Lolium multiflorum Lam.), Bahiagrass (Paspalum notatum Flugge.), Citrus (Citrus reticulata Blanco.), and Masson pine (Pinus Massoniana Lamb.) during 10 years in south China. Although biomass of plants in these four land use systems was nearly at the same level in the former investigation, total biomass for Ryegrass (RG), Bahiagrass (BG) was 3.68 and 3.75 times higher than that for Citrus (CT), and 2.06 and 2.14 times higher than that for Masson pine (MP) over 10 years of cultivation, respectively. Especially, underground total biomass for both RG and BG was over 10 times larger than that for CT and MP, indicating that forage grasses was much more beneficial to increase organic C and N storage in soils than CT and MP. The change content of soil organic C and N mainly occurred within soil depth of the 0–40 cm. The increased content of soil organic carbon and nitrogen was for 1.5 t·hm?2 and 0.2 t·hm?2 in the soil with planting RG and BG, and was for 1.2 t·hm?2 and 0.02 t·hm?2 in the soil with planting CT. An average loss was for 0.4 t·hm?2 and 0.04 t·hm?2 in the soil with planting MP during 10-year period. Keywords Soil organic carbon - Soil organic nitrogen - Dynamic change - Land use - Quantitative assessment CLC number S153.61 Document code A Foundation item: This research was partly supported by National Natural Science Foundation of China (30100144), and by Scientific Committee of Shenyang City (1011501900).Biography: WANG Xiao-ju (1967-), mail, Ph.D. Researcher in Center for Environmental Science in Saitama. Saitama Prefecture 347 0115, Japan.Responsible editor: Zhu Hong
基金The research is funded by National Natural Science Foundation (40231016) and Canadian International Development Agency (CIDA).
文摘As the largest pool of terrestrial organic carbon, soils interact strongly with atmosphere composition, climate, and land change. Soil organic carbon dynamics in ecosystem plays a great role in global carbon cycle and global change. With development of mathematical models that simulate changes in soil organic carbon, there have been considerable advances in understanding soil organic carbon dynamics. This paper mainly reviewed the composition of soil organic matter and its influenced factors, and recommended some soil organic matter models worldwide. Based on the analyses of the developed results at home and abroad, it is suggested that future soil organic matter models should be developed toward based-process models, and not always empirical ones. The models are able to reveal their interaction between soil carbon systems, climate and land cover by technique and methods of GIS (Geographical Information System) and RS (Remote Sensing). These models should be developed at a global scale, in dynamically describing the spatial and temporal changes of soil organic matter cycle. Meanwhile, the further researches on models should be strengthen for providing theory basis and foundation in making policy of green house gas emission in China.
基金Supported by the Work Project of China Geological Survey(1212010911062)Open Foundation of Karst Dynamics Laboratory(kdl2008-10)+1 种基金Guangxi Zhuang Autonomous Region Innovation Project(0842008)National Natural Science Foundation(40872213)~~
文摘[Objective] The aim was to reveal changes of soil organic matter fraction and their corresponding carbon management indexes as affected by different land use types.[Method]Soil organic carbon,active soil organic carbon and soil carbon management index(CMI)of different land use types in Guilin Maocun karst area were studied.Sampling with field investigation and laboratory testing was carried out.Heavy potassium chromate method was adopted to determine soil organic matter.333 mmol/L KMnO4 oxidation method was used to determine active organic carbon.[Result]With active soil organic matter increasing,the differences of CMI between different land use types were bigger.The CMI value of different land uses was shrubforest paddy fielddry farmland.The statistical analysis showed that labile organic matter was related with major soil properties at a significant level.[Conclusion]Labile organic matter could be used to reveal the influence of different land use types on soil organic matter and carbon management index in karst area.
基金supported by the National Natural Science Foundation of China(Grant No.31570466)the National Basic Research Program of China(Grant no.2012CB416905)
文摘Forest soil carbon (C) is an important compo- nent of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To understand the effect of tree species on soil C cycling, we assessed total, labile, and recalcitrant SOC pools, SOC chemical composition by 13C nuclear magnetic resonance spectroscopy, and SOC mineralization in four monoculture plantations. Labile and recalcitrant SOC pools in surface (0-10 cm) and deep (40-60 cm) soils in the four forests contained similar content. In contrast, these SOC pools exhibited differences in the subsurface soil (from 10 to 20 cm and from 20 to 40 cm). The alkyl C and O-alkyl C intensities of SOC were higher in Schima superba and Michelia macclurei forests than in Cunninghamia lanceolata and Pinus massoniana forests. In surface soil, S. superba and M. macclurei forests exhibited higher SOC mineralization rates than did P. massoniana and C.lanceolata forests. The slope of the straight line between C60 and labile SOC was steeper than that between C60 and total SOC. Our results suggest that roots affected the composition of SOC pools. Labile SOC pools also affected SOC mineralization to a greater extent than total SOC pools.
基金Supported by the National Natural Science Foundation of China(31360320)~~
文摘Objective] The research aimed to study soil organic carbon and total ni-trogen distribution in oasis cotton farmland. [Method] With the oasis cotton field of Manas River Val ey in Tianshan Mountains as the research area and abandoned farmland as a control, the distribution characteristics of soil organic carbon and total nitrogen content in the cotton field of Manas River Val ey in the last 23 years were investigated by using geographic methods. [Result] Presenting vertical distribution, cotton soil organic carbon and total nitrogen content in Manas River Val ey de-creased with the increase of soil depth, and those in 0-30 cm soil layer was sig-nificantly higher than those in soil layer of below 30 cm, while organic carbon stor-age showed the trend of increase. Also in vertical distribution, soil organic carbon and total nitrogen decreased significantly with the increase of soil depth, and soil organic carbon content in abandoned farmland decreased month by month. Howev-er, cotton soil organic carbon storage firstly decreased and then increased in the oasis cotton field that in the early growth of cotton, soil organic carbon in the layers of 0-30 and 30-100 cm decreased to the lowest in the bloom stage, and then or-ganic carbon increased with the reproductive growth of cotton into the later stages. However, due to no input of plant litter in the abandoned farmland, the soil organic carbon storage decreased month by month. There were significantly differences be-tween oasis cotton field and abandoned farmland in organic carbon contents. [Con-clusion] The soil organic carbon content and total nitrogen content in oasis cotton field were significantly higher than those in the abandoned farmland. The soil organ-ic carbon storage increased in the layer of 0-30 cm, while there was no significant change of soil organic carbon and total nitrogen content in the layer of 30-100 cm, which was consistent with the previous study on the distribution characteristics of soil organic carbon and total nitrogen content profile.
基金Supported by Strategic Priority Research Program,CAS(XDA05050601-01-25)Basic Scientific Research Project of Central Science and Technology Institute(163002-2011013)Project of Danzhou Investigation&Experiment Station of Tropical Crops Ministry of Agriculture~~
文摘In this research,the contents of organic carbon in soil profiles in rubber forests in west of Hainan were measured and storage quantity of oganic carbon was estimated.The results indicated that contents of organic carbon in soils of ecosystem of rubber forests at different ages were 6.20-14.36 g/kg;organic carbon in soils of rubber forests reduced upon soil depth;the contents differed signigicantly in soils at 0-60 cm in rubber forest at 33 a,but differed little in soils in rubber forests at other ages;the contents were of significant differences in soils in rubber forests at different ages;organic carbon concentrated in soils at 0-30 cm;the storage quantities of organic carbon in rubber forests at 5,10,19 and 33 a were 76.85,74.48,81.74 and 85.31 t/hm^2.Climate,soil property,accumualtion and decomposition of fallen materials,forest age and management are dominant factors influencing accumulation of organic carbon in soils of rubber forest.
基金Project supported by the National Natural Science Foundation of China (Nos. 40621001 and 30390080)the Canadian International Development Agency (through the University of Toronto).
文摘Patterns of soil organic carbon (SOC) storage and density in various soil types or locations are the foundation for examining the role of soil in the global carbon cycle. An assessment of SOC storage and density patterns in China based on soil types as defined by Chinese Soil Taxonomy (CST) and the recently compiled digital 1:1000000 Soil Database of China was conducted to generate a rigorous database for the future study of SOC storage. First, SOC densities of 7 292 soil profiles were calculated and linked by soil type to polygons of a digital soil map using geographic information system resulting in a 1:1 000 000 SOC density distribution map of China. Further results showed that soils in China covered 9 281×103 km2 with a total SOC storage of 89.14 Gt and a mean SOC density 96.0 t ha-1. Among the 14 CST orders, Cambosols and Argosols constituted high percentage of China's total SOC storage, while Andosols, Vertosols, and Spodsols had a low percentage. As for SOC density, Histosols were the highest, while Primosols were the lowest. Specific patterns of SOC storage of various soil types at the CST suborder, group, and subgroup levels were also described. Results obtained from the study of SOC storage and density of all CST soil types would be not only useful for international comparative research, but also for more accurately estimating and monitoring of changes of SOC storage in China.
基金the National Key Basic Research Support Foundation of China (No. 2002CB111502), the NationalNatural Science Foundation of China (Nos. 40371074 and 40025106) and the China Postdoctoral Science Foundation(No. 2003033023).
文摘To probe the processes and mechanisms of soil organic carbon (SOC) changes during forest recovery, a 150-yearchronosequence study on SOC was conducted for various vegetation succession stages at the Ziwuling area, in the centralpart of the Loess Plateau, China. Results showed that during the 150 years of local vegetation rehabilitation SOC increasedsignificantly (P < 0.05) over time in the initial period of 55-59 years, but slightly decreased afterwards. Average SOCdensities for the 0-100 cm layer of farmland, grassland, shrubland and forest were 4.46, 5.05, 9.95, and 7.49 kg C m-3,respectively. The decrease in SOC from 60 to 150 years of abandonment implied that the soil carbon pool was a sink forCO2 before the shrubland stage and became a source in the later period. This change resulted from the spatially variedcomposition and structure of the vegetation. Vegetation recovery had a maximum effect on the surface (0-20 cm) SOCpool. It. was concluded that vegetation recovery on the Loess Plateau could result in significantly increased sequestrationof atmospheric CO2 in soil and vegetation, which was ecologically important for mitigating the increase of atmosphericconcentration of CO2 and for ameliorating the local eco-environment.
基金Project supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-413) the National Key Basic Research Support Foundation of China (No. G1999011801).
文摘Soil organic carbon (SOC) storage under different types of vegetations in China were estimated using measured data of 2 440 soil profiles to compare SOC density distribution between different estimates, to map the soil organic carbon stocks under different types of vegetation in China, and to analyze the relationships between soil organic carbon stocks and environmental variables using stepwise regression analyses. Soil organic carbon storage in China was estimated at 69.38 Gt (10 15 g). There was a big difference in SOC densities for various vegetation types, with SOC distribution closely related to climatic patterns in general. Stepwise regression analyses of SOC against environmental variables showed that SOC generally increased with increasing precipitation and elevation, while it decreased with increasing temperature.Furthermore, the important factor controlling SOC accumulation for forests was elevation, while for temperate steppes mean annual temperature dominated. The more specific the vegetation type used in the regression analysis, the greater was the effect of environmental variables on SOC. However, compared to native vegetation, cultivation activities in the croplands reduced the influence of environmental variables on SOC.
基金Financial supports are from the National Natural Science Foundation of China(41571298,41620104006)the Special Fund for Agro-scientific Research in the Public Interest,China(201203030,201303126)the National Key Technologies R&D Program of China(2012BAD14B04)
文摘The combined use of chemical and organic fertilizers is considered a good method to sustain high crop yield and enhance soil organic carbon (SOC), but it is still unclear when and to what extent chemical fertilizers could be replaced by organic fertilizers. We selected a long-term soil fertility experiment in Gongzhuling, Northeast China Plain to examine the temporal dynamics of crop yield and SOC in response to chemical nitrogen, phosphorus, and potassium (NPK) fertilizers and manure, applied both individually and in combination, over the course of three decades (1980-2010). We aimed to test 1) which fertilizer application is the best for increasing both maize yield and SOC in this region, and 2) whether chemical fertilizers can be replaced by manure to maintain high maize yield and enhance SOC, and if so, when this replacement should be implemented. We observed that NPK fertilizers induced a considerable increase in maize yield in the first 12 years after the initiation of the experiment, but manure addition did not. In the following years, the addition of both NPK fertilizers and manure led to an increase in maize yield. SOC increased considerably in treatments with manure but remained the same or even declined with NPK treatments. The increase in maize yield induced by NPK fertilizers alone declined greatly with increasing SOC, whereas the combination of NPK and manure resulted in high maize yield and a remarkable improvement in SOC stock. Based on these results we suggested that NPK fertilizers could be at least partially replaced by manure to sustain high maize yield after SOC stock has reached 41.96 Mg C ha^-1 in the Northeast China Plain and highly recommend the combined application of chemical fertilizers and manure (i.e., 60 Mg ha^-1).