期刊文献+
共找到429篇文章
< 1 2 22 >
每页显示 20 50 100
Analysis for Effects of Temperature Rise of PV Modules upon Driving Distance of Vehicle Integrated Photovoltaic Electric Vehicles
1
作者 Masafumi Yamaguchi Yasuyuki Ota +18 位作者 Taizo Masuda Christian Thiel Anastasios Tsakalidis Arnulf Jaeger-Waldau Kenji Araki Kensuke Nishioka Tatsuya Takamoto Takashi Nakado Kazumi Yamada Tsutomu Tanimoto Yosuke Tomita Yusuke Zushi Kenichi Okumura Takashi Mabuchi Akinori Satou Kyotaro Nakamura Ryo Ozaki Nobuaki Kojima Yoshio Ohshita 《Energy and Power Engineering》 2024年第4期131-150,共20页
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ... The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV. 展开更多
关键词 Vehicle Integrated photovoltaics (VIpv) VIpv-Powered Electric Vehicles Driving Distance pv modules solar Irradiation Temperature Rise Radiative Cooling
下载PDF
Forestvoltaics,Floatovoltaics and Building Applied Photovoltaics(BAPV)Potential for a University Campus
2
作者 Rittick Maity Muhammad Khairul Imran bin Ahmad Shuhaimi +1 位作者 Kumarasamy Sudhakar Amir Abdul Razak 《Energy Engineering》 EI 2024年第9期2331-2361,共31页
The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs ... The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs of slowing down,with solar photovoltaic(PV)panels being the primary technology for converting sunlight into electricity.Advancements are continuously being made to ensure cost-effectiveness,high-performing cells,extended lifespans,and minimal maintenance requirements.This study focuses on identifying suitable locations for implementing solar PVsystems at theUniversityMalaysia PahangAl SultanAbdullah(UMPSA),Pekan campus including buildings,water bodies,and forest areas.A combined technical and economic analysis is conducted using Helioscope for simulations and the Photovoltaic Geographic Information System(PVGIS)for economic considerations.Helioscope simulation examine case studies for PV installations in forested areas,lakes,and buildings.This approach provides comprehensive estimations of solar photovoltaic potential,annual cost savings,electricity costs,and greenhouse gas emission reductions.Based on land coverage percentages,Floatovoltaics have a large solar PV capacity of 32.3 Megawatts(MW);forest-based photovoltaics(Forestvoltaics)achieve maximum yearly savings of RM 37,268,550;and Building Applied Photovoltaics(BAPV)have the lowest CO2 emissions and net carbon dioxide reduction compared to other plant sizes.It also clarifies the purpose of using both software tools to achieve a comprehensive understanding of both technical and economic aspects. 展开更多
关键词 Helioscope solar photovoltaic pv GIS performance land coverage ECONOMICS
下载PDF
Study on Image Recognition Algorithm for Residual Snow and Ice on Photovoltaic Modules
3
作者 Yongcan Zhu JiawenWang +3 位作者 Ye Zhang Long Zhao Botao Jiang Xinbo Huang 《Energy Engineering》 EI 2024年第4期895-911,共17页
The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable ... The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply. 展开更多
关键词 photovoltaic(pv)module residual snow and ice snow detection feature extraction image processing
下载PDF
Performance Assessment of Motorized Solar Photovoltaic Louvers System Using PVSYST Software
4
作者 Hussein Safwat Hasan Hasan Humor Hwang 《Electrical Science & Engineering》 2021年第2期30-39,共10页
In the realm of technological market penetration of solar photovoltaic louvers(PVL)addressing environmental difficulties and the industrial revolution,a new avenue of renewable energy is introduced.Moreover,solar ener... In the realm of technological market penetration of solar photovoltaic louvers(PVL)addressing environmental difficulties and the industrial revolution,a new avenue of renewable energy is introduced.Moreover,solar energy exploitation through building façades was addressed through motorized solar photovoltaic louvers(MPVL).On the other hand,proponents exalted the benefits of MPVL overlooking the typical analyses.In this communication,we attempted to perform a thorough industrial system evaluation of the MPVL.This communication presents a methodology to validate the industrial claims about MPVL devices and their economic efficiency and the insight on how geographical location influences their utilization and augment their potential benefits.This task is carried out by evaluating the extent of solar energy that can be harvested using solar photovoltaic system(PVSYST)software and investigating whether existing product claims are associated with MPVL are feasible in different locations.The performance and operational losses(temperature,internal network,power electronics)were evaluated.To design and assess the performance of different configurations based on the geographical analogy,simulation tools were successfully carried out based on different topographical locations.Based on these findings,various factors affect the employment of MPVL such as geographical and weather conditions,solar irradiation,and installation efficiency.tt is assumed that we successfully shed light and provided insights into the complexity associated with MPVL. 展开更多
关键词 Motorized solar photovoltaic louvers(MpvL) photovoltaic(pv) pvsyst software Direct solar radiation Parametric louver design
下载PDF
Photovoltaic Cells and Modules towards Terawatt Era 被引量:1
5
作者 Vitezslav Benda 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第4期351-357,共7页
Progresses in photovoltaic technologies over the past years are evident from the lower costs, the rising efficiency, to the great improvements in system reliability and yield. Cumulative installed power yearly growths... Progresses in photovoltaic technologies over the past years are evident from the lower costs, the rising efficiency, to the great improvements in system reliability and yield. Cumulative installed power yearly growths were on an average more than 40% in the period from 2007 to 2016 and in 2016, the global cumulative photovoltaic power installed has reached 320 GWp. The level 0.5 TWp could be reached before 2020. The production processes in the solar industry still have great potential for optimization both wafer based and thin film technologies. Trends following from the present technology levels are discussed, also taking into account other parts of photovoltaic systems that influence the cost of electrical energy produced. Present developments in the three generations of photovoltaic modules are discussed along with the criteria for the selection of appropriate photovoltaic module manufacturing technologies. The wafer based crystalline silicon(csilicon) technologies have the role of workhorse of present photovoltaic power generation, representing more than 90% of total module production. Further technology improvements have to be implemented without significantly increasing costs per unit, despite the necessarily more complex manufacturing processes involved. The tandem of c-silicon and thin film cells is very promising. Durability may be a limiting factor of this technology due to the dependence of the produced electricity cost on the module service time. 展开更多
关键词 Crystalline silicon(c-silicon) cells photovoltaic cells photovoltaic(pv) tandem cells thin film modules
下载PDF
Modeling of a Photovoltaic Module Considering the Solar Energy Available from Horizontal Surfaces over Kuwait Area
6
作者 F. Q. Al-Enezi J. K. Sykulski 《Journal of Electronic Science and Technology》 CAS 2012年第2期173-180,共8页
The paper identifies and analyzes the geographical and temporal variability of solar energy in Kuwait. The fundamental solar trigonometric model has been modified to estimate daily and hourly solar radiation on horizo... The paper identifies and analyzes the geographical and temporal variability of solar energy in Kuwait. The fundamental solar trigonometric model has been modified to estimate daily and hourly solar radiation on horizontal surfaces on the basis of the more readily available meteorological data. The results demonstrate that Kuwait has an abundance of solar energy capability. An overview of the production and consumption of electrical energy, installed capacity, and peak loads in Kuwait is also presented. Finally, it is shown how the power produced from the photovoitaic (PV) cells depends on the solar radiation. The proposed PV module is made up of a combination of series and parallel cells to increase power, while the IoV characteristic and output power of the module each month may be obtained from the model. 展开更多
关键词 Extra-terrestrial insolation hour angle meteorological data peak load photovoltaic module solar radiation solar time.
下载PDF
Sodium Diffuses from Glass Substrates through P1 Lines and Passivates Defects in Perovskite Solar Modules
7
作者 Felix Utama Kosasih Francesco Di Giacomo +13 位作者 Jordi Ferrer Orri Kexue Li Elizabeth M.Tennyson Weiwei Li Fabio Matteocci Gunnar Kusch Narges Yaghoobi Nia Rachel A.Oliver Judith L.MacManus-Driscoll Katie L.Moore Samuel D.Stranks Aldo Di Carlo Giorgio Divitini Caterina Ducati 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期393-401,共9页
Most thin-film photovoltaic modules are constructed on soda-lime glass(SLG)substrates containing alkali oxides,such as Na_(2)O.Na may diffuse from SLG into a module's active layers through P1 lines,an area between... Most thin-film photovoltaic modules are constructed on soda-lime glass(SLG)substrates containing alkali oxides,such as Na_(2)O.Na may diffuse from SLG into a module's active layers through P1 lines,an area between a module's constituent cells where the substrate-side charge transport layer(CTL)is in direct contact with SLG.Na diffusion from SLG is known to cause several important effects inⅡ-Ⅵand chalcogenide solar modules,but it has not been studied in perovskite solar modules(PSMs).In this work,we use complementary microscopy and spectroscopy techniques to show that Na diffusion occurs in the fabrication process of PSMs.Na diffuses vertically inside P1 lines and then laterally from P1 lines into the active area for up to 360 pm.We propose that this process is driven by the high temperatures the devices are exposed to during CTL and perovskite annealing.The diffused Na preferentially binds with Br,forming Br-poor,l-rich perovskite and a species rich in Na and Br(Na-Br)close to P1 lines.Na-Br passivates defect sites,reducing non-radiative recombination in the perovskite and boosting its luminescence by up to 5×.Na-Br is observed to be stable after 12 weeks of device storage,suggesting long-lasting effects of Na diffusion.Our results not only point to a potential avenue to increase PSM performance but also highlight the possibility of unabated Na diffusion throughout a module's lifetime,especially if accelerated by the electric field and elevated temperatures achievable during device operation. 展开更多
关键词 defect passivation monolithic interconnection perovskite solar modules soda-lime glass sodium diffusion solar cells thin-film photovoltaics
下载PDF
Performance Analysis of a Rooftop Hybrid Connected Solar PV System
8
作者 Hasan Falih Ahmed J.Hamed Abdul Hadi N.Khalifa 《Energy Engineering》 EI 2022年第4期1729-1744,共16页
In the present work,a 5-kW hybrid PV solar system was installed on the roof of a house in Diyala,Iraq(33.77°N,45.14°E elevation 44 m).The system consists of two strings,where each string consists of nine pol... In the present work,a 5-kW hybrid PV solar system was installed on the roof of a house in Diyala,Iraq(33.77°N,45.14°E elevation 44 m).The system consists of two strings,where each string consists of nine polycrystalline PV modules with 355 Wp in series,and the two strings are in parallel.The energy storage system(ESS)consists of two parallel strings,each with four 12 V and 150 Ah tubular deep cycle batteries in series.A hybrid inverter of 5 kW rated power was operated in different modes.The results showed that May’s monthly energy consumption was about 822.9 and 1085 kWh,respectively.The percentage distribution of the DC energy produced was about 1%system energy losses,27.9%was used to charge the ESS,34.3%was used to feed the grid,and the remaining 37.64%was used to share the load.The energy percentage sharing the load was 16.67%from ESS,33.33%from the PV system,and 50%purchased.The average daily reference,array,and final yields were 6.07,4.327,and 3.991 h/day,respectively.The average array and load efficiencies were 12.3%and 92.24%,with the performance ratio at 65.4%. 展开更多
关键词 solar energy pv system final yield photovoltaic installations performance ratio hybrid pv system
下载PDF
Solar PV Energy Generation Map of Karnataka, India
9
作者 Jaymin Gajjar Sagar Agravat T. Harinarayana 《Smart Grid and Renewable Energy》 2015年第12期333-343,共11页
A massive plan has been drawn by the Karnataka state of India to initiate several solar power plants at different locations. In view of this, it is of great help to have reliable estimation on solar PV energy generati... A massive plan has been drawn by the Karnataka state of India to initiate several solar power plants at different locations. In view of this, it is of great help to have reliable estimation on solar PV energy generation. Four solar PV power plants in Karnataka state are fully operational installed by Karnataka Power Corporation Limited (KPCL). They are located at Kolar, Belgaum and Raichur with 3 MW capacity each and at Mandya with 5 MW capacity. In the present study, using ground mounted weather station data solar power generation has been estimated and compared with actual generation for two consecutive years of 2012 and 2013 for one location initially, namely 3 MW Kolar Solar PV Plant. The procedure is repeated for rest of the plants. The simulated results have been corrected with ground mounted weather data. After such corrections, the simulated results have been compared with the actual energy generation of the four plants. Results showed a close match with a small deviation of about 5%. The model then applied throughout the state for every 0.25 degree station intervals in a grid manner. The annual energy generation obtained for the state varies from 1.53 to 1.73 MUs/MW. Central and south eastern part of the state are found to yield significantly higher solar power generation as compared to the northern part and south western part of Karnataka. Interestingly, north western part of Kodagu district has shown the least potential of 1.53 MUs/MW as compared to other parts. This can be attributed mainly due to low irradiation and high temperature condition at this location. The energy generated map from our study will be useful and helpful for both solar developers and decision makers of Karnataka state. 展开更多
关键词 solar Energy Generation MAP solar photovoltaic (pv) Plant KARNATAKA pvSyst Meteonorm KPCL Kolar Belgaum Raichur Mandya
下载PDF
Performance Comparison of Photovoltaic Modules under Low Sunlight
10
作者 A. Cigdem Besed Ertan Arikan Alborz Ebrahimi 《Journal of Electrical Engineering》 2017年第3期128-136,共9页
The DC energy produced by photovoltaic (PV) modules can change depending on the cell type, module components and module technology. The cell efficiency, sensitivity of the cell to light, recombination losses and how... The DC energy produced by photovoltaic (PV) modules can change depending on the cell type, module components and module technology. The cell efficiency, sensitivity of the cell to light, recombination losses and how much the light reflects within the cell will affect the amount of produced energy. In addition, the energy produced will change depending on what wavelength light and how much can be transmitted through the front glass and encapsulant and how much light is reflected from back encapsulant and back cover. The front glass transmissivity, patterned surface and existence of ARC (anti-reflective coating) are all very important. In this research project, 14 modules were tested: 4 modules Glass/Glass (Perc Mono Cell), 4 modules Glass/Ceramic (Perc Mono Cell), 2 modules Glass/Glass bifacial (HIT Cell), 1 module Standard (Framed, Mono-n type Cell), 2 modules Standard (Framed, Poly Cell), 1 module Standard (Framed, Perc Mono Cell). This paper compares the normalized Wh/Wp ratios of the different modules under low irradiance (morning and afternoon light) and analyzes and investigates the obtained results as per the cell type used, module components and module technology. 展开更多
关键词 Bifacial solar panels heterojunction with HIT (intrinsic thin layer) MONO poly glass/glass photovoltaic module glass/ceramic photovoltaic module.
下载PDF
Characterization of Simulator and Relative Spectral Responsivity Measurements of Photovoltaic Modules with Band Pass Filter Technique
11
作者 Meric Seval Bazkir Ozcan 《Open Journal of Energy Efficiency》 2022年第3期71-87,共17页
One of the most important parameter used for the evaluation of the energy rating of PV modules is, their spectral responsivities which are the measure of electrical performance parameters per incident solar radiation.... One of the most important parameter used for the evaluation of the energy rating of PV modules is, their spectral responsivities which are the measure of electrical performance parameters per incident solar radiation. In this work, spectral responsivity measurements of a mono-crystalline, a poly-crystalline, a CIGS thin film and a bifacial module were measured using xenon-based flash type solar simulator system and a set of band pass filters. For the comprehensive characterization of parameters that may influence the spectral responsivity measurements, initially the simulator system was characterized both optically and thermally according to the IEC60904-9 and IEC60891 standard requirements. The optical characterizations in terms of spectral match, spatial non-uniformity and temporal instability indicate that the measured results (~3.0%, ~0.30% and ~0.20%) according to the IEC 60904-9 standard’s classification requirements correspond to A+A+A+ classes. Moreover, thermal characterizations in terms of the temperature uniformity show that over the 2 × 2 m area temperature uniformity of simulator system’s light distribution (1&ordm;C) is almost two times better than the IEC 60891 standard requirements (±2&ordm;C). Next, PV modules were electrically stabilized according to the IEC 61215-2 standard requirement’s (stability test) to reduce the fluctuations in their electrical performance parameters. Then, using the band pass filters, temperature controlled xenon-based solar simulator system and a reference PV module of the spectral responsivity of PV modules were measured from 400 nm to 1100 nm with 50 nm steps with relative uncertainty of 10<sup>-3</sup> level. 展开更多
关键词 photovoltaic modules RESPONSIVITY solar Simulator Band Pass Filters
下载PDF
Electro-Optical Model of Soiling Effects on Photovoltaic Panels and Performance Implications
12
作者 A.Asbayou G.P.Smestad +4 位作者 I.Ismail A.Soussi A.Elfanaoui L.Bouhouch A.Ihlal 《Energy Engineering》 EI 2024年第2期243-258,共16页
In this paper,a detailed model of a photovoltaic(PV)panel is used to study the accumulation of dust on solar panels.The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass,as ... In this paper,a detailed model of a photovoltaic(PV)panel is used to study the accumulation of dust on solar panels.The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass,as it increases the reflection of light by particles.This phenomenon,commonly known as the“soiling effect”,presents a significant challenge to PV systems on a global scale.Two basic models of the equivalent circuits of a solar cell can be found,namely the single-diode model and the two-diode models.The limitation of efficiency data in manufacturers’datasheets has encouraged us to develop an equivalent electrical model that is efficient under dust conditions,integrated with optical transmittance considerations to investigate the soiling effect.The proposed approach is based on the use of experimental current-voltage(I-V)characteristics with simulated data using MATLAB/Simulink.Our research outcomes underscores the feasibility of accurately quantifying the reduction in energy production resulting from soiling by assessing the optical transmittance of accumulated dust on the surface of PV glass. 展开更多
关键词 photovoltaics solar energy optical transmittance SOILING DUST pv performance
下载PDF
Analysis of the Effect of Temperature and Relative Humidity on the Reliability of a Photovoltaic Module
13
作者 Abdoulaye Kabré Dominique Bonkoungou Zacharie Koalaga 《Advances in Materials Physics and Chemistry》 CAS 2024年第8期165-177,共13页
Photovoltaic energy occupies a significant place in the renewable energy market, with photovoltaic (PV) modules playing a vital role in converting solar energy into electricity. However, their effectiveness is likely ... Photovoltaic energy occupies a significant place in the renewable energy market, with photovoltaic (PV) modules playing a vital role in converting solar energy into electricity. However, their effectiveness is likely to be affected by variations in environmental conditions, including temperature and relative humidity. The study examines the impact of these major climatic factors on the reliability of PV modules, aiming to provide crucial information for optimizing and managing these systems under varying conditions. Inspired by Weibull’s law to model the lifespan of components, we proposed a mathematical model integrating a correction factor linked to temperature and relative humidity. Using this approach, simulations in Matlab Simulink reveal that increasing temperature and relative humidity have an adverse impact on the reliability and lifespan of PV modules, with a more pronounced impact on temperature. The results highlight the importance of considering these environmental parameters in the management and optimization of photovoltaic systems to ensure their long-term efficiency. 展开更多
关键词 solar Energy pv Module LIFESPAN RELIABILITY EFFICIENCY
下载PDF
Comprehensive Examination of Solar Panel Design: A Focus on Thermal Dynamics
14
作者 Kajal Sheth Dhvanil Patel 《Smart Grid and Renewable Energy》 2024年第1期15-33,共19页
In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is con... In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is constrained by certain limitations. Notably, the efficiency of solar PV modules on the ground peaks at a maximum of 25%, and there are concerns regarding their long-term reliability, with an expected lifespan of approximately 25 years without failures. This study focuses on analyzing the thermal efficiency of PV Modules. We have investigated the temperature profile of PV Modules under varying environmental conditions, such as air velocity and ambient temperature, utilizing Computational Fluid Dynamics (CFD). This analysis is crucial as the efficiency of PV Modules is significantly impacted by changes in the temperature differential relative to the environment. Furthermore, the study highlights the effect of airflow over solar panels on their temperature. It is found that a decrease in the temperature of the PV Module increases Open Circuit Voltage, underlining the importance of thermal management in optimizing solar panel performance. 展开更多
关键词 solar photovoltaic (pv) modules Thermal Efficiency Analysis Open Circuit Voltage Computational Fluid Dynamics (CFD) solar Panel Temperature Profile
下载PDF
太阳能光伏光热PV/T组件在建筑设计中的应用
15
作者 杨林艳 柴云娥 +3 位作者 顾金寿 魏巍 刘孝敏 刘叶瑞 《绿色建筑》 CAS 2024年第3期158-162,167,共6页
建筑领域“双碳”目标的提出,使得降低建筑能耗成为目前亟需解决的问题。可再生能源同建筑领域的有机结合被认为是解决建筑能耗的重要环节。通过对太阳能光伏光热技术的发展进行总结,研究太阳能光伏光热技术在建筑领域中的设计方法,提... 建筑领域“双碳”目标的提出,使得降低建筑能耗成为目前亟需解决的问题。可再生能源同建筑领域的有机结合被认为是解决建筑能耗的重要环节。通过对太阳能光伏光热技术的发展进行总结,研究太阳能光伏光热技术在建筑领域中的设计方法,提出了对未来光伏光热建筑一体化的设计思考,为以后太阳能光伏光热PV/T技术产业的发展提供参考。 展开更多
关键词 太阳能 光伏光热 pv/T 建筑能耗
下载PDF
PV Capacity Evaluation Using ASTM E2848: Techniques for Accuracy and Reliability in Bifacial Systems
16
作者 Gautam Swami Kajal Sheth Dhvanil Patel 《Smart Grid and Renewable Energy》 2024年第9期201-216,共16页
A variety of test methodologies are commonly used to assess if a photovoltaic system can perform in line with expectations generated by a computer simulation. One of the commonly used methodologies across the PV indus... A variety of test methodologies are commonly used to assess if a photovoltaic system can perform in line with expectations generated by a computer simulation. One of the commonly used methodologies across the PV industry is an ASTM E2848. ASTM E2848-13, 2023 test method provides measurement and analysis procedures for determining the capacity of a specific photovoltaic system built in a particular place and in operation under natural sunlight. This test method is mainly used for acceptance testing of newly installed photovoltaic systems, reporting of DC or AC system performance, and monitoring of photovoltaic system performance. The purpose of the PV Capacity Test and modeled energy test is to verify that the integrated system formed from all components of the PV Project has a production capacity that achieves the Guaranteed Capacity and the Guaranteed modeled AEP under measured weather conditions that occur when each PV Capacity Test is conducted. In this paper, we will be discussing ASTM E2848 PV Capacity test plan purpose and scope, methodology, Selection of reporting conditions (RC), data requirements, calculation of results, reporting, challenges, acceptance criteria on pass/fail test results, Cure period, and Sole remedy for EPC contractors for bifacial irradiance. 展开更多
关键词 photovoltaic System Capacity ASTM E2848 Bifacial pv modules pv Capacity Testing pvSyst Simulation solar Energy Performance Regression Modeling
下载PDF
基于PVLIB的光伏组件串联数量计算条件及方法分析
17
作者 邹海青 何志锋 王攀 《太阳能》 2024年第9期91-96,共6页
为得到更为高效且合理的光伏组件串联数量的计算条件和计算方法,选取位于不同纬度、不同气候类型的119个拟定项目地点,基于PVLIB和NASA的气象数据获取119个拟定项目地点的20年逐小时气象数据,对采用不同计算条件时得到的光伏组件开路电... 为得到更为高效且合理的光伏组件串联数量的计算条件和计算方法,选取位于不同纬度、不同气候类型的119个拟定项目地点,基于PVLIB和NASA的气象数据获取119个拟定项目地点的20年逐小时气象数据,对采用不同计算条件时得到的光伏组件开路电压及其对应的光伏组件串联数量进行了分析。分析结果显示:基于200 W/m^(2)太阳辐照度及历史最低气温计算得到的光伏组件串联数量与基于多年逐时气象数据计算得到的光伏组件串联数量结果相近,且计算方法较为简便,不需要长序列逐时气象数据,可用于光伏电站设计中光伏组件串联数的计算条件。 展开更多
关键词 光伏电站 光伏组件 光伏组串 开路电压 pvLIB 太阳辐照度
下载PDF
新型PV/T太阳能利用复合系统的实验研究 被引量:27
18
作者 李光明 刘祖明 +3 位作者 李景天 廖华 朱勋梦 张卫东 《中国电机工程学报》 EI CSCD 北大核心 2013年第17期83-89,16,共7页
为提高PV/T系统太阳能利用率,同时获得可利用的热水和电力,将铝合金背板型单晶硅光伏组件和自行设计制作的不锈钢扁盒式集热板相结合,用导热硅胶加以粘接制成新型光伏光热一体化(PV/T)复合系统,该系统实现了光伏组件与集热板之间良好的... 为提高PV/T系统太阳能利用率,同时获得可利用的热水和电力,将铝合金背板型单晶硅光伏组件和自行设计制作的不锈钢扁盒式集热板相结合,用导热硅胶加以粘接制成新型光伏光热一体化(PV/T)复合系统,该系统实现了光伏组件与集热板之间良好的粘接性、绝缘性和热传导,并在昆明地区对系统进行测试,分析了系统在不同水箱水容量及不同天气工况下运行的光电光热性能。结果表明,系统在75kg水箱水容量(m)晴天工况下运行效率更高,系统的平均电效率、热效率、综合效率及综合性能效率分别在14%、37%、51%、70.72%左右,与系统在50kg水箱水容量晴天或75kg水箱水容量多云工况下运行相比,综合性能效率约提高了11.86%或2.09%。与独立的光热或光伏系统相比,具有占地面积小、太阳能利用率高、更经济等优势。 展开更多
关键词 光伏光热一体化(pv T) 金属背板光伏组件 不锈钢扁盒式集热板 自然循环 综合性能效率
下载PDF
多功能太阳能PV/T集热器的光电/光热性能研究 被引量:13
19
作者 郭超 季杰 +1 位作者 孙炜 王艳秋 《太阳能学报》 EI CAS CSCD 北大核心 2017年第2期372-377,共6页
提出一种多功能太阳能PV/T集热器(tri-functional PV/T solar collector),将加热空气和加热水2种功能结合,从而实现PV/T集热器全年的高效利用,满足不同的能量需求。该文搭建2套实验平台对于2种工作模式的光电光热性能进行对比实验研究,... 提出一种多功能太阳能PV/T集热器(tri-functional PV/T solar collector),将加热空气和加热水2种功能结合,从而实现PV/T集热器全年的高效利用,满足不同的能量需求。该文搭建2套实验平台对于2种工作模式的光电光热性能进行对比实验研究,并对不同空气流量和进口温度下的PV/T集热器光电光热性能进行分析。结果表明,此多功能PV/T集热器在2种工作模式下均可实现太阳能高效利用。 展开更多
关键词 太阳能 光电光热 空气集热 水集热
下载PDF
一种新型全铝扁盒式PV/T热水系统 被引量:50
20
作者 季杰 陆剑平 +2 位作者 何伟 周天泰 裴刚 《太阳能学报》 EI CAS CSCD 北大核心 2006年第8期765-773,共9页
将单晶硅光伏电池与全铝扁盒式太阳能热水器集热板通过特殊工艺粘结起来,制成了一套自然循环式光伏光热一体化(PV/T)系统,在利用太阳能发电的同时提供热水。于04年7月-10月在合肥地区进行了室外实验,测试并讨论了该系统以不同水量和不... 将单晶硅光伏电池与全铝扁盒式太阳能热水器集热板通过特殊工艺粘结起来,制成了一套自然循环式光伏光热一体化(PV/T)系统,在利用太阳能发电的同时提供热水。于04年7月-10月在合肥地区进行了室外实验,测试并讨论了该系统以不同水量和不同初始水温运行时的光电光热性能。结果表明,当m/Ac>80kg/m2时,这种PV/T热水系统的发电效率在10.15%左右,热效率在50%左右,光电光热总效率可以达到60%左右,光电光热综合性能效率可以达到70%左右。相对于单纯的光伏系统或自然循环式太阳能热水系统,这种PV/T热水系统具有占地面积小、综合效率高等优点。 展开更多
关键词 光伏光热一体化(pv/T) 全铝扁盒式太阳能集热板 自然循环式太阳能热水系统 单位有效吸热面积产热水量(m/Ac) 光伏电池覆盖率 典型光电光热总效率 典型光电光热综合性能效率
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部