A novel type of reduced graphene oxide(rGO)modified melamine sponges(rGS)filling with paraffin(rGS-pf)is developed for efficient solar-thermal conversion and heat management.The microstructures,filling and holding cap...A novel type of reduced graphene oxide(rGO)modified melamine sponges(rGS)filling with paraffin(rGS-pf)is developed for efficient solar-thermal conversion and heat management.The microstructures,filling and holding capacity of paraffin in porous rGS,solar-thermal energy conversion and energy harvesting efficiency of the prepared rGS-pf have been investigated systematically.The content of rGO nanosheets coated on the skeletons of rGS-pf is only 0.11%,while the loading content of paraffin in the rGS-pf is as high as 97.53%.Based on the solar-thermal conversion property of rGO nanosheets in the rGS-pf and the heat storage ability of paraffin in the rGS-pf,the proposed rGS-pf provides excellent performance for heat management.The efficiency of solar-thermal conversion could reach up to 92.5%.The thermo-regulation provided by the proposed rGS-pf is real-time,repeatable and long-term stable.The results in this study provide valuable guidance for developing functional materials for efficient solarthermal conversion and heat management.展开更多
Because of the randomness of wind power and photovoltaic(PV)output of new energy bases,the problem of peak regulation capability and voltage stability of ultra-high voltage direct current(UHVDC)transmission lines,we p...Because of the randomness of wind power and photovoltaic(PV)output of new energy bases,the problem of peak regulation capability and voltage stability of ultra-high voltage direct current(UHVDC)transmission lines,we proposed an optimum allocation method of installed capacity of the solar-thermal power station based on chance constrained programming in this work.Firstly,we established the uncertainty model of wind power and PV based on the chance constrained planning theory.Then we used the K-medoids clusteringmethod to cluster the scenarios considering the actual operation scenarios throughout the year.Secondly,we established the optimal configuration model based on the objective function of the strongest transient voltage stability and the lowest overall cost of operation.Finally,by quantitative analysis of actual wind power and photovoltaic new energy base,this work verified the feasibility of the proposed method.As a result of the simulations,we found that using the optimal configuration method of solar-thermal power stations could ensure an accurate allocation of installed capacity.When the installed capacity of the solar-thermal power station is 1×106 kW,the transient voltage recovery index(TVRI)is 0.359,which has a strong voltage support capacity for the system.Based on the results of this work,the optimal configuration of the installed capacity of the solar-thermal power plant can improve peak shaving performance,transient voltage support capability,and new energy consumption while satisfying the Direct Current(DC)outgoing transmission premise.展开更多
A hybrid solar collector was designed to investigate the effects of combining two different solar collector techniques on the overall collector’s effectiveness. While most solar collectors focus only on one solar col...A hybrid solar collector was designed to investigate the effects of combining two different solar collector techniques on the overall collector’s effectiveness. While most solar collectors focus only on one solar collection method, the small hybrid system uses a flat plate collector in conjunction with five evacuated tubes to absorb the most energy possible from both direct and diffuse solar radiation. Data was collected over four months while the system operated at different flow rates and with various levels of available insolation from the sun to evaluate the performance of the solar collector. To understand the relative contribution of the flat plate collector and the evacuated tubes, temperature differences across each part of the system were measured. The results indicate the average first law efficiency of the hybrid system is 43.3%, significantly higher than the performance of the flat plate alone. An exergy analysis was performed for this system to assess the performance of the flat plate system by itself. Results of the second law analysis were comparable to the exergetic efficiencies of other experimental collectors, around 4%. Though the efficiencies were in the expected range, they reveal that further improvements to the system are possible.展开更多
The thermal emittance of Cr film, as an IR reflector, was investigated for the use in SSAC. The Cr thin films with different thicknesses were deposited on silicon wafers, optical quartz and stainless steel substrates ...The thermal emittance of Cr film, as an IR reflector, was investigated for the use in SSAC. The Cr thin films with different thicknesses were deposited on silicon wafers, optical quartz and stainless steel substrates by cathodic arc ion plating technology as a metallic IR reflector layer in SSAC. The thickness of Cr thin films was optimized to achieve the minimum thermal emittance. The effects of structural, microstructural, optical, surface and cross-sectional morphological properties of Cr thin films were investigated on the emittance. An optimal thickness about 450 nm of the Cr thin film for the lowest total thermal emittance of 0.05 was obtained. The experimental results suggested that the Cr metallic thin film with optimal thickness could be used as an effective infrared reflector for the development of SSAC structure.展开更多
Catalytic CoFe_(2)O_(4) and solar-thermal carbon nanotube decorated bamboo fabrics(CCBF)are fabricated for integrating efficient solar steam generation from wastewater with catalytic degradation of its organic con-tam...Catalytic CoFe_(2)O_(4) and solar-thermal carbon nanotube decorated bamboo fabrics(CCBF)are fabricated for integrating efficient solar steam generation from wastewater with catalytic degradation of its organic con-taminants.Thanks to the numerous porous channels and polar groups of bamboo fabric and the efficient solar-thermal energy conversion of black carbon nanotubes,the porous and hydrophilic CCBF exhibits fast upward transport of water,efficient solar light absorption,and high solar-thermal energy conversion effi-ciency.The decorated CoFe_(2)O_(4) not only enhances the solar-thermal energy conversion efficiency of CCBF but also activates potassium peroxymonosulfate to generate abundant highly active species for catalytic degradation of bisphenol A(BPA).Furthermore,folding the CCBF into a peak-like 3D evaporator can en-hance solar energy utilization,and gain environmental energy for promoting solar-thermal water evapo-ration and catalytic degradation performances.The 3D CCBF evaporator achieves a water evaporation rate of 2.72 kg m^(-2) h^(-1) under 1-sun irradiation.Meanwhile,100%of the BPA in the seawater can be degraded within 10 min.An exceptional high purification efficiency of 27.72 kg m^(-2) h^(-1) is achieved with the 3D evaporator during a long-term treatment of BPA-containing seawater under 1-sun irradiation.This work demonstrates efficient purification of seawater/wastewater with both metal ions and organic pollutants by simultaneous solar-thermal evaporation of water and catalytic degradation of organic pollutants.展开更多
Graphene-based phase change composites hold significant potential for solar energy utilization,but their poor thermal conductivity hinders their practical applications.In this work,an air-dried graphene skele-ton(AGS)...Graphene-based phase change composites hold significant potential for solar energy utilization,but their poor thermal conductivity hinders their practical applications.In this work,an air-dried graphene skele-ton(AGS)with excellent thermal conductivity enhancement efficiency was constructed by the ice tem-plating method and syneresis,and the air-dried graphene phase change composite(AGP)was subse-quently obtained through vacuum-impregnating n-Docosane(C22)into AGS.The syneresis effectively re-duced the phonon scattering between graphene sheets within AGS and increased the density of AGS to 0.1701 g/cm3.Therefore,with a graphene skeleton loading of 23.82 wt.%,AGP exhibited excellent thermal conductivity of 9.867 W/(m K),outstanding electrical conductivity of 68.08 S/cm,and remarkable shape stability.Additionally,AGP demonstrated a melting enthalpy of 188.5 J/g and an outstanding solar-thermal conversion efficiency of 93.98%,showing enormous potential for the utilization of solar energy.展开更多
Multifunctional phase change composites are in great demand for all kinds of industrial technologies and applications,which have both superior latent heat capacity and excellent solar-thermal conversion capability.In ...Multifunctional phase change composites are in great demand for all kinds of industrial technologies and applications,which have both superior latent heat capacity and excellent solar-thermal conversion capability.In this research,biomimetic phase change composites are made by inspired by natural systems,successfully getting the high thermal conductivity of carbon foam and magnetism of composites together,to establish a novel solar-thermal energy storage method.The morphology and the thermal characteristics of biomimetic phase change composites have been characterized.The results showed that the maximum storage efficiency of the biomimetic phase change materials increased by 56.3%compared to that of the based materials,and it can further be improved by the application of magnetic field.Meanwhile the heat transfer process of solarthermal conversion and energy storage in biomimetic porous structure under the external physical fields has been explained by simulation.Thus,the magnetic field-induced method applied in this research has better solar-thermal energy storage characteristics within a porous structure by dynamically controlling the magnetism,which has potential uses for various sustainable applications,including waste-heat recovery,energy conservation in building,and solar-thermal energy storage.展开更多
As cheap and renewable sources,the exploitation of biomass resources was of great value in phase change energy storage.In this study,hemp stems were converted into biochars with three-dimensional multi-level anisotrop...As cheap and renewable sources,the exploitation of biomass resources was of great value in phase change energy storage.In this study,hemp stems were converted into biochars with three-dimensional multi-level anisotropic pores through a temperature-controlled charring process,which were used as supports for polyethylene glycol(PEG6000)to form shape-stable composite phase change materials(ss-CPCMs).It is shown that the ss-CPCMs using anisotropic hemp-stem-derived biochar obtained at a carbonization temperature of 900℃as a support has high PEG6000 loading rate(88.62wt%),large latent heat(170.44 J/g)and favorable thermal stability owning to its high surface area and hierarchical pores.The biochar-based ss-CPCM also has good light absorption ability with a maximum solar-thermal conversion efficiency of 97.70%.In addition,the different thermal conductivities in the transverse and longitudinal directions of ss-CPCMs reflect the unique anisotropic structure.This work can not only improve the high-value utilization of biochars,but also provide the ss-CPCMs with excellent performance for solar-thermal conversion and storage systems.展开更多
基金support from the National Natural Science Foundation of China(22022810)the Program for Changjiang Scholars and Innovative Research Team in University(IRT15R48)Sichuan University(2020SCUNG112).
文摘A novel type of reduced graphene oxide(rGO)modified melamine sponges(rGS)filling with paraffin(rGS-pf)is developed for efficient solar-thermal conversion and heat management.The microstructures,filling and holding capacity of paraffin in porous rGS,solar-thermal energy conversion and energy harvesting efficiency of the prepared rGS-pf have been investigated systematically.The content of rGO nanosheets coated on the skeletons of rGS-pf is only 0.11%,while the loading content of paraffin in the rGS-pf is as high as 97.53%.Based on the solar-thermal conversion property of rGO nanosheets in the rGS-pf and the heat storage ability of paraffin in the rGS-pf,the proposed rGS-pf provides excellent performance for heat management.The efficiency of solar-thermal conversion could reach up to 92.5%.The thermo-regulation provided by the proposed rGS-pf is real-time,repeatable and long-term stable.The results in this study provide valuable guidance for developing functional materials for efficient solarthermal conversion and heat management.
基金funded by Major Science and Technology Projects in Gansu Province(19ZD2GA003).
文摘Because of the randomness of wind power and photovoltaic(PV)output of new energy bases,the problem of peak regulation capability and voltage stability of ultra-high voltage direct current(UHVDC)transmission lines,we proposed an optimum allocation method of installed capacity of the solar-thermal power station based on chance constrained programming in this work.Firstly,we established the uncertainty model of wind power and PV based on the chance constrained planning theory.Then we used the K-medoids clusteringmethod to cluster the scenarios considering the actual operation scenarios throughout the year.Secondly,we established the optimal configuration model based on the objective function of the strongest transient voltage stability and the lowest overall cost of operation.Finally,by quantitative analysis of actual wind power and photovoltaic new energy base,this work verified the feasibility of the proposed method.As a result of the simulations,we found that using the optimal configuration method of solar-thermal power stations could ensure an accurate allocation of installed capacity.When the installed capacity of the solar-thermal power station is 1×106 kW,the transient voltage recovery index(TVRI)is 0.359,which has a strong voltage support capacity for the system.Based on the results of this work,the optimal configuration of the installed capacity of the solar-thermal power plant can improve peak shaving performance,transient voltage support capability,and new energy consumption while satisfying the Direct Current(DC)outgoing transmission premise.
文摘A hybrid solar collector was designed to investigate the effects of combining two different solar collector techniques on the overall collector’s effectiveness. While most solar collectors focus only on one solar collection method, the small hybrid system uses a flat plate collector in conjunction with five evacuated tubes to absorb the most energy possible from both direct and diffuse solar radiation. Data was collected over four months while the system operated at different flow rates and with various levels of available insolation from the sun to evaluate the performance of the solar collector. To understand the relative contribution of the flat plate collector and the evacuated tubes, temperature differences across each part of the system were measured. The results indicate the average first law efficiency of the hybrid system is 43.3%, significantly higher than the performance of the flat plate alone. An exergy analysis was performed for this system to assess the performance of the flat plate system by itself. Results of the second law analysis were comparable to the exergetic efficiencies of other experimental collectors, around 4%. Though the efficiencies were in the expected range, they reveal that further improvements to the system are possible.
基金Funded by the National Natural Science Foundation of China(No.51402208)the Project by State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)(No.2016-KF-11)
文摘The thermal emittance of Cr film, as an IR reflector, was investigated for the use in SSAC. The Cr thin films with different thicknesses were deposited on silicon wafers, optical quartz and stainless steel substrates by cathodic arc ion plating technology as a metallic IR reflector layer in SSAC. The thickness of Cr thin films was optimized to achieve the minimum thermal emittance. The effects of structural, microstructural, optical, surface and cross-sectional morphological properties of Cr thin films were investigated on the emittance. An optimal thickness about 450 nm of the Cr thin film for the lowest total thermal emittance of 0.05 was obtained. The experimental results suggested that the Cr metallic thin film with optimal thickness could be used as an effective infrared reflector for the development of SSAC structure.
基金Financial support from the National Natural Science foundation of China(Nos.U1905217,52090034,U22A20248,52221006)Fundamental Research Funds for the Central Universities(No.XK1802)is gratefully acknowledged.
文摘Catalytic CoFe_(2)O_(4) and solar-thermal carbon nanotube decorated bamboo fabrics(CCBF)are fabricated for integrating efficient solar steam generation from wastewater with catalytic degradation of its organic con-taminants.Thanks to the numerous porous channels and polar groups of bamboo fabric and the efficient solar-thermal energy conversion of black carbon nanotubes,the porous and hydrophilic CCBF exhibits fast upward transport of water,efficient solar light absorption,and high solar-thermal energy conversion effi-ciency.The decorated CoFe_(2)O_(4) not only enhances the solar-thermal energy conversion efficiency of CCBF but also activates potassium peroxymonosulfate to generate abundant highly active species for catalytic degradation of bisphenol A(BPA).Furthermore,folding the CCBF into a peak-like 3D evaporator can en-hance solar energy utilization,and gain environmental energy for promoting solar-thermal water evapo-ration and catalytic degradation performances.The 3D CCBF evaporator achieves a water evaporation rate of 2.72 kg m^(-2) h^(-1) under 1-sun irradiation.Meanwhile,100%of the BPA in the seawater can be degraded within 10 min.An exceptional high purification efficiency of 27.72 kg m^(-2) h^(-1) is achieved with the 3D evaporator during a long-term treatment of BPA-containing seawater under 1-sun irradiation.This work demonstrates efficient purification of seawater/wastewater with both metal ions and organic pollutants by simultaneous solar-thermal evaporation of water and catalytic degradation of organic pollutants.
文摘Graphene-based phase change composites hold significant potential for solar energy utilization,but their poor thermal conductivity hinders their practical applications.In this work,an air-dried graphene skele-ton(AGS)with excellent thermal conductivity enhancement efficiency was constructed by the ice tem-plating method and syneresis,and the air-dried graphene phase change composite(AGP)was subse-quently obtained through vacuum-impregnating n-Docosane(C22)into AGS.The syneresis effectively re-duced the phonon scattering between graphene sheets within AGS and increased the density of AGS to 0.1701 g/cm3.Therefore,with a graphene skeleton loading of 23.82 wt.%,AGP exhibited excellent thermal conductivity of 9.867 W/(m K),outstanding electrical conductivity of 68.08 S/cm,and remarkable shape stability.Additionally,AGP demonstrated a melting enthalpy of 188.5 J/g and an outstanding solar-thermal conversion efficiency of 93.98%,showing enormous potential for the utilization of solar energy.
基金financially supported by the China National Key Research and Developmeni Plan Project(Grant No.2018YFA0702300)H2020-MSCA-RISE(778104)Smart thermal nlanagement of high power microprocessors using phase-change(ThermaSMART).
文摘Multifunctional phase change composites are in great demand for all kinds of industrial technologies and applications,which have both superior latent heat capacity and excellent solar-thermal conversion capability.In this research,biomimetic phase change composites are made by inspired by natural systems,successfully getting the high thermal conductivity of carbon foam and magnetism of composites together,to establish a novel solar-thermal energy storage method.The morphology and the thermal characteristics of biomimetic phase change composites have been characterized.The results showed that the maximum storage efficiency of the biomimetic phase change materials increased by 56.3%compared to that of the based materials,and it can further be improved by the application of magnetic field.Meanwhile the heat transfer process of solarthermal conversion and energy storage in biomimetic porous structure under the external physical fields has been explained by simulation.Thus,the magnetic field-induced method applied in this research has better solar-thermal energy storage characteristics within a porous structure by dynamically controlling the magnetism,which has potential uses for various sustainable applications,including waste-heat recovery,energy conservation in building,and solar-thermal energy storage.
基金the National Natural Science Foundation of China(51890893)Fundamental Research Funds for the Central Universities(FRF-TP-20-005A3).
文摘As cheap and renewable sources,the exploitation of biomass resources was of great value in phase change energy storage.In this study,hemp stems were converted into biochars with three-dimensional multi-level anisotropic pores through a temperature-controlled charring process,which were used as supports for polyethylene glycol(PEG6000)to form shape-stable composite phase change materials(ss-CPCMs).It is shown that the ss-CPCMs using anisotropic hemp-stem-derived biochar obtained at a carbonization temperature of 900℃as a support has high PEG6000 loading rate(88.62wt%),large latent heat(170.44 J/g)and favorable thermal stability owning to its high surface area and hierarchical pores.The biochar-based ss-CPCM also has good light absorption ability with a maximum solar-thermal conversion efficiency of 97.70%.In addition,the different thermal conductivities in the transverse and longitudinal directions of ss-CPCMs reflect the unique anisotropic structure.This work can not only improve the high-value utilization of biochars,but also provide the ss-CPCMs with excellent performance for solar-thermal conversion and storage systems.