The calcite mylonites in the Xar Moron-Changchun shear zone show a significance dextral shearing characteristics. The asymmetric(σ-structure) calcite/quartz grains or aggregates, asymmetry of calcite c-axes fabric di...The calcite mylonites in the Xar Moron-Changchun shear zone show a significance dextral shearing characteristics. The asymmetric(σ-structure) calcite/quartz grains or aggregates, asymmetry of calcite c-axes fabric diagrams and the oblique foliation of recrystallized calcite grains correspond to a top-to-E shearing. Mineral deformation behaviors, twin morphology, C-axis EBSD fabrics, and quartz grain size-frequency diagrams demonstrate that the ductile shear zone was developed under conditions of greenschist facies, with the range of deformation temperatures from 200 to 300°C. These subgrains of host grains and surrounding recrystallized grains, strong undulose extinction, and slightly curved grain boundaries are probably results of intracrystalline deformation and dynamic recrystallization implying that the deformation took place within the dislocation-creep regime at shallow crustal levels. The calculated paleo-strain rates are between 10-7.87s-1 and 10-11.49s-1 with differential stresses of 32.63-63.94 MPa lying at the higher bound of typical strain rates in shear zones at crustal levels, and may indicate a relatively rapid deformation. The S-L-calcite tectonites have undergone a component of uplift which led to subhorizontal lifting in an already non-coaxial compressional deformation regime with a bulk pure shear-dominated general shear. This E-W large-scale dextral strike-slip movement is a consequence of the eastward extrusion of the Xing’an-Mongolian Orogenic Belt, and results from far-field forces associated with Late Triassic convergence domains after the final closure of the Paleo-Asian Ocean.展开更多
The Linxi Formation occupies an extensive area in the eastern Inner Mongolia in the Central Asian Orogenic Belt (CAOB). The Linxi Formation is composed of slate, siltstone, sandstone and plant, lamellibranch microfo...The Linxi Formation occupies an extensive area in the eastern Inner Mongolia in the Central Asian Orogenic Belt (CAOB). The Linxi Formation is composed of slate, siltstone, sandstone and plant, lamellibranch microfossils in the associated strata. Major and trace element data (including REE) for sandstones from the formation indicate that these rocks have a greywacke protolith and have been deposited during a strong tectonic activity. LA-ICPMS U-Pb dating of detrital zircons yield ages of 1801 to 238 Ma for four samples from the Linxi Formation. 425-585 Ma, together with the ~500 Ma age for the metamorphism event previously determined for Northeast China, indicates that their provenance is the metamorphic rocks of Pan-African age that have a tectonic affinity to NE China. A few older zircons with U-Pb ages at 1689-1801 Ma, 1307 1414 Ma, 593-978 Ma are also present, revealing the Neoproterozoic history of NE China. The youngest population shows a peak at ca. 252 Ma, suggesting that the main deposition of the Linxi Formation was at late Permain. Moreover, the ca. 250 Ma zircon grains of all four samples yield weighted mean ^206pb/^238U ages of 250 ± 3 Ma, 248 ± 3 Ma, 249 ± 3 Ma, and 250 ± 2 Ma, respectively. These ages, together with the youngest zircon age in the sample ZJB-28 (ca. 238 Ma), suggest that the deposition of the Linxi Formation extended to the early Triassic. Combining with previous results, we suggest that the final collision of the Central Asian Orogenic Belt (CAOB) in the southern of Linxi Formation, which located in the Solonker-Xra Moron-Changchun suture, and the timing for final collision should be at early Triassic.展开更多
A lot of well-preserved plants from the Linxi Formation are collected in the Soron area,Inner Mongolia,consisting of 34 species of 16 genera. They are Late Permian in age. The flora is characterized by a lot of Angara...A lot of well-preserved plants from the Linxi Formation are collected in the Soron area,Inner Mongolia,consisting of 34 species of 16 genera. They are Late Permian in age. The flora is characterized by a lot of Angaran plants,such as Paracalamites,Comia,Rhachiphyllum,Iniopteris,Rufloria,etc. Some Cathaysian elements,such as Lobatannularia lingulata,L. multifolia,Fascipteris Cathaysiantus,F. densata,Taeniopteris szei,Cladophlebis liulinensis and C. permica,are also mixed within the present flora. This indicates that the Soron of Inner Mongolia was located in the sector between the Angaran and Cathysian floristic provinces in Lopingian. It is beneficial for depicting the location and the evolution of the Solenker--Xar Moron suture zone in the phytogeographic view. The transmigration of tropical and subtropical Cathaysian plants to the north indicates that the Paleoasian Ocean was closed during the late Permian along the suture zone.展开更多
基金financially co-supported by the National Key R&D Program of China (Grant No.2017YFC0601401 and 2017YFC0601300-01)the National Natural Science Foundation of China (Grant no. 41602211 and 41230206)
文摘The calcite mylonites in the Xar Moron-Changchun shear zone show a significance dextral shearing characteristics. The asymmetric(σ-structure) calcite/quartz grains or aggregates, asymmetry of calcite c-axes fabric diagrams and the oblique foliation of recrystallized calcite grains correspond to a top-to-E shearing. Mineral deformation behaviors, twin morphology, C-axis EBSD fabrics, and quartz grain size-frequency diagrams demonstrate that the ductile shear zone was developed under conditions of greenschist facies, with the range of deformation temperatures from 200 to 300°C. These subgrains of host grains and surrounding recrystallized grains, strong undulose extinction, and slightly curved grain boundaries are probably results of intracrystalline deformation and dynamic recrystallization implying that the deformation took place within the dislocation-creep regime at shallow crustal levels. The calculated paleo-strain rates are between 10-7.87s-1 and 10-11.49s-1 with differential stresses of 32.63-63.94 MPa lying at the higher bound of typical strain rates in shear zones at crustal levels, and may indicate a relatively rapid deformation. The S-L-calcite tectonites have undergone a component of uplift which led to subhorizontal lifting in an already non-coaxial compressional deformation regime with a bulk pure shear-dominated general shear. This E-W large-scale dextral strike-slip movement is a consequence of the eastward extrusion of the Xing’an-Mongolian Orogenic Belt, and results from far-field forces associated with Late Triassic convergence domains after the final closure of the Paleo-Asian Ocean.
基金funded by grants from the Chinese Ministry of Science and Technology(Grant No.2013CB429802)National Natural Science Foundation of China(Grant Nos.41390441,41190075, and 41272241)the Chinese Geological Survey(Grant No. 1212011120153)
文摘The Linxi Formation occupies an extensive area in the eastern Inner Mongolia in the Central Asian Orogenic Belt (CAOB). The Linxi Formation is composed of slate, siltstone, sandstone and plant, lamellibranch microfossils in the associated strata. Major and trace element data (including REE) for sandstones from the formation indicate that these rocks have a greywacke protolith and have been deposited during a strong tectonic activity. LA-ICPMS U-Pb dating of detrital zircons yield ages of 1801 to 238 Ma for four samples from the Linxi Formation. 425-585 Ma, together with the ~500 Ma age for the metamorphism event previously determined for Northeast China, indicates that their provenance is the metamorphic rocks of Pan-African age that have a tectonic affinity to NE China. A few older zircons with U-Pb ages at 1689-1801 Ma, 1307 1414 Ma, 593-978 Ma are also present, revealing the Neoproterozoic history of NE China. The youngest population shows a peak at ca. 252 Ma, suggesting that the main deposition of the Linxi Formation was at late Permain. Moreover, the ca. 250 Ma zircon grains of all four samples yield weighted mean ^206pb/^238U ages of 250 ± 3 Ma, 248 ± 3 Ma, 249 ± 3 Ma, and 250 ± 2 Ma, respectively. These ages, together with the youngest zircon age in the sample ZJB-28 (ca. 238 Ma), suggest that the deposition of the Linxi Formation extended to the early Triassic. Combining with previous results, we suggest that the final collision of the Central Asian Orogenic Belt (CAOB) in the southern of Linxi Formation, which located in the Solonker-Xra Moron-Changchun suture, and the timing for final collision should be at early Triassic.
基金Supported by China Geological Survey ( Grant Nos. 1212011120966,1212011121086)the Key Lab for Evolution of Past Life and Environment in NE Asia,Ministry of Education,China( Jilin Univ. )
文摘A lot of well-preserved plants from the Linxi Formation are collected in the Soron area,Inner Mongolia,consisting of 34 species of 16 genera. They are Late Permian in age. The flora is characterized by a lot of Angaran plants,such as Paracalamites,Comia,Rhachiphyllum,Iniopteris,Rufloria,etc. Some Cathaysian elements,such as Lobatannularia lingulata,L. multifolia,Fascipteris Cathaysiantus,F. densata,Taeniopteris szei,Cladophlebis liulinensis and C. permica,are also mixed within the present flora. This indicates that the Soron of Inner Mongolia was located in the sector between the Angaran and Cathysian floristic provinces in Lopingian. It is beneficial for depicting the location and the evolution of the Solenker--Xar Moron suture zone in the phytogeographic view. The transmigration of tropical and subtropical Cathaysian plants to the north indicates that the Paleoasian Ocean was closed during the late Permian along the suture zone.