期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Solvent-assisted synthesis of porous g-C_3N_4 with efficient visible-light photocatalvtic performance for NO removal 被引量:6
1
作者 张文东 赵再望 +1 位作者 董帆 张育新 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期372-378,共7页
Graphitic carbon nitride(g-C3N4) with efficient photocatalytic activity was synthesized through thermal polymerization of thiourea with the addition of water(CN-W) or ethanol(CN-E) at 550 ℃for 2 h.The physicoch... Graphitic carbon nitride(g-C3N4) with efficient photocatalytic activity was synthesized through thermal polymerization of thiourea with the addition of water(CN-W) or ethanol(CN-E) at 550 ℃for 2 h.The physicochemical properties of the g-C3N4 were investigated by X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,photoluminescence spectroscopy,diffuse-reflection spectroscopy,BET and BJH surface area characterization,and elemental analysis.The carbon content was found to have self-doped into the g-C3N4 matrix during the thermal polymerization of thiourea and ethanol.CN-W and CN-E showed considerably enhanced visible-light photocatalytic activity,with NO removal percentages of 37.2%and 48.3%,respectively.Compared with pure g-C3N4,both the short and long lifetimes of the charge carriers in CN-W and CN-E were found to be prolonged.The mechanism of improved visible-light photocatalytic activity was deduced.The present work may provide a facile route to optimize the microstructure of g-C3N4photocatalysts for high-performance environmental and energy applications. 展开更多
关键词 solvent-assisted Graphitic carbon nitride Visible light Photocatalytic performance Nitrogen oxide removal
下载PDF
Economic and entropy production evaluation of extractive distillation and solvent-assisted pressure-swing distillation by multi-objective optimization
2
作者 Yao Wang Qing Ye +2 位作者 Jinlong Li Qingqing Rui Azhi Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第11期246-259,共14页
Extractive distillation(ED)and solvent-assisted pressure-swing distillation(SA-PSD)are both special distillation processes that perform good at separating pressure-insensitive azeotropes.However,few reported studies h... Extractive distillation(ED)and solvent-assisted pressure-swing distillation(SA-PSD)are both special distillation processes that perform good at separating pressure-insensitive azeotropes.However,few reported studies have compared the performance of the two processes.In this paper,ED processes with N-methylpyrrolidone(NMP)and dimethlac-etamide(DMCA)as entrainer,SA-PSD process with isopropyl-alcohol(IPA)as solvent and SA-PSD process with partial heat integration(PHI-PSD)are proposed to achieve high purity separation of a mixture of cyclohexane/2-butanol system.The optimal operating conditions of the processes are obtained after optimizing with NSGA-Ⅱ algorithm when total annual cost(TAC)and the entropy production of process are set as objectives.The optimal results show that the optimal PHI-PSD process has lower TAC by 28.7% and the lower entropy production by 39.5% than the optimal SA-PSD process while the ED process with NMP as entrainer has lower TAC by 50.9% and the lower entropy production by 56.1% than the optimal SA-PSD process.The optimal results show that the ED process with NMP as entrainer has the best economic and thermodynamic efficiency among the four proposed processes in this paper. 展开更多
关键词 Extractive distillation solvent-assisted pressure-swing distillation Entropy production NSGA-Ⅱalgorithm Computer simulation
下载PDF
Superinsulating BNNS/PVA Composite Aerogels with High Solar Reflectance for Energy-Efficient Buildings 被引量:4
3
作者 Jie Yang Kit‑Ying Chan +5 位作者 Harun Venkatesan Eunyoung Kim Miracle Hope Adegun Jeng‑Hun Lee Xi Shen Jang‐Kyo Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第3期292-307,共16页
With the mandate of worldwide carbon neutralization,pursuing comfortable living environment while consuming less energy is an enticing and unavoidable choice.Novel composite aerogels with super thermal insulation and ... With the mandate of worldwide carbon neutralization,pursuing comfortable living environment while consuming less energy is an enticing and unavoidable choice.Novel composite aerogels with super thermal insulation and high sunlight reflection are developed for energy-efficient buildings.A solvent-assisted freeze-casting strategy is used to produce boron nitride nanosheet/polyvinyl alcohol(BNNS/PVA)composite aerogels with a tailored alignment channel structure.The effects of acetone and BNNS fillers on microstructures and multifunctional properties of aerogels are investigated.The acetone in the PVA suspension enlarges the cell walls to suppress the shrinkage,giving rise to a lower density and a higher porosity,accompanied with much diminished heat conduction throughout the whole product.The addition of BNNS fillers creates whiskers in place of disconnected transverse ligaments between adjacent cell walls,further ameliorating the thermal insulation transverse to the cell wall direction.The resultant BNNS/PVA aerogel delivers an ultralow thermal conductivity of 23.5 mW m^(−1) K^(−1) in the transverse direction.The superinsulating aerogel presents both an infrared stealthy capability and a high solar reflectance of 93.8%over the whole sunlight wave-length,far outperforming commercial expanded polystyrene foams with reflective coatings.The anisotropic BNNS/PVA composite aerogel presents great potential for application in energy-saving buildings. 展开更多
关键词 Boron nitride nanosheets solvent-assisted freeze-casting Thermally insulating aerogel Solar reflectance Energy-saving buildings
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部