To utilize residual redundancy to reduce the error induced by fading channels and decrease the complexity of the field model to describe the probability structure for residual redundancy, a simplified statistical mode...To utilize residual redundancy to reduce the error induced by fading channels and decrease the complexity of the field model to describe the probability structure for residual redundancy, a simplified statistical model for residual redundancy and a low complexity joint source-channel decoding(JSCD) algorithm are proposed. The complicated residual redundancy in wavelet compressed images is decomposed into several independent 1-D probability check equations composed of Markov chains and it is regarded as a natural channel code with a structure similar to the low density parity check (LDPC) code. A parallel sum-product (SP) and iterative JSCD algorithm is proposed. Simulation results show that the proposed JSCD algorithm can make full use of residual redundancy in different directions to correct errors and improve the peak signal noise ratio (PSNR) of the reconstructed image and reduce the complexity and delay of JSCD. The performance of JSCD is more robust than the traditional separated encoding system with arithmetic coding in the same data rate.展开更多
Most of multimedia schemes employ variable-length codes (VLCs) like Huffman code as core components in obtaining high compression rates. However VLC methods are very sensitive to channel noise. The goal of this pape...Most of multimedia schemes employ variable-length codes (VLCs) like Huffman code as core components in obtaining high compression rates. However VLC methods are very sensitive to channel noise. The goal of this paper is to salvage as many data from the damaged packets as possible for higher audiovisual quality. This paper proposes an integrated joint source-channel decoder (I-JSCD) at a symbol-level using three-dimensional (3-D) trellis representation for first-order Markov sources encoded with VLC source code and convolutional channel code. This method combines source code and channel code state-spaces and bit-lengths to construct a two-dimensional (2-D) state-space, and then develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol. Experiment results demonstrate that our method results in significant improvement in decoding performance, it can salvage at least half of (50%) data in any channel error rate, and can provide additional error resilience to VLC stream like image, audio, video stream over high error rate links.展开更多
An adaptive joint source channel bit allocation method for video communications over error-prone channel is proposed.To protect the bit-streams from the channel bit errors,the rate compatible punctured convolution(RCP...An adaptive joint source channel bit allocation method for video communications over error-prone channel is proposed.To protect the bit-streams from the channel bit errors,the rate compatible punctured convolution(RCPC)code is used to produce coding rates varying from 4/5 to 1/2 using the same encoder and the Viterbi decoder.An expected end-to-end distortion model was presented to estimate the distortion introduced in compressed source coding due to quantization and channel bit errors jointly.Based on the proposed end-to-end distortion model,an adaptive joint source-channel bit allocation method was proposed under time-varying error-prone channel conditions.Simulated results show that the proposed methods could utilize the available channel capacity more efficiently and achieve better video quality than the other fixed coding-based bit allocation methods when transmitting over error-prone channels.展开更多
In this paper, we present a Joint Source-Channel Decoding algorithm (JSCD) for Low-Density Parity Check (LDPC) codes by modifying the Sum-Product Algorithm (SPA) to account for the source redun-dancy, which results fr...In this paper, we present a Joint Source-Channel Decoding algorithm (JSCD) for Low-Density Parity Check (LDPC) codes by modifying the Sum-Product Algorithm (SPA) to account for the source redun-dancy, which results from the neighbouring Huffman coded bits. Simulations demonstrate that in the presence of source redundancy, the proposed algorithm gives better performance than the Separate Source and Channel Decoding algorithm (SSCD).展开更多
We improve the iterative decoding algorithm by utilizing the “leaked” residual redundancy at the output of the source encoder without changing the encoder structure for the noisy channel. The experimental results sh...We improve the iterative decoding algorithm by utilizing the “leaked” residual redundancy at the output of the source encoder without changing the encoder structure for the noisy channel. The experimental results show that using the residual redundancy of the compressed source in channel decoding is an effective method to improve the error correction performance.展开更多
This paper proposes an integrated joint source-channel decoder (I-JSCD) using Max-Log-MAP method for sources encoded with exp-Golomb codes and convolutional codes, and proposes a system applying this method to decod...This paper proposes an integrated joint source-channel decoder (I-JSCD) using Max-Log-MAP method for sources encoded with exp-Golomb codes and convolutional codes, and proposes a system applying this method to decoding the VLC data, e.g. motion vector differences (MVDs), of H.264 across an AWGN channel. This method combines the source code state-space and the channel code state-space together to construct a joint state-space, develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol, and then uses max-log approximation to simplify the algorithm. Experiments indicate that the proposed system gives significant improvements on peak signal-to-noise ratio (PSNR) (maximum about 15 dB) than a separate scheme. This also leads to a higher visual quality of video stream over a highly noisy channel.展开更多
With the development of deep learning(DL),joint source-channel coding(JSCC)solutions for end-to-end transmission have gained a lot of attention.Adaptive deep JSCC schemes support dynamically adjusting the rate accordi...With the development of deep learning(DL),joint source-channel coding(JSCC)solutions for end-to-end transmission have gained a lot of attention.Adaptive deep JSCC schemes support dynamically adjusting the rate according to different channel conditions during transmission,enhancing robustness in dynamic wireless environment.However,most of the existing adaptive JSCC schemes only consider different channel conditions,ignoring the different feature importance in the image processing and transmission.The uniform compression of different features in the image may result in the compromise of critical image details,particularly in low signal-to-noise ratio(SNR)scenarios.To address the above issues,in this paper,a dual attention mechanism is introduced and an SNR-adaptive deep JSCC mechanism with a convolutional block attention module(CBAM)is proposed,in which matrix operations are applied to features in spatial and channel dimensions respectively.The proposed solution concatenates the pooling feature with the SNR level and passes it sequentially through the channel attention network and spatial attention network to obtain the importance evaluation result.Experiments show that the proposed solution outperforms other baseline schemes in terms of peak SNR(PSNR)and structural similarity(SSIM),particularly in low SNR scenarios or when dealing with complex image content.展开更多
Video transmission requires considerable bandwidth,and current widely employed schemes prove inadequate when confronted with scenes featuring prominently.Motivated by the strides in talkinghead generative technology,t...Video transmission requires considerable bandwidth,and current widely employed schemes prove inadequate when confronted with scenes featuring prominently.Motivated by the strides in talkinghead generative technology,the paper introduces a semantic transmission system tailored for talking-head videos.The system captures semantic information from talking-head video and faithfully reconstructs source video at the receiver,only one-shot reference frame and compact semantic features are required for the entire transmission.Specifically,we analyze video semantics in the pixel domain frame-by-frame and jointly process multi-frame semantic information to seamlessly incorporate spatial and temporal information.Variational modeling is utilized to evaluate the diversity of importance among group semantics,thereby guiding bandwidth resource allocation for semantics to enhance system efficiency.The whole endto-end system is modeled as an optimization problem and equivalent to acquiring optimal rate-distortion performance.We evaluate our system on both reference frame and video transmission,experimental results demonstrate that our system can improve the efficiency and robustness of communications.Compared to the classical approaches,our system can save over 90%of bandwidth when user perception is close.展开更多
In the future development direction of the sixth generation(6G)mobile communication,several communication models are proposed to face the growing challenges of the task.The rapid development of artificial intelligence...In the future development direction of the sixth generation(6G)mobile communication,several communication models are proposed to face the growing challenges of the task.The rapid development of artificial intelligence(AI)foundation models provides significant support for efficient and intelligent communication interactions.In this paper,we propose an innovative semantic communication paradigm called task-oriented semantic communication system with foundation models.First,we segment the image by using task prompts based on the segment anything model(SAM)and contrastive language-image pretraining(CLIP).Meanwhile,we adopt Bezier curve to enhance the mask to improve the segmentation accuracy.Second,we have differentiated semantic compression and transmission approaches for segmented content.Third,we fuse different semantic information based on the conditional diffusion model to generate high-quality images that satisfy the users'specific task requirements.Finally,the experimental results show that the proposed system compresses the semantic information effectively and improves the robustness of semantic communication.展开更多
To improve the performance of MIMO-OFDM video transmission systems on the limitation of wireless bandwidth and transmitting power,we propose an adaptive joint resource allocation algorithm with unequal error protectio...To improve the performance of MIMO-OFDM video transmission systems on the limitation of wireless bandwidth and transmitting power,we propose an adaptive joint resource allocation algorithm with unequal error protection(UEP) based on joint source-channel coding(JSCC) according to H.264 video compression standard and RCPT channel coding.According to different thresholds of the average SNR of subchannels,the algorithm dynamically allocates the source coding parameters of original video data and the channel coding parameters of RCPT,which realizes UEP for the compressed video data of different importance.Through the bit and power allocation based on MQAM modulation and the subspace allocation based on beamforming technology for different subcarriers,an adaptive joint resource allocation making full use of space-frequency domain resources have been realized.The simulation results indicate that the algorithm improves the adaptability of video transmission systems in different wireless environments and the quality of video retrieval.展开更多
A robust progressive image transmission scheme over broadband wireless fading channels is developed for 4th generation wireless communication systems (4G) in this paper. The proposed scheme is based on space-time bl...A robust progressive image transmission scheme over broadband wireless fading channels is developed for 4th generation wireless communication systems (4G) in this paper. The proposed scheme is based on space-time block coded orthogonal frequency-division multiplexing (OFDM) with 4 transmit antennas and 2 receive antennas and uses a simplified minimum mean square error (MMSE) detector instead of maximum likelihood (ML) detectors. Considering DCT is simpler and more widely applied in the industry than wavelet transforms, a progressive image compression method based on DCT called mean-subtract embedded DCT (MSEDCT) is developed, with a simple mean-subtract method for the redundancy of reorganized DC blocks in addition to a structure similar to the embedded zerotree wavelet coding (EZW) method. Then after analyzing and testing bit importance of the progressive MSEDCT bitstreams, the layered unequal error protection method of joint source-channels coding based on Reed-Solomon (RS) codes is used to protect different parts of bitstreams, providing different QoS assurances and good flexibility. Simulation experiments show our proposed scheme can effectively degrade fading effects and obtain better image transmission effects with 10 -20 dB average peak-sig- nal-noise-ratio (PSNR) gains at the median Eb/No than those schemes without space-time coded OFDM or equal error protections with space-time coded OFDM.展开更多
For two-way video communications over wireless channels using the automatic repeat request (ARQ) retransmission scheme, TMN8 rate control scheme is not effective in minimizing the number of frames skipped and cannot g...For two-way video communications over wireless channels using the automatic repeat request (ARQ) retransmission scheme, TMN8 rate control scheme is not effective in minimizing the number of frames skipped and cannot guarantee video quality during the retransmissions of error packets. This paper presents a joint source channel bit allocation scheme that allocates target bits according to encoder buffer fullness and estimation of channel condition by retransmission information. The results obtained from implementing our scheme in H.263+coder over wireless channel model show that our proposed scheme encodes the video sequences with lower and steadier buffer delay, fewer frames skipped and higher average PSNR compared to TMN8.展开更多
文摘To utilize residual redundancy to reduce the error induced by fading channels and decrease the complexity of the field model to describe the probability structure for residual redundancy, a simplified statistical model for residual redundancy and a low complexity joint source-channel decoding(JSCD) algorithm are proposed. The complicated residual redundancy in wavelet compressed images is decomposed into several independent 1-D probability check equations composed of Markov chains and it is regarded as a natural channel code with a structure similar to the low density parity check (LDPC) code. A parallel sum-product (SP) and iterative JSCD algorithm is proposed. Simulation results show that the proposed JSCD algorithm can make full use of residual redundancy in different directions to correct errors and improve the peak signal noise ratio (PSNR) of the reconstructed image and reduce the complexity and delay of JSCD. The performance of JSCD is more robust than the traditional separated encoding system with arithmetic coding in the same data rate.
基金Supported by the Foundation of Ministry of Education of China (211CERS10)
文摘Most of multimedia schemes employ variable-length codes (VLCs) like Huffman code as core components in obtaining high compression rates. However VLC methods are very sensitive to channel noise. The goal of this paper is to salvage as many data from the damaged packets as possible for higher audiovisual quality. This paper proposes an integrated joint source-channel decoder (I-JSCD) at a symbol-level using three-dimensional (3-D) trellis representation for first-order Markov sources encoded with VLC source code and convolutional channel code. This method combines source code and channel code state-spaces and bit-lengths to construct a two-dimensional (2-D) state-space, and then develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol. Experiment results demonstrate that our method results in significant improvement in decoding performance, it can salvage at least half of (50%) data in any channel error rate, and can provide additional error resilience to VLC stream like image, audio, video stream over high error rate links.
基金National High-Tech Research and Development Plan of China(No.2003AA1Z2130)Science and Technology Project of Zhejiang Province,China(No.2006C11200)
文摘An adaptive joint source channel bit allocation method for video communications over error-prone channel is proposed.To protect the bit-streams from the channel bit errors,the rate compatible punctured convolution(RCPC)code is used to produce coding rates varying from 4/5 to 1/2 using the same encoder and the Viterbi decoder.An expected end-to-end distortion model was presented to estimate the distortion introduced in compressed source coding due to quantization and channel bit errors jointly.Based on the proposed end-to-end distortion model,an adaptive joint source-channel bit allocation method was proposed under time-varying error-prone channel conditions.Simulated results show that the proposed methods could utilize the available channel capacity more efficiently and achieve better video quality than the other fixed coding-based bit allocation methods when transmitting over error-prone channels.
文摘In this paper, we present a Joint Source-Channel Decoding algorithm (JSCD) for Low-Density Parity Check (LDPC) codes by modifying the Sum-Product Algorithm (SPA) to account for the source redun-dancy, which results from the neighbouring Huffman coded bits. Simulations demonstrate that in the presence of source redundancy, the proposed algorithm gives better performance than the Separate Source and Channel Decoding algorithm (SSCD).
文摘We improve the iterative decoding algorithm by utilizing the “leaked” residual redundancy at the output of the source encoder without changing the encoder structure for the noisy channel. The experimental results show that using the residual redundancy of the compressed source in channel decoding is an effective method to improve the error correction performance.
基金Supported by the Foundation of Ministry of Education of China (211CERS10)
文摘This paper proposes an integrated joint source-channel decoder (I-JSCD) using Max-Log-MAP method for sources encoded with exp-Golomb codes and convolutional codes, and proposes a system applying this method to decoding the VLC data, e.g. motion vector differences (MVDs), of H.264 across an AWGN channel. This method combines the source code state-space and the channel code state-space together to construct a joint state-space, develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol, and then uses max-log approximation to simplify the algorithm. Experiments indicate that the proposed system gives significant improvements on peak signal-to-noise ratio (PSNR) (maximum about 15 dB) than a separate scheme. This also leads to a higher visual quality of video stream over a highly noisy channel.
基金This work was supported in part by the National Natural Science Foundation of China(62293481)in part by the Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)+1 种基金in part by the National Natural Science Foundation for Young Scientists of China(62001050)in part by the Fundamental Research Funds for the Central Universities(2023RC95).
文摘With the development of deep learning(DL),joint source-channel coding(JSCC)solutions for end-to-end transmission have gained a lot of attention.Adaptive deep JSCC schemes support dynamically adjusting the rate according to different channel conditions during transmission,enhancing robustness in dynamic wireless environment.However,most of the existing adaptive JSCC schemes only consider different channel conditions,ignoring the different feature importance in the image processing and transmission.The uniform compression of different features in the image may result in the compromise of critical image details,particularly in low signal-to-noise ratio(SNR)scenarios.To address the above issues,in this paper,a dual attention mechanism is introduced and an SNR-adaptive deep JSCC mechanism with a convolutional block attention module(CBAM)is proposed,in which matrix operations are applied to features in spatial and channel dimensions respectively.The proposed solution concatenates the pooling feature with the SNR level and passes it sequentially through the channel attention network and spatial attention network to obtain the importance evaluation result.Experiments show that the proposed solution outperforms other baseline schemes in terms of peak SNR(PSNR)and structural similarity(SSIM),particularly in low SNR scenarios or when dealing with complex image content.
基金supported by the National Natural Science Foundation of China(No.61971062)BUPT Excellent Ph.D.Students Foundation(CX2022153)。
文摘Video transmission requires considerable bandwidth,and current widely employed schemes prove inadequate when confronted with scenes featuring prominently.Motivated by the strides in talkinghead generative technology,the paper introduces a semantic transmission system tailored for talking-head videos.The system captures semantic information from talking-head video and faithfully reconstructs source video at the receiver,only one-shot reference frame and compact semantic features are required for the entire transmission.Specifically,we analyze video semantics in the pixel domain frame-by-frame and jointly process multi-frame semantic information to seamlessly incorporate spatial and temporal information.Variational modeling is utilized to evaluate the diversity of importance among group semantics,thereby guiding bandwidth resource allocation for semantics to enhance system efficiency.The whole endto-end system is modeled as an optimization problem and equivalent to acquiring optimal rate-distortion performance.We evaluate our system on both reference frame and video transmission,experimental results demonstrate that our system can improve the efficiency and robustness of communications.Compared to the classical approaches,our system can save over 90%of bandwidth when user perception is close.
基金supported in part by the National Natural Science Foundation of China under Grant(62001246,62231017,62201277,62071255)the Natural Science Foundation of Jiangsu Province under Grant BK20220390+3 种基金Key R and D Program of Jiangsu Province Key project and topics under Grant(BE2021095,BE2023035)the Natural Science Research Startup Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY221011)National Science Foundation of Xiamen,China(No.3502Z202372013)Open Project of the Key Laboratory of Underwater Acoustic Communication and Marine Information Technology(Xiamen University)of the Ministry of Education,China(No.UAC202304)。
文摘In the future development direction of the sixth generation(6G)mobile communication,several communication models are proposed to face the growing challenges of the task.The rapid development of artificial intelligence(AI)foundation models provides significant support for efficient and intelligent communication interactions.In this paper,we propose an innovative semantic communication paradigm called task-oriented semantic communication system with foundation models.First,we segment the image by using task prompts based on the segment anything model(SAM)and contrastive language-image pretraining(CLIP).Meanwhile,we adopt Bezier curve to enhance the mask to improve the segmentation accuracy.Second,we have differentiated semantic compression and transmission approaches for segmented content.Third,we fuse different semantic information based on the conditional diffusion model to generate high-quality images that satisfy the users'specific task requirements.Finally,the experimental results show that the proposed system compresses the semantic information effectively and improves the robustness of semantic communication.
基金Sponsored by the Fundamental Research Funds for the Central Universities (Grant No. HIT. NSRIF. 201149)the National Natural Science Foundation of China (Grant No. 61071104)
文摘To improve the performance of MIMO-OFDM video transmission systems on the limitation of wireless bandwidth and transmitting power,we propose an adaptive joint resource allocation algorithm with unequal error protection(UEP) based on joint source-channel coding(JSCC) according to H.264 video compression standard and RCPT channel coding.According to different thresholds of the average SNR of subchannels,the algorithm dynamically allocates the source coding parameters of original video data and the channel coding parameters of RCPT,which realizes UEP for the compressed video data of different importance.Through the bit and power allocation based on MQAM modulation and the subspace allocation based on beamforming technology for different subcarriers,an adaptive joint resource allocation making full use of space-frequency domain resources have been realized.The simulation results indicate that the algorithm improves the adaptability of video transmission systems in different wireless environments and the quality of video retrieval.
文摘A robust progressive image transmission scheme over broadband wireless fading channels is developed for 4th generation wireless communication systems (4G) in this paper. The proposed scheme is based on space-time block coded orthogonal frequency-division multiplexing (OFDM) with 4 transmit antennas and 2 receive antennas and uses a simplified minimum mean square error (MMSE) detector instead of maximum likelihood (ML) detectors. Considering DCT is simpler and more widely applied in the industry than wavelet transforms, a progressive image compression method based on DCT called mean-subtract embedded DCT (MSEDCT) is developed, with a simple mean-subtract method for the redundancy of reorganized DC blocks in addition to a structure similar to the embedded zerotree wavelet coding (EZW) method. Then after analyzing and testing bit importance of the progressive MSEDCT bitstreams, the layered unequal error protection method of joint source-channels coding based on Reed-Solomon (RS) codes is used to protect different parts of bitstreams, providing different QoS assurances and good flexibility. Simulation experiments show our proposed scheme can effectively degrade fading effects and obtain better image transmission effects with 10 -20 dB average peak-sig- nal-noise-ratio (PSNR) gains at the median Eb/No than those schemes without space-time coded OFDM or equal error protections with space-time coded OFDM.
文摘For two-way video communications over wireless channels using the automatic repeat request (ARQ) retransmission scheme, TMN8 rate control scheme is not effective in minimizing the number of frames skipped and cannot guarantee video quality during the retransmissions of error packets. This paper presents a joint source channel bit allocation scheme that allocates target bits according to encoder buffer fullness and estimation of channel condition by retransmission information. The results obtained from implementing our scheme in H.263+coder over wireless channel model show that our proposed scheme encodes the video sequences with lower and steadier buffer delay, fewer frames skipped and higher average PSNR compared to TMN8.