BACKGROUND The treatment of gastric cancer(GC)has caused an enormous social burden worldwide.Accumulating studies have reported that N6-methyladenosine(m6A)is closely related to tumor progression.METTL5 is a m6A methy...BACKGROUND The treatment of gastric cancer(GC)has caused an enormous social burden worldwide.Accumulating studies have reported that N6-methyladenosine(m6A)is closely related to tumor progression.METTL5 is a m6A methyltransferase that plays a pivotal role in maintaining the metabolic stability of cells.However,its aberrant regulation in GC has not been fully elucidated.AIM To excavate the role of METTL5 in the development of GC.METHODS METTL5 expression and clinicopathological characteristics were analyzed via The Cancer Genome Atlas dataset and further verified via immunohistochemistry,western blotting and real-time quantitative polymerase chain reaction in tissue microarrays and clinical samples.The tumor-promoting effect of METTL5 on HGC-27 and AGS cells was explored in vitro by Cell Counting Kit-8 assays,colony formation assays,scratch healing assays,transwell assays and flow cytometry.The tumor-promoting role of METTL5 in vivo was evaluated in a xenograft tumor model.The EpiQuik m6A RNA Methylation Quantification Kit was used for m6A quantification.Next,liquid chromatography-mass spectrometry was used to evaluate the association between METTL5 and sphingomyelin metabolism,which was confirmed by Enzyme-linked immunosorbent assay and rescue tests.In addition,we investigated whether METTL5 affects the sensitivity of GC cells to cisplatin via colony formation and transwell experiments.RESULTS Our research revealed substantial upregulation of METTL5,which suggested a poor prognosis of GC patients.Increased METTL5 expression indicated distant lymph node metastasis,advanced cancer stage and pathological grade.An increased level of METTL5 correlated with a high degree of m6A methylation.METTL5 markedly promotes the proliferation,migration,and invasion of GC cells in vitro.METTL5 also promotes the growth of GC in animal models.METTL5 knockdown resulted in significant changes in sphingomyelin metabolism,which implies that METTL5 may impact the development of GC via sphingomyelin metabolism.In addition,high METTL5 expression led to cisplatin resistance.CONCLUSION METTL5 was found to be an oncogenic driver of GC and may be a new target for therapy since it facilitates GC carcinogenesis through sphingomyelin metabolism and cisplatin resistance.展开更多
Gastric cancer(GC)is a global health problem and a leading cause of cancerrelated deaths,with its mortality rate ranking third among all cancers.The etiology and progression of GC are characterized by a complex interp...Gastric cancer(GC)is a global health problem and a leading cause of cancerrelated deaths,with its mortality rate ranking third among all cancers.The etiology and progression of GC are characterized by a complex interplay of genetic and epigenetic changes,which present challenges for its early diagnosis and effective treatment.Elucidating the mechanisms underlying the occurrence and development of GC and identifying novel biomarkers for early detection and prognosis are crucial to improving patient outcomes.This editorial examines the role of methyltransferase-like 5(METTL5)in the progression of GC through sphingomyelin metabolism by considering an article published by Zhang et al in the World Journal of Gastrointestinal Oncology in 2024,which is entitled“METTL5 promotes GC progression via sphingomyelin metabolism”.These authors investigated the biological behavior of METTL5 in GC by examining its expression patterns,clinical relevance,functional effect,and potential mechanisms,as well as its response to chemotherapy.This editorial provides valuable insights into the role of METTL5 in the progression of GC and its potential as a therapeutic target.展开更多
In Alzheimer’s disease,the transporter P-glycoprotein is responsible for the clearance of amyloid-βin the brain.Amyloid-βcorrelates with the sphingomyelin metabolism,and sphingomyelin participates in the regulation...In Alzheimer’s disease,the transporter P-glycoprotein is responsible for the clearance of amyloid-βin the brain.Amyloid-βcorrelates with the sphingomyelin metabolism,and sphingomyelin participates in the regulation of P-glycoprotein.The amyloid cascade hypothesis describes amyloid-βas the central cause of Alzheimer’s disease neuropathology.Better understanding of the change of P-glycoprotein and sphingomyelin along with amyloid-βand their potential association in the pathological process of Alzheimer’s disease is critical.Herein,we found that the expression of P-glycoprotein in APP/PS1 mice tended to increase with age and was significantly higher at 9 and 12 months of age than that in wild-type mice at comparable age.The functionality of P-glycoprotein of APP/PS1 mice did not change with age but was significantly lower than that of wild-type mice at 12 months of age.Decreased sphingomyelin levels,increased ceramide levels,and the increased expression and activity of neutral sphingomyelinase 1 were observed in APP/PS1 mice at 9 and 12 months of age compared with the levels in wild-type mice.Similar results were observed in the Alzheimer’s disease mouse model induced by intracerebroventricular injection of amyloid-β1-42 and human cerebral microvascular endothelial cells treated with amyloid-β1-42.In human cerebral microvascular endothelial cells,neutral sphingomyelinase 1 inhibitor interfered with the changes of sphingomyelin metabolism and P-glycoprotein expression and functionality caused by amyloid-β1-42 treatment.Neutral sphingomyelinase 1 regulated the expression and functionality of P-glycoprotein and the levels of sphingomyelin and ceramide.Together,these findings indicate that neutral sphingomyelinase 1 regulates the expression and function of P-glycoprotein via the sphingomyelin/ceramide pathway.These studies may serve as new pursuits for the development of anti-Alzheimer’s disease drugs.展开更多
Alkaline sphingomyelinase cleaves phosphocholine from sphingomyelin, platelet-activating factor, lysophosphatidylcholine, and less effectively phosphatidyl-choline. The enzyme shares no structure similarities with aci...Alkaline sphingomyelinase cleaves phosphocholine from sphingomyelin, platelet-activating factor, lysophosphatidylcholine, and less effectively phosphatidyl-choline. The enzyme shares no structure similarities with acid or neutral sphingomyelinase but belongs to ectonucleotide pyrophosphatase/phosphodiesterase(NPP) family and therefore is also called NPP7 nowadays. The enzyme is expressed in the intestinal mucosa in many species and additionally in human liver. The enzyme in the intestinal tract has been extensively studied but not that in human liver. Studies on intestinal alkaline sphingomyelinase show that it inhibits colonic tumorigenesis and inflammation, hydrolyses dietary sphingomyelin, and stimulates cholesterol absorption. The review aims to summarize the current knowledge on liver alkaline sphingomyelinase in human and strengthen the necessity for close study on this unique human enzyme in hepatobiliary diseases.展开更多
The interaction of trivalent lanthanide ions and divalent calcium ions with sph-'ngomyelm bilayer has been studied by FT-Raman spectroscopy.The results showed that the bonding of metal ions to the phosphate group ...The interaction of trivalent lanthanide ions and divalent calcium ions with sph-'ngomyelm bilayer has been studied by FT-Raman spectroscopy.The results showed that the bonding of metal ions to the phosphate group of sphingomyelin bi-iayer,either La3+or Ca2+did not change the conformation of the choline group,that is,O-C-C-N+is still in its gauche conformation.The presence of metal ions changed the states of the interfacial region from liquid-like to amorphous state and even to crystalline.They increased the fluidity of acyl chains of sphingomyelin bilaver and made them packed disorderly.展开更多
Sphingolipids, a new class of lipid mediators, are involved in a variety of important physiological and pathological processes. Sphingomyelin synthase (SMS) is an enzyme to convert the ceramide (Cer.) and phosphat...Sphingolipids, a new class of lipid mediators, are involved in a variety of important physiological and pathological processes. Sphingomyelin synthase (SMS) is an enzyme to convert the ceramide (Cer.) and phosphatidylcholine into sphingomyelin (SM) and diacylglycerol, which plays a key role in sphingolipid biosynthesis. Two SMS isoforms, SMS1 and SMS2, have been identified with different subceUular localizations and expression level in tissues. Previous studies have shown that SMS may serve as a potential therapeutic target for the treatment of various diseases, such as cardiovascular and metabolic diseases. Thus, there is an urgent need for a rapid and sensitive method for SMS activity analysis. In our study, we developed a novel method for SMS activity by monitoring the appearance of the product, NBD-SM, in the tissue culture medium or blood and applied this method in cells and mice. In Huh7 cells, the interassay coefficient of variation of the SMS activity assay was (3.60±0.07)% . In wild type (WT) mice, we observed accumulation of NBD-SM in blood in a time dependent fashion. In SMS2 KO mice, NBD-SM in plasma collected at 5- (0%, P〈0.01), 30- (16%, P〈0.01), and 60 min (21%, P〈0.01) after injection of fluorescence liposome solution was significantly decreased compared with WT mice. However, in SMS1 KO mice, NBD-SM in plasma collected 5- and 30 min is similar to that in WT mice. Our results suggest that this method could be used for SMS activity measurement in vitro and in vivo.展开更多
This report investigated the ordering of the alky chain of sphingomyelin (SMs) monolayers induced by cholesterol at the air/water interface using high-resolution broadband sum frequency generation vibrational spectr...This report investigated the ordering of the alky chain of sphingomyelin (SMs) monolayers induced by cholesterol at the air/water interface using high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The SFG spectra of the three nature sphingomyelin/cholesterol mixture monolayers with two concentrations of the cholesterol at the air/water interface are performed under different polarization combination. A new resolved CH2 symmetric stretching (d+, ~2834 cm-1) and the CH3 symmetric stretching (r+, ~2874 cm-1) mode are applied to characterize the conformational order in the sphingomyelin/cholesterol mixture monolayers. It was found that the cholesterol make the sphingosine backbones more conformational order. During this process, the conformational order of the N-linked acyl chain remains unaltered. Moreover, the sphingosine backbones of SMs have much larger contributions to gauche defects of SMs than one in the N-linked acyl chain. These results presented here not only shed lights on understanding of the interactions of sphingomyelin molecules with cholesterol molecules at interface but also demonstrates the ability of HR-BB-SFG to probe such complicated molecular systems.展开更多
A novel series of eight SMS and sPLA2 dual inhibitors containing indole and a-amino cyanide fragments of different length and substitution position was synthesized and evaluated by three different in vitro assays. Bio...A novel series of eight SMS and sPLA2 dual inhibitors containing indole and a-amino cyanide fragments of different length and substitution position was synthesized and evaluated by three different in vitro assays. Biological evaluation showed that all compounds provided inhibitory effects against SMS (about 50% inhibition at 100 μmol/L) and sPLA2 (14-32 μmol/L). All the compounds had the SMS activity better than the positive control compound D609 in SMS2 homogenate, with compounds 5b and fie ideal for liver homogenate and SMS2 high expression cell homogenate, respectively.展开更多
Sphingomyelin synthase (SMS) produces sphingomyelin and diacylglycerol from ceramide and phosphatidyl- choline. It plays an important role in cell survival and apoptosis, inflammation, and lipid homeostasis, and the...Sphingomyelin synthase (SMS) produces sphingomyelin and diacylglycerol from ceramide and phosphatidyl- choline. It plays an important role in cell survival and apoptosis, inflammation, and lipid homeostasis, and therefore has been noticed in recent years as a novel potential drug target. In this study, we combined homology modeling, molecular docking, molecular dynamics simulation, and normal mode analysis to derive a three-dimensional struc- ture of human sphingomyelin synthase (hSMS 1) in complex with sphingomyelin. Our model provides a reasonable explanation on the catalytic mechanism of hSMS 1. It can also explain the high selectivity of hSMS 1 towards phos- phocholine and sphingomyelin as well as some other known experimental results about hSMS1. Moreover, we also derived a complex model of D609, the only known small-molecule inhibitor of hSMS 1 so far. Our hSMS 1 model may serve as a reasonable structural basis for the discovery of more effective small-molecule inhibitors of hSMS 1.展开更多
With the wide application of rare earth in agriculture, medicament, especially theapplication of Gd-DTPA as nuclear magnetic resonance image reagent in clinical prac-tice, the studies on the toxicology in biological b...With the wide application of rare earth in agriculture, medicament, especially theapplication of Gd-DTPA as nuclear magnetic resonance image reagent in clinical prac-tice, the studies on the toxicology in biological body, as well as the study on the use asinformative probes instead of divalent calcium ion in biological and biochemical researchhave attracted intensive concern.展开更多
In response to spinal surgery,neurons secrete a large amount of substance P into the epidural area.Substance P is involved in macrophage differentiation and fibrotic disease.However,the specific roles and mechanisms o...In response to spinal surgery,neurons secrete a large amount of substance P into the epidural area.Substance P is involved in macrophage differentiation and fibrotic disease.However,the specific roles and mechanisms of substance P in epidural fibrosis remain unclear.In this study,we established a mouse model of L1–L3 laminectomy and found that dorsal root ganglion neurons and the macrophages infiltrating into the wound area released sphingolipids.In vitro experiments revealed that type 1 macrophages secreted substance P,which promoted differentiation of type 1 macrophages towards a type 2 phenotype.High-throughput mRNA-seq analysis revealed that the sphingolipid metabolic pathway may be involved in the regulation of type 2 macrophages by substance P.Specifically,sphingomyelin synthase 2,a component of the sphingolipid metabolic pathway,promoted M2 differentiation in substance P-treated macrophages,while treating the macrophages with LY93,a sphingomyelin synthase 2 inhibitor,suppressed M2 differentiation.In addition,substance P promoted the formation of neutrophil extracellular traps,which further boosted M2 differentiation.Blocking substance P with the neurokinin receptor 1 inhibitor RP67580 decreased the number of M2 macrophages in the wound area after spinal surgery and alleviated epidural fibrosis,as evidenced by decreased fibronectin,α-smooth muscle actin,and collagen I in the scar tissue.These results demonstrated that substance P promotes M2 macrophage differentiation in epidural fibrosis via sphingomyelin synthase 2 and neutrophil extracellular traps.These findings provide a novel strategy for the treatment of epidural fibrosis.展开更多
Receptor tyrosine kinase-like orphan receptor 2(ROR2)has a vital role in osteogenesis.However,the mechanism underlying the regulation of ROR2 in osteogenic differentiation is still poorly comprehended.A previous study...Receptor tyrosine kinase-like orphan receptor 2(ROR2)has a vital role in osteogenesis.However,the mechanism underlying the regulation of ROR2 in osteogenic differentiation is still poorly comprehended.A previous study by our research group showed that a novel compound heterozygous ROR2 variation accounted for the autosomal recessive Robinow syndrome(ARRS).This study attempted to explore the impact of the ROR2:c.904C>T variant specifically on the osteogenic differentiation of BMSCs.Methods:Coimmunoprecipitation(CoIP)-western blotting was carried out to identify the interaction between ROR2 and Wnt5a.Double-immunofluorescence staining was used for determining the expressions and co-localization of ROR2 and Wnt5a in bone marrow mesenchymal stem cells(BMSCs).Western blot(WB)analysis and quantitative reverse transcription polymerase chain reaction(RT-qPCR)were conducted to identify the expression levels of ROR2 in the BMSCs transfected with LV-shROR2 or LV-ROR2-c.904C>T.The alkaline phosphatase(ALP)activity was detected,and Alizarin Red S staining was done for evaluating the osteogenic differentiation of BMSCs.RT-qPCR was employed to identify the expression of the sphingomyelin synthase 1(SMS1)mRNA in the BMSCs transfected with LV-shROR2 or LV-ROR2-c.904C>T and the mRNA expression levels of Runt-related transcription factor 2(RUNX2),osteocalcin(OCN),and osteopontin(OPN).WB was performed to confirm the protein expressions of extracellular regulated protein kinases1(ERK),P-ERK,Smad family member1/5/8(Smad1/5/8),P-Smad1/5/8,P-P38,P38,RUNX2,OCN,and OPN in the BMSCs transfected with LV-shROR2/LV-ROR2-c.904C>T and sphingomyelin(SM).Results:The ROR2:c.904C>T mutant altered the subcellular localization of the ROR2 protein,which caused an impaired interaction between ROR2 and Wnt5a.The depletion of ROR2 restricted the osteogenic differentiation capability of BMSCs and downregulated the expression of SMS1.SM treatment could reverse the inhibition of osteoblastic differentiation in ROR2-depleted BMSCs.Conclusion:The findings of this work revealed that the ROR2:c.904C>T variant led to the loss of function of ROR2,which impaired the interaction between ROR2 and Wnt5a and also controlled the osteogenic differentiation capability of BMSCs.Furthermore,SM was revealed to be engaged in the osteoblastic differentiation of BMSCs regulated by ROR2,which renders SM a potential target in the therapy for ARRS.展开更多
Prenatal alcohol exposure, especially during early pregnancy, can lead to fetal alcohol syndrome. The pharmacological and toxicological mechanisms of ethanol are related to the effects of ceramide In this study, we es...Prenatal alcohol exposure, especially during early pregnancy, can lead to fetal alcohol syndrome. The pharmacological and toxicological mechanisms of ethanol are related to the effects of ceramide In this study, we established an alcohol exposure model in wild-type mice and in knockout mice for the key enzyme involved in ceramide metabolism, sphingomyelin synthase 2. This model received daily intragastric administration of 25% ethanol, and pups were used at postnatal days 0, 7, 14, 30 for experiments. Serology and immunofluorescence staining found that ethanol exposure dose-dependently reduced blood sphingomyelin levels in two genotypes of pups, and increased neural cell proliferation and the number of new neurons in the hippocampal dentate gyrus. Western blot analysis showed that the relative expression level of protein kinase C e increased in two genotypes of pups after ethanol exposure. Compared with witd-type pups, the expression level of the important activator protein of the ceramide/ceramide-l-phosphate pathway, protein kinase C a, was reduced in the hippocampus of sphingomyelin synthase 2 knockouts. Our findings illustrate that ceramide is involved in alcohol-induced neural proliferation in the hippocampal dentate gyrus of pups after prenatal ethanol exposure, and the mechanism may be associated with increased ex- pression of protein kinase C a activating the ceramide/ceramide-l-phosphate pathway.展开更多
文摘BACKGROUND The treatment of gastric cancer(GC)has caused an enormous social burden worldwide.Accumulating studies have reported that N6-methyladenosine(m6A)is closely related to tumor progression.METTL5 is a m6A methyltransferase that plays a pivotal role in maintaining the metabolic stability of cells.However,its aberrant regulation in GC has not been fully elucidated.AIM To excavate the role of METTL5 in the development of GC.METHODS METTL5 expression and clinicopathological characteristics were analyzed via The Cancer Genome Atlas dataset and further verified via immunohistochemistry,western blotting and real-time quantitative polymerase chain reaction in tissue microarrays and clinical samples.The tumor-promoting effect of METTL5 on HGC-27 and AGS cells was explored in vitro by Cell Counting Kit-8 assays,colony formation assays,scratch healing assays,transwell assays and flow cytometry.The tumor-promoting role of METTL5 in vivo was evaluated in a xenograft tumor model.The EpiQuik m6A RNA Methylation Quantification Kit was used for m6A quantification.Next,liquid chromatography-mass spectrometry was used to evaluate the association between METTL5 and sphingomyelin metabolism,which was confirmed by Enzyme-linked immunosorbent assay and rescue tests.In addition,we investigated whether METTL5 affects the sensitivity of GC cells to cisplatin via colony formation and transwell experiments.RESULTS Our research revealed substantial upregulation of METTL5,which suggested a poor prognosis of GC patients.Increased METTL5 expression indicated distant lymph node metastasis,advanced cancer stage and pathological grade.An increased level of METTL5 correlated with a high degree of m6A methylation.METTL5 markedly promotes the proliferation,migration,and invasion of GC cells in vitro.METTL5 also promotes the growth of GC in animal models.METTL5 knockdown resulted in significant changes in sphingomyelin metabolism,which implies that METTL5 may impact the development of GC via sphingomyelin metabolism.In addition,high METTL5 expression led to cisplatin resistance.CONCLUSION METTL5 was found to be an oncogenic driver of GC and may be a new target for therapy since it facilitates GC carcinogenesis through sphingomyelin metabolism and cisplatin resistance.
基金Supported by Jiangsu Commission of Health,No.LKZ2023012Social Development Project of Zhenjiang City,No.SS2023011.
文摘Gastric cancer(GC)is a global health problem and a leading cause of cancerrelated deaths,with its mortality rate ranking third among all cancers.The etiology and progression of GC are characterized by a complex interplay of genetic and epigenetic changes,which present challenges for its early diagnosis and effective treatment.Elucidating the mechanisms underlying the occurrence and development of GC and identifying novel biomarkers for early detection and prognosis are crucial to improving patient outcomes.This editorial examines the role of methyltransferase-like 5(METTL5)in the progression of GC through sphingomyelin metabolism by considering an article published by Zhang et al in the World Journal of Gastrointestinal Oncology in 2024,which is entitled“METTL5 promotes GC progression via sphingomyelin metabolism”.These authors investigated the biological behavior of METTL5 in GC by examining its expression patterns,clinical relevance,functional effect,and potential mechanisms,as well as its response to chemotherapy.This editorial provides valuable insights into the role of METTL5 in the progression of GC and its potential as a therapeutic target.
基金supported by the National Key Research and Development Program of ChinaNos.2021YFC2 701800 and 2021YFC2 701805 (to QY)+2 种基金Open Research Fund of State Key Laboratory of Genetic EngineeringFudan UniversityNo.SKLGE-21 19 (to TXH and QY)
文摘In Alzheimer’s disease,the transporter P-glycoprotein is responsible for the clearance of amyloid-βin the brain.Amyloid-βcorrelates with the sphingomyelin metabolism,and sphingomyelin participates in the regulation of P-glycoprotein.The amyloid cascade hypothesis describes amyloid-βas the central cause of Alzheimer’s disease neuropathology.Better understanding of the change of P-glycoprotein and sphingomyelin along with amyloid-βand their potential association in the pathological process of Alzheimer’s disease is critical.Herein,we found that the expression of P-glycoprotein in APP/PS1 mice tended to increase with age and was significantly higher at 9 and 12 months of age than that in wild-type mice at comparable age.The functionality of P-glycoprotein of APP/PS1 mice did not change with age but was significantly lower than that of wild-type mice at 12 months of age.Decreased sphingomyelin levels,increased ceramide levels,and the increased expression and activity of neutral sphingomyelinase 1 were observed in APP/PS1 mice at 9 and 12 months of age compared with the levels in wild-type mice.Similar results were observed in the Alzheimer’s disease mouse model induced by intracerebroventricular injection of amyloid-β1-42 and human cerebral microvascular endothelial cells treated with amyloid-β1-42.In human cerebral microvascular endothelial cells,neutral sphingomyelinase 1 inhibitor interfered with the changes of sphingomyelin metabolism and P-glycoprotein expression and functionality caused by amyloid-β1-42 treatment.Neutral sphingomyelinase 1 regulated the expression and functionality of P-glycoprotein and the levels of sphingomyelin and ceramide.Together,these findings indicate that neutral sphingomyelinase 1 regulates the expression and function of P-glycoprotein via the sphingomyelin/ceramide pathway.These studies may serve as new pursuits for the development of anti-Alzheimer’s disease drugs.
基金supported from grants of Swedish Research CouncilSwedish Cancerfonden+2 种基金Albert P?hlsson FoundationCrafoord Foundationfoundation of Region Skane University Hospital, Lund, Sweden
文摘Alkaline sphingomyelinase cleaves phosphocholine from sphingomyelin, platelet-activating factor, lysophosphatidylcholine, and less effectively phosphatidyl-choline. The enzyme shares no structure similarities with acid or neutral sphingomyelinase but belongs to ectonucleotide pyrophosphatase/phosphodiesterase(NPP) family and therefore is also called NPP7 nowadays. The enzyme is expressed in the intestinal mucosa in many species and additionally in human liver. The enzyme in the intestinal tract has been extensively studied but not that in human liver. Studies on intestinal alkaline sphingomyelinase show that it inhibits colonic tumorigenesis and inflammation, hydrolyses dietary sphingomyelin, and stimulates cholesterol absorption. The review aims to summarize the current knowledge on liver alkaline sphingomyelinase in human and strengthen the necessity for close study on this unique human enzyme in hepatobiliary diseases.
基金Supported by the National Natural Sciences Foundation of China
文摘The interaction of trivalent lanthanide ions and divalent calcium ions with sph-'ngomyelm bilayer has been studied by FT-Raman spectroscopy.The results showed that the bonding of metal ions to the phosphate group of sphingomyelin bi-iayer,either La3+or Ca2+did not change the conformation of the choline group,that is,O-C-C-N+is still in its gauche conformation.The presence of metal ions changed the states of the interfacial region from liquid-like to amorphous state and even to crystalline.They increased the fluidity of acyl chains of sphingomyelin bilaver and made them packed disorderly.
基金Shanghai Natural Science Fund(Grant No.09ZR140430)partially supported by grants National Institute of Health(Grant No.HL69817),VA Merit 00090001
文摘Sphingolipids, a new class of lipid mediators, are involved in a variety of important physiological and pathological processes. Sphingomyelin synthase (SMS) is an enzyme to convert the ceramide (Cer.) and phosphatidylcholine into sphingomyelin (SM) and diacylglycerol, which plays a key role in sphingolipid biosynthesis. Two SMS isoforms, SMS1 and SMS2, have been identified with different subceUular localizations and expression level in tissues. Previous studies have shown that SMS may serve as a potential therapeutic target for the treatment of various diseases, such as cardiovascular and metabolic diseases. Thus, there is an urgent need for a rapid and sensitive method for SMS activity analysis. In our study, we developed a novel method for SMS activity by monitoring the appearance of the product, NBD-SM, in the tissue culture medium or blood and applied this method in cells and mice. In Huh7 cells, the interassay coefficient of variation of the SMS activity assay was (3.60±0.07)% . In wild type (WT) mice, we observed accumulation of NBD-SM in blood in a time dependent fashion. In SMS2 KO mice, NBD-SM in plasma collected at 5- (0%, P〈0.01), 30- (16%, P〈0.01), and 60 min (21%, P〈0.01) after injection of fluorescence liposome solution was significantly decreased compared with WT mice. However, in SMS1 KO mice, NBD-SM in plasma collected 5- and 30 min is similar to that in WT mice. Our results suggest that this method could be used for SMS activity measurement in vitro and in vivo.
基金the National Natural Science Foundation of China(No.21227802)the National Natural Science Foundation of China(Nos. 21503235, 21673251)the ICCAS for Start-up Funding
文摘This report investigated the ordering of the alky chain of sphingomyelin (SMs) monolayers induced by cholesterol at the air/water interface using high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The SFG spectra of the three nature sphingomyelin/cholesterol mixture monolayers with two concentrations of the cholesterol at the air/water interface are performed under different polarization combination. A new resolved CH2 symmetric stretching (d+, ~2834 cm-1) and the CH3 symmetric stretching (r+, ~2874 cm-1) mode are applied to characterize the conformational order in the sphingomyelin/cholesterol mixture monolayers. It was found that the cholesterol make the sphingosine backbones more conformational order. During this process, the conformational order of the N-linked acyl chain remains unaltered. Moreover, the sphingosine backbones of SMs have much larger contributions to gauche defects of SMs than one in the N-linked acyl chain. These results presented here not only shed lights on understanding of the interactions of sphingomyelin molecules with cholesterol molecules at interface but also demonstrates the ability of HR-BB-SFG to probe such complicated molecular systems.
基金The work was funded by the National Natural Science Foundation of China,Specialized Research Fund for the Doctoral Program of Higher Education,Chinese Ministry of Education,the open grant of the State Key Laboratory of Bio-organic and Natural Products Chemistry,CAS,and open grant of Institute of Bioscience,Fudan University
文摘A novel series of eight SMS and sPLA2 dual inhibitors containing indole and a-amino cyanide fragments of different length and substitution position was synthesized and evaluated by three different in vitro assays. Biological evaluation showed that all compounds provided inhibitory effects against SMS (about 50% inhibition at 100 μmol/L) and sPLA2 (14-32 μmol/L). All the compounds had the SMS activity better than the positive control compound D609 in SMS2 homogenate, with compounds 5b and fie ideal for liver homogenate and SMS2 high expression cell homogenate, respectively.
基金Project supported by the National Natural Science Foundation of China (Nos.30973641, 20902013), a special research fund for the Doctoral Program of Higher Education from the Chinese Ministry of Education (No. 20090071110054) and an open grant from the State Key Laboratory of Bio-organic and Natural Products Chemistry, Chinese Academy of Sciences.
文摘Sphingomyelin synthase (SMS) produces sphingomyelin and diacylglycerol from ceramide and phosphatidyl- choline. It plays an important role in cell survival and apoptosis, inflammation, and lipid homeostasis, and therefore has been noticed in recent years as a novel potential drug target. In this study, we combined homology modeling, molecular docking, molecular dynamics simulation, and normal mode analysis to derive a three-dimensional struc- ture of human sphingomyelin synthase (hSMS 1) in complex with sphingomyelin. Our model provides a reasonable explanation on the catalytic mechanism of hSMS 1. It can also explain the high selectivity of hSMS 1 towards phos- phocholine and sphingomyelin as well as some other known experimental results about hSMS1. Moreover, we also derived a complex model of D609, the only known small-molecule inhibitor of hSMS 1 so far. Our hSMS 1 model may serve as a reasonable structural basis for the discovery of more effective small-molecule inhibitors of hSMS 1.
基金Project supported by the National Natural Science Foundation of China.
文摘With the wide application of rare earth in agriculture, medicament, especially theapplication of Gd-DTPA as nuclear magnetic resonance image reagent in clinical prac-tice, the studies on the toxicology in biological body, as well as the study on the use asinformative probes instead of divalent calcium ion in biological and biochemical researchhave attracted intensive concern.
基金supported by the National Natural Science Foundation of China,Nos.82172486(to JL),82171738(to MSZ),81671563(to MSZ)Jiangsu Provincial Commission of Health and Family Planning,No.JSWST-028(to JL)+1 种基金"Six One"Project of Jiangsu Province,No.LGY2016018(to JL)Jiangsu Provincial Personnel Department"the Great of Six Talented Man Peak"Project,No.WSW-040(to JL)。
文摘In response to spinal surgery,neurons secrete a large amount of substance P into the epidural area.Substance P is involved in macrophage differentiation and fibrotic disease.However,the specific roles and mechanisms of substance P in epidural fibrosis remain unclear.In this study,we established a mouse model of L1–L3 laminectomy and found that dorsal root ganglion neurons and the macrophages infiltrating into the wound area released sphingolipids.In vitro experiments revealed that type 1 macrophages secreted substance P,which promoted differentiation of type 1 macrophages towards a type 2 phenotype.High-throughput mRNA-seq analysis revealed that the sphingolipid metabolic pathway may be involved in the regulation of type 2 macrophages by substance P.Specifically,sphingomyelin synthase 2,a component of the sphingolipid metabolic pathway,promoted M2 differentiation in substance P-treated macrophages,while treating the macrophages with LY93,a sphingomyelin synthase 2 inhibitor,suppressed M2 differentiation.In addition,substance P promoted the formation of neutrophil extracellular traps,which further boosted M2 differentiation.Blocking substance P with the neurokinin receptor 1 inhibitor RP67580 decreased the number of M2 macrophages in the wound area after spinal surgery and alleviated epidural fibrosis,as evidenced by decreased fibronectin,α-smooth muscle actin,and collagen I in the scar tissue.These results demonstrated that substance P promotes M2 macrophage differentiation in epidural fibrosis via sphingomyelin synthase 2 and neutrophil extracellular traps.These findings provide a novel strategy for the treatment of epidural fibrosis.
基金funded by the Project Funded by China Postdoctoral Science Foundation(No.2022T150445)the Beijing Hospitals Authority Youth Programme(No.QML20211401)+1 种基金the Young Talent Foundation of PLA General Hospital(2019-YQPY-002)Beijing Nova Program(Z201100006820057).
文摘Receptor tyrosine kinase-like orphan receptor 2(ROR2)has a vital role in osteogenesis.However,the mechanism underlying the regulation of ROR2 in osteogenic differentiation is still poorly comprehended.A previous study by our research group showed that a novel compound heterozygous ROR2 variation accounted for the autosomal recessive Robinow syndrome(ARRS).This study attempted to explore the impact of the ROR2:c.904C>T variant specifically on the osteogenic differentiation of BMSCs.Methods:Coimmunoprecipitation(CoIP)-western blotting was carried out to identify the interaction between ROR2 and Wnt5a.Double-immunofluorescence staining was used for determining the expressions and co-localization of ROR2 and Wnt5a in bone marrow mesenchymal stem cells(BMSCs).Western blot(WB)analysis and quantitative reverse transcription polymerase chain reaction(RT-qPCR)were conducted to identify the expression levels of ROR2 in the BMSCs transfected with LV-shROR2 or LV-ROR2-c.904C>T.The alkaline phosphatase(ALP)activity was detected,and Alizarin Red S staining was done for evaluating the osteogenic differentiation of BMSCs.RT-qPCR was employed to identify the expression of the sphingomyelin synthase 1(SMS1)mRNA in the BMSCs transfected with LV-shROR2 or LV-ROR2-c.904C>T and the mRNA expression levels of Runt-related transcription factor 2(RUNX2),osteocalcin(OCN),and osteopontin(OPN).WB was performed to confirm the protein expressions of extracellular regulated protein kinases1(ERK),P-ERK,Smad family member1/5/8(Smad1/5/8),P-Smad1/5/8,P-P38,P38,RUNX2,OCN,and OPN in the BMSCs transfected with LV-shROR2/LV-ROR2-c.904C>T and sphingomyelin(SM).Results:The ROR2:c.904C>T mutant altered the subcellular localization of the ROR2 protein,which caused an impaired interaction between ROR2 and Wnt5a.The depletion of ROR2 restricted the osteogenic differentiation capability of BMSCs and downregulated the expression of SMS1.SM treatment could reverse the inhibition of osteoblastic differentiation in ROR2-depleted BMSCs.Conclusion:The findings of this work revealed that the ROR2:c.904C>T variant led to the loss of function of ROR2,which impaired the interaction between ROR2 and Wnt5a and also controlled the osteogenic differentiation capability of BMSCs.Furthermore,SM was revealed to be engaged in the osteoblastic differentiation of BMSCs regulated by ROR2,which renders SM a potential target in the therapy for ARRS.
基金supported by the Technological Project of Science and Technology Department of Henan Province in China,No.122102310205the National Natural Science Foundation of China,No.30771140,31070952,U1204311
文摘Prenatal alcohol exposure, especially during early pregnancy, can lead to fetal alcohol syndrome. The pharmacological and toxicological mechanisms of ethanol are related to the effects of ceramide In this study, we established an alcohol exposure model in wild-type mice and in knockout mice for the key enzyme involved in ceramide metabolism, sphingomyelin synthase 2. This model received daily intragastric administration of 25% ethanol, and pups were used at postnatal days 0, 7, 14, 30 for experiments. Serology and immunofluorescence staining found that ethanol exposure dose-dependently reduced blood sphingomyelin levels in two genotypes of pups, and increased neural cell proliferation and the number of new neurons in the hippocampal dentate gyrus. Western blot analysis showed that the relative expression level of protein kinase C e increased in two genotypes of pups after ethanol exposure. Compared with witd-type pups, the expression level of the important activator protein of the ceramide/ceramide-l-phosphate pathway, protein kinase C a, was reduced in the hippocampus of sphingomyelin synthase 2 knockouts. Our findings illustrate that ceramide is involved in alcohol-induced neural proliferation in the hippocampal dentate gyrus of pups after prenatal ethanol exposure, and the mechanism may be associated with increased ex- pression of protein kinase C a activating the ceramide/ceramide-l-phosphate pathway.