The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud...The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.展开更多
The non-uniformity of gas–liquid mixture is a critical issue which leads to the heat transfer deterioration of spiralwound heat exchangers(SWHEs).Two-phase mass flow rate and the content of gas are important paramete...The non-uniformity of gas–liquid mixture is a critical issue which leads to the heat transfer deterioration of spiralwound heat exchangers(SWHEs).Two-phase mass flow rate and the content of gas are important parameters as well as structural parameters which have prominent influences on flow distribution uniformity of SWHE shell side.In order to investigate the influences of these parameters,an experimental test system was built using water and air as mediums and a novel distributor named"tubes distributor"was designed.The effects of mass flow rate and the content of gas on two-phase distribution performance were analyzed,where the mass flow rate ranged from 28.4 to 171.9 kg·h-1 and the content of gas changed from 0.2 to 0.8,respectively.The results showed that the mixture mass flow rate considerably influenced the liquid distribution than that of gas phase and the larger mass flow rate exhibited the better distribution uniformity of two-phase flow.It was also found that the tubes distributor had the better two-phase uniformity when the content of gas was around 0.4.Tube diameter played an important role in the distribution of gas phase and slit width was more significant for the uniformity of liquid phase.展开更多
As a critical facility,spiral-wound heat exchanger was(SWHE)has the been widely used in many industrial applications.boundary A computational fluid dynamics(CFD)model employed with smallest periodic element results an...As a critical facility,spiral-wound heat exchanger was(SWHE)has the been widely used in many industrial applications.boundary A computational fluid dynamics(CFD)model employed with smallest periodic element results and periodic conditions to examine around the the characteristics tube of the shell side of SWHE.Numerical simulation show that the heat transfer coefficients and initially mean increase absolute and subsequently decrease simulated 5%with heat radial angle because of the influence measured of backflow turbulent separation.nitrogen The deviation between is transfer coefficients and values for methane,drop,ethane,and are a mixture(methane/ethane)within when mean Reynolds number is over is 30000.For the pressure the simulated results values smaller than the measured values,and the absolute on deviation within 9%.Numerical simulation also tubes indicate that the pressure drop the and heat of transfer coefficients angle the shell side and of SWHE heat decrease as the winding the angle of the increases.Nusselt Considering effect winding on pressure drops transfer coefficients,modified correlations of_=0.308Re^(0.64)Pr^(0.36)(1+sin)^(1.38 )and friction factor f_=0.435Re^(-0.133)(sin)^(-0.36),are proposed.Comparing Nu number with the experimental data,the maximum deviations for heat transfer coefficients and pressure drops are less than 5%and11%respectively.展开更多
This paper proposed an analytical model which can calculate the effective thermal conductivity (ETC) of a spiral-wound Lithium-ion battery (Li-ion battery). It bases on a two-dimensional energy balance with both radia...This paper proposed an analytical model which can calculate the effective thermal conductivity (ETC) of a spiral-wound Lithium-ion battery (Li-ion battery). It bases on a two-dimensional energy balance with both radial and spiral heat transfer, as well as internal thermal contact resistance (TCR) considered simultaneously and studies the influence of winding layers and winding tension on the ETC. Results show that the analytical data are in good agreement with the numerical results. With the winding layers decreased and the winding tension enhanced, the ETC of Li-ion battery increases gradually. The radial temperature in Li-ion battery is also investigated which demonstrates a relatively higher temperature when considering the internal TCR.展开更多
基金funded by the National Natural Science Foundation of China(No.51806236,No.51806239)the Fundamental Research Funds for the Central Universities(No.2015XKMS059)+1 种基金Shaanxi Postdoctoral Fund Project(No.2018BSHEDZZ56)Foundation of Key Laboratory of Thermo-Fluid Science and Engineering(Xi'an Jiaotong University),Ministry of Education(No.KLTFSE2017KF01)。
文摘The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions.
基金Supported by the research funds from MIIT program on High Technology Research Program of Ship(2013K4181).
文摘The non-uniformity of gas–liquid mixture is a critical issue which leads to the heat transfer deterioration of spiralwound heat exchangers(SWHEs).Two-phase mass flow rate and the content of gas are important parameters as well as structural parameters which have prominent influences on flow distribution uniformity of SWHE shell side.In order to investigate the influences of these parameters,an experimental test system was built using water and air as mediums and a novel distributor named"tubes distributor"was designed.The effects of mass flow rate and the content of gas on two-phase distribution performance were analyzed,where the mass flow rate ranged from 28.4 to 171.9 kg·h-1 and the content of gas changed from 0.2 to 0.8,respectively.The results showed that the mixture mass flow rate considerably influenced the liquid distribution than that of gas phase and the larger mass flow rate exhibited the better distribution uniformity of two-phase flow.It was also found that the tubes distributor had the better two-phase uniformity when the content of gas was around 0.4.Tube diameter played an important role in the distribution of gas phase and slit width was more significant for the uniformity of liquid phase.
基金supported by Beijing Natural Science Foundation(Grant No.3171002)
文摘As a critical facility,spiral-wound heat exchanger was(SWHE)has the been widely used in many industrial applications.boundary A computational fluid dynamics(CFD)model employed with smallest periodic element results and periodic conditions to examine around the the characteristics tube of the shell side of SWHE.Numerical simulation show that the heat transfer coefficients and initially mean increase absolute and subsequently decrease simulated 5%with heat radial angle because of the influence measured of backflow turbulent separation.nitrogen The deviation between is transfer coefficients and values for methane,drop,ethane,and are a mixture(methane/ethane)within when mean Reynolds number is over is 30000.For the pressure the simulated results values smaller than the measured values,and the absolute on deviation within 9%.Numerical simulation also tubes indicate that the pressure drop the and heat of transfer coefficients angle the shell side and of SWHE heat decrease as the winding the angle of the increases.Nusselt Considering effect winding on pressure drops transfer coefficients,modified correlations of_=0.308Re^(0.64)Pr^(0.36)(1+sin)^(1.38 )and friction factor f_=0.435Re^(-0.133)(sin)^(-0.36),are proposed.Comparing Nu number with the experimental data,the maximum deviations for heat transfer coefficients and pressure drops are less than 5%and11%respectively.
基金supported by National Key Basic Research Program of China (No: 2014CB239603)National Natural Science Foundation of China (Grants No 51506085)Natural Science Foundation of Jiangsu Province (Grants No BK20150742)
文摘This paper proposed an analytical model which can calculate the effective thermal conductivity (ETC) of a spiral-wound Lithium-ion battery (Li-ion battery). It bases on a two-dimensional energy balance with both radial and spiral heat transfer, as well as internal thermal contact resistance (TCR) considered simultaneously and studies the influence of winding layers and winding tension on the ETC. Results show that the analytical data are in good agreement with the numerical results. With the winding layers decreased and the winding tension enhanced, the ETC of Li-ion battery increases gradually. The radial temperature in Li-ion battery is also investigated which demonstrates a relatively higher temperature when considering the internal TCR.