The relationships between variations of sea surface temperature anomalies (SSTVA) in the key ocean areas and the precipitation / temperature anomalies in China are studied based on the monthly mean sea surface tempera...The relationships between variations of sea surface temperature anomalies (SSTVA) in the key ocean areas and the precipitation / temperature anomalies in China are studied based on the monthly mean sea surface temperature data from January 1951 to December 1998 and the same stage monthly mean precipitation/ temperature data of 160 stations in China. The purpose of the present study is to discuss whether the relationship between SSTVA and precipitation / temperature is different from that between sea surface temperature anomalies (SSTA) and precipitation/ temperature, and whether the uncertainty of prediction can be reduced by use of SSTVA. The results show that the responses of precipitation anomalies to the two kinds of tendency of SSTA are different. This implies that discussing the effects of two kinds of tendency of SSTA on precipitation anomalies is better than just discussing the effects of SSTA on precipitation anomalies. It helps to reduce the uncertainty of prediction. The temperature anomalies have more identical re-sponses to the two kinds of tendency of SSTA than the precipitation except in the western Pacific Ocean. The response of precipitation anomalies to SSTVA is different from that to SSTA, but there are some similarities. Key words Variations of sea surface temperature anomalies - Precipitation anomalies - Temperature anomalies - Statistical significance test Sponsored jointly by the “ National Key Developing Program for Basic Sciences” (G1998040900) Part I and the Key Program of National Nature Science Foundation of China “ Analyses and Mechanism Study of the Regional Climatic Change in China” under Grant No.49735170.展开更多
Domain-domain interactions are important clues to inferring protein-protein interactions. Although about 8 000 domain-domain interactions are discovered so far,they are just the tip of the iceberg. Because domains are...Domain-domain interactions are important clues to inferring protein-protein interactions. Although about 8 000 domain-domain interactions are discovered so far,they are just the tip of the iceberg. Because domains are conservative and commonplace in proteins,domain-domain interactions are discovered based on pairs of domains which significantly co-exist in proteins. Meanwhile,it is realized that:( 1) domain-domain interactions may exist within the same proteins or across different proteins;( 2) only the domain-domain interactions across different proteins can mediate interactions between proteins;( 3) domains have biases to interact with other domains. And then,a novel method is put forward to construct protein-protein interaction network by using domain-domain interactions. The method is validated by experiments and compared with the state- of-art methods in the field. The experimental results suggest that the method is reasonable and effectiveness on constructing Protein-protein interactions network.展开更多
基金Sponsored jointly by the " National Key Developing Program for Basic Sciences" !(G 1998040900) Part I and the Key Program of N
文摘The relationships between variations of sea surface temperature anomalies (SSTVA) in the key ocean areas and the precipitation / temperature anomalies in China are studied based on the monthly mean sea surface temperature data from January 1951 to December 1998 and the same stage monthly mean precipitation/ temperature data of 160 stations in China. The purpose of the present study is to discuss whether the relationship between SSTVA and precipitation / temperature is different from that between sea surface temperature anomalies (SSTA) and precipitation/ temperature, and whether the uncertainty of prediction can be reduced by use of SSTVA. The results show that the responses of precipitation anomalies to the two kinds of tendency of SSTA are different. This implies that discussing the effects of two kinds of tendency of SSTA on precipitation anomalies is better than just discussing the effects of SSTA on precipitation anomalies. It helps to reduce the uncertainty of prediction. The temperature anomalies have more identical re-sponses to the two kinds of tendency of SSTA than the precipitation except in the western Pacific Ocean. The response of precipitation anomalies to SSTVA is different from that to SSTA, but there are some similarities. Key words Variations of sea surface temperature anomalies - Precipitation anomalies - Temperature anomalies - Statistical significance test Sponsored jointly by the “ National Key Developing Program for Basic Sciences” (G1998040900) Part I and the Key Program of National Nature Science Foundation of China “ Analyses and Mechanism Study of the Regional Climatic Change in China” under Grant No.49735170.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61271346,61571163,61532014,91335112 and 61402132)the Fundamental Research Funds for the Central Universities(Grant No.DB13AB02)
文摘Domain-domain interactions are important clues to inferring protein-protein interactions. Although about 8 000 domain-domain interactions are discovered so far,they are just the tip of the iceberg. Because domains are conservative and commonplace in proteins,domain-domain interactions are discovered based on pairs of domains which significantly co-exist in proteins. Meanwhile,it is realized that:( 1) domain-domain interactions may exist within the same proteins or across different proteins;( 2) only the domain-domain interactions across different proteins can mediate interactions between proteins;( 3) domains have biases to interact with other domains. And then,a novel method is put forward to construct protein-protein interaction network by using domain-domain interactions. The method is validated by experiments and compared with the state- of-art methods in the field. The experimental results suggest that the method is reasonable and effectiveness on constructing Protein-protein interactions network.