Research shows that producing fermented camel milk is hard because of the milk’s inability to form a firm coagulum, attributed to low levels of κ-casein and ꞵ-lactoglobulin and the large casein micelle size, leading...Research shows that producing fermented camel milk is hard because of the milk’s inability to form a firm coagulum, attributed to low levels of κ-casein and ꞵ-lactoglobulin and the large casein micelle size, leading to a weak network of casein formation. In an effort to address this issue, researchers turned to corn starch as a thickening agent, discovering that a concentration of 2.0% effectively improved the viscosity and significantly reduced syneresis in stirred camel milk yoghurt and cultured camel milk. This study explores alternatives to corn starch, focusing on butternut squash seeds as a promising substitute due to their hydrocolloid composition. By incorporating butternut squash (Cucurbita moschata) seed powder (BSSP) as a thickening agent, this study aimed at enhancing the chemical and rheological properties of stirred camel milk yoghurt and cultured camel milk. Fermented camel milk was prepared using 4 litres of camel milk, 2% starter cultures (thermophilic culture for yoghurt and mesophilic aromatic culture for stirred cultured camel milk) and BSSP 0.0% (negative control), 0.4%, 0.8%, 1.2%, 1.6%, 2.0% mixed with 0.4% gelatin. 2.0% corn starch mixed with 0.4% gelatin was used as a standard for comparison. Results showed that increasing the BSSP level significantly (p < 0.05) decreased the moisture content while increasing the total solid content of stirred fermented camel milk products. There was an increase in ash content with an increase in BSSP levels. There was a significant (p < 0.05) reduction in the pH, with an increase in BSSP levels in stirred fermented camel milk samples. Increasing the concentration of BSSP from 0.4% to 2.0% resulted in a significant (p < 0.05) increase in viscosity and a reduction in syneresis of stirred camel milk yoghurt and stirred cultured camel milk samples. This study demonstrated that BSSP effectively enhances the viscosity, reduces syneresis and increases acidity in stirred fermented camel milk products during storage.展开更多
Elliptical tanks were used as an alternative to circular tanks in order to improve mixing efficiency and reduce mixing time in unbaffled stirred tanks(USTs). Five different aspect ratios of elliptical vessels were des...Elliptical tanks were used as an alternative to circular tanks in order to improve mixing efficiency and reduce mixing time in unbaffled stirred tanks(USTs). Five different aspect ratios of elliptical vessels were designed to compare their mixing time and flow field. Computational fluid dynamics(CFD) simulations were performed using the k–ε model to calculate the mixing time and simulate turbulent flow field features, such as streamline shape, velocity distribution, vortex core region distribution, and turbulent kinetic energy(TKE) transfer. Visualization was also carried out to track the tinctorial evolution of the liquid phase. Results reveal that elliptical stirred tanks can significantly improve mixing performance in USTs. Specifically, the mixing time at an aspect ratio of 2.00 is only 45.3% of the one of a circular stirred tank. Furthermore, the secondary flow is strengthened and the vortex core region increases with the increase of aspect ratio. The axial velocity is more sensitive to the aspect ratio than the circumferential and radial velocity. Additionally, the TKE transfer in elliptical vessels is altered. These findings suggest that elliptical vessels offer a promising alternative to circular vessels for enhancing mixing performance in USTs.展开更多
Stirred reactors are key equipment in production,and unpredictable failures will result in significant economic losses and safety issues.Therefore,it is necessary to monitor its health state.To achieve this goal,in th...Stirred reactors are key equipment in production,and unpredictable failures will result in significant economic losses and safety issues.Therefore,it is necessary to monitor its health state.To achieve this goal,in this study,five states of the stirred reactor were firstly preset:normal,shaft bending,blade eccentricity,bearing wear,and bolt looseness.Vibration signals along x,y and z axes were collected and analyzed in both the time domain and frequency domain.Secondly,93 statistical features were extracted and evaluated by ReliefF,Maximal Information Coefficient(MIC)and XGBoost.The above evaluation results were then fused by D-S evidence theory to extract the final 16 features that are most relevant to the state of the stirred reactor.Finally,the CatBoost algorithm was introduced to establish the stirred reactor health monitoring model.The validation results showed that the model achieves 100%accuracy in detecting the fault/normal state of the stirred reactor and 98%accuracy in diagnosing the type of fault.展开更多
Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the productio...Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the production efficiency.In this paper,these interactions were revealed by computational fluid dynamics–discrete element method(CFD-DEM)method.Based on simulation results,both liquid phase flow hydrodynamics and particle motion behavior have been analyzed,which gave the general information of the multiphase flow behavior inside the stirred tank reactor as to graphene production.By calculating the threshold at the beginning of graphite exfoliation process,the shear force from the slip velocity was determined as the active force.These results can support the optimization of the graphene production process.展开更多
Inulin is a prebiotic dietary fiber that plays an integral role in producing functional dairy products with improved health benefits. Therefore, the objectives of this study are as follows: extract and purify inulin f...Inulin is a prebiotic dietary fiber that plays an integral role in producing functional dairy products with improved health benefits. Therefore, the objectives of this study are as follows: extract and purify inulin from chicory roots and globe artichoke roots;evaluate the physicochemical, functional properties and functional groups of the purified inulin;determine the functional properties of chicory roots inulin-maltodextrin and globe artichoke roots inulin-maltodextrin and compare it with that of the commercial inulin;examine the impact of various inulin on physiochemical, microstructural, textural, sensory characteristics and as prebiotic dietary fiber on probiotic bacteria’s viability of stirred bio-yogurt. The characteristics of the microstructure were investigated by scanning electron microscopy and, Fourier transforms infrared spectroscopy to detect the functional group. The resulting inulin exhibited a high yield and purity along with enhanced functional properties. Stirred bio-yogurt fortified with chicory roots inulin or globe artichoke roots inulin showed enhanced physicochemical, microstructural, microbiological, and overall sensorial acceptability followed by chicory roots inulin-maltodextrin or globe artichoke roots inulin-maltodextrin and the commercial inulin as compared to the control. Stirred bio-yogurt samples can offer various health benefits and wide applications as supplement of prebiotic dietary fiber in dairy industry.展开更多
The improved Intermig impeller has been used in the seed precipitation tank in China, which could enhance the mixing and suspension of Al(OH)3 particles and the power consumption declined largely. The flow field, soli...The improved Intermig impeller has been used in the seed precipitation tank in China, which could enhance the mixing and suspension of Al(OH)3 particles and the power consumption declined largely. The flow field, solids hold-up, cloud height, just off-bottom speed and power consumptions were investigated in solid-liquid mixing system with this new type of impeller by CFD and water experiment methods. Compared with the standard Intermig impeller, the improved one coupled with specially sloped baffles could promote the fluid circulation, create better solids suspension and consume less power. Besides lower impeller off-bottom clearance is good for solid suspension and distribution. The just-off-bottom speed was also determined by a power number criterion. Meanwhile, the predicted results were in good agreement with the experimental data.展开更多
By adding different amounts of Ti into the electromagnetic stirred Al-18wt.%Mg_(2)Si alloy,the effect of Ti element on the microstructure and mechanical properties of the alloy was studied.The experimental results sho...By adding different amounts of Ti into the electromagnetic stirred Al-18wt.%Mg_(2)Si alloy,the effect of Ti element on the microstructure and mechanical properties of the alloy was studied.The experimental results show that the microstructure is refined after modification with Ti,which is related to the heterogeneous nucleation of TiAl_(3) particles on theα-Al matrix.With the increase of Ti content and holding time after stirring,the primary Mg_(2)Si phase is refined firstly and then coarsened,and correspondingly,the mechanical properties of the alloy show a trend of increasing at first and then decreasing.When the addition of Ti is 0.5wt.%and the holding time is about 20 min,the refinement effect of primary Mg_(2)Si phase is the most significant and the mechanical properties of the alloy are optimal.展开更多
[Objective] In this study, the aim was to study the optimal formula and technique of honey stirred yoghurt. [Method] The optimum formula and production technique of the honey stirred yoghurt were confirmed by studying...[Objective] In this study, the aim was to study the optimal formula and technique of honey stirred yoghurt. [Method] The optimum formula and production technique of the honey stirred yoghurt were confirmed by studying the effects of the additive amount of honey, the adding time of honey, thermal death point, the ho- mogenization pressure and stability test on the sensory quality of stirred yoghurt. [Result] The experiment showed that the fermentation temperature of the honey stirred yoghurt should not be too high, and it should be close to that of common yoghurt. In addition, the fermentation time should not be too long, because along with the extension of fermentation time, there would be abnormal smell in the yo- gurt. The optimum formula and production technique were as follows: the additive amount of honey, sugarcane and fermentation agent was respectively 3%; two-sec- tion homogeneous pressures of the fresh milk were I : 70 MPa, I1:30 MPa; the thermal death point was 85 ℃ and the time was 10 min; the fermentation occurred at 42℃, and the fermentation of the products was stopped when the ultimate acidity was among 0.70%-0.75%. [Conclusion] The study could provide some refer- ences for the production and processing of honey stirred yoghurt.展开更多
Physical upgrading of graphite is typically achieved with many stages of grinding and flotation to produce a concentrate with approximately 95% carbon grade.An innovative grinding and column flotation process has been...Physical upgrading of graphite is typically achieved with many stages of grinding and flotation to produce a concentrate with approximately 95% carbon grade.An innovative grinding and column flotation process has been developed for efficient graphite upgrading to substantially simplify the process flowsheet and reduce operating costs.In this process,a high-pressure grinding roller(HPGR) and a stirred mill were employed as primary comminution techniques and a nanobubble flotation column as a key separation process.The results obtained with a crystalline flake graphite sample with a carbon grade of 11.15% show that the novel process can produce a concentrate with 94.82% carbon grade and 97.89% recovery from an open circuit of one rougher and two cleaner flotation stages.Scanning electron microscope(SEM)microphotographs indicate that HPGR offers the advantage of more effective protection of graphite flakes during crushing.Grinding test results show that stirred mill could not only protect graphite flakes but also promote the efficient liberation of graphite.Compared with the traditional flotation process,nanobubble flotation can effectively recover ultrafine graphite.The new process possesses a number of important advantages over the traditional method,including substantially higher graphite recovery,greatly simplified process flowsheet,better protection of flake size,reduced reagent consumption and process costs,etc.展开更多
The gas-liquid flow field in a stirred tank with a Rushton diskturbine, including the impeller region, was numerically simulatedusing the improved inner-outer iterative procedure. Thecharacteristic features of the sti...The gas-liquid flow field in a stirred tank with a Rushton diskturbine, including the impeller region, was numerically simulatedusing the improved inner-outer iterative procedure. Thecharacteristic features of the stirred tank, such as gas cavity andaccumulation of gas at the two sides of wall baffles, can be capturedby the simulation. The simulated results agree well with availableexperimental data. Since the improved inner-outer iterative algorithmdemands on empirical formula and experimental data for the impellerregion, and the approach seems generally applicable for simulatinggas-liquid stirred tanks.展开更多
The effect of mixing on the precipitation of barium sulfate in a continuous stirred tank is simulated numerically with different feeding location, feed concentration, impeller speed and residence time through solving ...The effect of mixing on the precipitation of barium sulfate in a continuous stirred tank is simulated numerically with different feeding location, feed concentration, impeller speed and residence time through solving the standard momentum and mass transport equations in combination with the moment equations for crystal population balance. The numerical method was validated with the literature data. The simulation results including the distribution of the local supersaturation ratio distribution in the precipitator, mean crystal size and coefficient of variation under different operating conditions compared well with experimental data in the literature. The effect of the presence of a draft tube on precipitation were also investigated, and it is suggested that the installation of a draft tube increased the mean crystal size, in general agreement with experimental work in the literature.展开更多
Computational fluid dynamics-discrete element method(CFD-DEM) coupled approach was employed to simulate the solid suspension behavior in a Rushton stirred tank with consideration of transitional and rotational motions...Computational fluid dynamics-discrete element method(CFD-DEM) coupled approach was employed to simulate the solid suspension behavior in a Rushton stirred tank with consideration of transitional and rotational motions of millions of particles with complex interactions with liquid and the rotating impeller. The simulations were satisfactorily validated with experimental data in literature in terms of measured particle velocities in the tank.Influences of operating conditions and physical properties of particles(i.e., particle diameter and density) on the two-phase flow field in the stirred tank involving particle distribution, particle velocity and vortex were studied.The wide distribution of particle angular velocity ranging from 0 to 105r·min 1is revealed. The Magnus force is comparable to the drag force during the particle movement in the tank. The strong particle rotation will generate extra shear force on the particles so that the particle morphology may be affected, especially in the bio-/polymer-product related processes. It can be concluded that the CFD-DEM coupled approach provides a theoretical way to understand the physics of particle movement in micro- to macro-scales in the solid suspension of a stirred tank.展开更多
To improve the efficiency of the desulfurization process, the drawdown mechanism of light particles in stirred tank is studied in this paper. For both up and down pumping modes, the just drawdown speeds(Njd) of floati...To improve the efficiency of the desulfurization process, the drawdown mechanism of light particles in stirred tank is studied in this paper. For both up and down pumping modes, the just drawdown speeds(Njd) of floating particles in transformative Kanbara Reactor(KR) are measured in one and four baffled stirred tanks experimentally. Then numerical simulations with standard k-ε model coupled with volume of fluid model(VOF) and discrete phase model(DPM) are conducted to analyze the flow field at the just drawdown speed Njd. The torques on the impeller obtained from experiments and simulations agree well with each other, which indicates the validity of our numerical simulations. Based on the simulations, three main drawdown mechanisms for floating particles, the axial circulation, turbulent fluctuation and largescale eddies, are analyzed. It's found that the axial circulation dominates the drawdown process at small submergence(S = 1/4 T and 1/3 T) and the large-scale eddies play a major role at large submergence(S = 2/3 T and 3/4 T). Besides, the turbulent fluctuation affects the drawdown process significantly for up pumping mode at small submergence(S = 1/4 T and 1/3 T) and for down pumping mode at large submergence(S = 2/3 T and 3/4 T). This paper helps to provide a more comprehensive understanding of the KR desulphurizer drawdown process in the baffled stirred tank.展开更多
Three-dimensional solid-liquid flow is mathematically formulated by means of the 'two-fluid' approach and the two-phase k-ε-AP turbulence model. The turbulent fluctuation correlations appearing in the Reynold...Three-dimensional solid-liquid flow is mathematically formulated by means of the 'two-fluid' approach and the two-phase k-ε-AP turbulence model. The turbulent fluctuation correlations appearing in the Reynolds time averaged governing equations are fully incorporated. The solid-liquid flow field and solid concentration distribution in baffled stirred tanks with a standard Rushton impeller are numerically simulated using an improved 'inner-outer'iterative procedure. The flow pattern is identified via the velocity vector plots and a recirculation loop with higher solid concentration is observed in the central vicinity beneath the impeller. Comparison of the simulation with experimental data on the mean velocities and the turbulence quantities of the solid phase is made and quite reasonable agreement is obtained except for the impeller swept volume. The counterpart of liquid phase is presented as well.The predicted solid concentration distribution for three experimental cases with the average solid concentration up to 20% is also found to agree reasonably with the experimental results published in the literature.展开更多
In this study, the large eddy simulation technique was applied on the flow in a baffled stirred tank driven by a Rushton turbine at Re=29000. The interaction between the rotating impeller and the static baffles was ac...In this study, the large eddy simulation technique was applied on the flow in a baffled stirred tank driven by a Rushton turbine at Re=29000. The interaction between the rotating impeller and the static baffles was accounted for by means of the improved inner-outer iterative algorithm. The sub-grid scale model was a conventional Smagorinsky model. The numerical solution of the governing equations was conducted in a cylindrical staggered grid. The momentum and the continuity equations were discretized using the finite difference method, with a third-order QUICK scheme used for convective terms. The phase-resolved predictions were compared with the experimental data of Wu and Patterson and good agreement was observed for both the mean and the turbulence quantities. They were much better than the Reynolds-averaged Navier-Stokes model including the Reynolds Stress Model for simulating the turbulence. The study also suggests the feasibility of LES in combination with the improved inner-outer iterative algorithm for the simulation of turbulent flow in stirred tanks.展开更多
Gas holdups in ambient gassed and hot sparged systems with multiple modern impellers and the effect of temperature on gas holdup are reported. The operating temperature has a great impact on gas holdup though the gas ...Gas holdups in ambient gassed and hot sparged systems with multiple modern impellers and the effect of temperature on gas holdup are reported. The operating temperature has a great impact on gas holdup though the gas dispersion regime in the hot sparged system is similar to the ambient gassed condition. The gas holdup under the elevated temperature and the ambient gassed operation is successfully correlated. With the same total gas flow rate and power input, the gas holdup in the hot sparged system (say near the boiling point) is only about half of that in the ambient system. The results imply that almost all existing hot sparged reactors have been designed on the basis of incorrect estimates of the gas holdup during operation.展开更多
In this paper, particle image velocimetry (PIV) was used to measure the mean and root meansquare(RMS) velocity in the stirred tank with six-flat blade Rushton turbine and with no baffles. Two typesof motion patterns w...In this paper, particle image velocimetry (PIV) was used to measure the mean and root meansquare(RMS) velocity in the stirred tank with six-flat blade Rushton turbine and with no baffles. Two typesof motion patterns were studied. One was that the impeller runs at constant speed, the other was that the impellerruns at time-dependent speed and in a periodic way. The emphasis of the paper was on the comparison of meanand RMS velocity vector maps and profiles between these two types of motion patterns, and especial attention waspaid to the comparison of the mean velocity, time-averaged RMS velocity, phase averaged RMS velocity betweenthe constant 3 RPS (revolution per second) and time-dependent operation. The Reynolds number was between 763and 1527. The study explained the mechanism that time-dependent RPS is more efficient for mixing than that ofconstant RPS.展开更多
Ultra fine grinding of the plant tailings of a refractory silver ore was studied using a laboratory type vertical stirred media mill. Preliminary tests confirmed that ultra fine grinding substantially improves the ext...Ultra fine grinding of the plant tailings of a refractory silver ore was studied using a laboratory type vertical stirred media mill. Preliminary tests confirmed that ultra fine grinding substantially improves the extraction of silver from the tailings in cyanide leaching (i.e. 36% Ag extraction rate from the as-received tailings with d80 of 100 μm, c.f. 84% extraction rate after ultra fine grinding of the tailings with ds0 of 1.2 pro). In the ultra fine grinding tests, the effects of ball diameter (2-4.5 mm), stirring speed (200-800 r/m/n) and ball charge ratio (50%-80%) on the fineness of grind (ds0, ~tm) were investigated through a Box-Behnken design. Increasing stirrer speed and ball charge ratio decreased fineness of grind while larger balls resulted in the coarser products. The tests demonstrated that a fineness of grind less than 5 μm can be achieved under suitable conditions. Analysis of stress intensity indicated an optimum range of stress intensity of (0.8-2)× 10^- 3 μm for all power inputs.展开更多
The critical impeller speed, N_(JS), for complete suspension of solidparticles in the agitated solid-liquid two-phase system in baffled stirred tanks with a standardRushton impeller is predicted using the computationa...The critical impeller speed, N_(JS), for complete suspension of solidparticles in the agitated solid-liquid two-phase system in baffled stirred tanks with a standardRushton impeller is predicted using the computational procedure proposed in Part Ⅰ. Three differentnumerical criteria are tested for determining the critical solid suspension. The predicted N_(JS)is compared with those obtained from several empirical correlations. It is suggested the mostreasonable criterion for determining the complete suspension of solid particles is the positive signof simulated axial velocity of solid phase at the location where the solid particles are mostdifficult to be suspended.展开更多
The discrete particle method was used to simulate the distribution of gas holdup in a gas-liquid standard Rushton stirred tank. The gas phase was treated as a large number of bubbles and their trajectories were tracke...The discrete particle method was used to simulate the distribution of gas holdup in a gas-liquid standard Rushton stirred tank. The gas phase was treated as a large number of bubbles and their trajectories were tracked with the results of motion equations. The two-way approach was performed to couple the interphase momentum exchange. The turbulent dispersion of bubbles with a size distribution was modeled using a stochastic tracking model, and the added mass force was involved to account for the effect of bubble acceleration on the surrounding fluid. The predicted gas holdup distribution showed that this method could give reasonable prediction comparable to the reported experimental data when the effect of turbulence was took into account in modification for drag coefficient.展开更多
文摘Research shows that producing fermented camel milk is hard because of the milk’s inability to form a firm coagulum, attributed to low levels of κ-casein and ꞵ-lactoglobulin and the large casein micelle size, leading to a weak network of casein formation. In an effort to address this issue, researchers turned to corn starch as a thickening agent, discovering that a concentration of 2.0% effectively improved the viscosity and significantly reduced syneresis in stirred camel milk yoghurt and cultured camel milk. This study explores alternatives to corn starch, focusing on butternut squash seeds as a promising substitute due to their hydrocolloid composition. By incorporating butternut squash (Cucurbita moschata) seed powder (BSSP) as a thickening agent, this study aimed at enhancing the chemical and rheological properties of stirred camel milk yoghurt and cultured camel milk. Fermented camel milk was prepared using 4 litres of camel milk, 2% starter cultures (thermophilic culture for yoghurt and mesophilic aromatic culture for stirred cultured camel milk) and BSSP 0.0% (negative control), 0.4%, 0.8%, 1.2%, 1.6%, 2.0% mixed with 0.4% gelatin. 2.0% corn starch mixed with 0.4% gelatin was used as a standard for comparison. Results showed that increasing the BSSP level significantly (p < 0.05) decreased the moisture content while increasing the total solid content of stirred fermented camel milk products. There was an increase in ash content with an increase in BSSP levels. There was a significant (p < 0.05) reduction in the pH, with an increase in BSSP levels in stirred fermented camel milk samples. Increasing the concentration of BSSP from 0.4% to 2.0% resulted in a significant (p < 0.05) increase in viscosity and a reduction in syneresis of stirred camel milk yoghurt and stirred cultured camel milk samples. This study demonstrated that BSSP effectively enhances the viscosity, reduces syneresis and increases acidity in stirred fermented camel milk products during storage.
基金supported by the National Key Research and Development Project(2022YFB3504305,2019YFC1905802)National Natural Science Foundation of China(22078030)+2 种基金Joint Funds of the National Natural Science Foundation of China(U1802255)Key Project of Independent Research Project of State Key Laboratory of Coal Mine Disaster Dynamics and Control(2011DA105287-zd201902)Three Gorges Laboratory Open Fund of Hubei Province(SK211009,SK215001).
文摘Elliptical tanks were used as an alternative to circular tanks in order to improve mixing efficiency and reduce mixing time in unbaffled stirred tanks(USTs). Five different aspect ratios of elliptical vessels were designed to compare their mixing time and flow field. Computational fluid dynamics(CFD) simulations were performed using the k–ε model to calculate the mixing time and simulate turbulent flow field features, such as streamline shape, velocity distribution, vortex core region distribution, and turbulent kinetic energy(TKE) transfer. Visualization was also carried out to track the tinctorial evolution of the liquid phase. Results reveal that elliptical stirred tanks can significantly improve mixing performance in USTs. Specifically, the mixing time at an aspect ratio of 2.00 is only 45.3% of the one of a circular stirred tank. Furthermore, the secondary flow is strengthened and the vortex core region increases with the increase of aspect ratio. The axial velocity is more sensitive to the aspect ratio than the circumferential and radial velocity. Additionally, the TKE transfer in elliptical vessels is altered. These findings suggest that elliptical vessels offer a promising alternative to circular vessels for enhancing mixing performance in USTs.
基金supported by the China Postdoctoral Science Foundation(Grant Number 2023M742598).
文摘Stirred reactors are key equipment in production,and unpredictable failures will result in significant economic losses and safety issues.Therefore,it is necessary to monitor its health state.To achieve this goal,in this study,five states of the stirred reactor were firstly preset:normal,shaft bending,blade eccentricity,bearing wear,and bolt looseness.Vibration signals along x,y and z axes were collected and analyzed in both the time domain and frequency domain.Secondly,93 statistical features were extracted and evaluated by ReliefF,Maximal Information Coefficient(MIC)and XGBoost.The above evaluation results were then fused by D-S evidence theory to extract the final 16 features that are most relevant to the state of the stirred reactor.Finally,the CatBoost algorithm was introduced to establish the stirred reactor health monitoring model.The validation results showed that the model achieves 100%accuracy in detecting the fault/normal state of the stirred reactor and 98%accuracy in diagnosing the type of fault.
基金National Natural Science Foundation of China(U2004176,22008055)Technology Research Project of Henan Province(232102240034)are gratefully acknowledged.
文摘Liquid phase exfoliation(LPE)process for graphene production is usually carried out in stirred tank reactor and the interactions between the solvent and the graphite particles are important as to improve the production efficiency.In this paper,these interactions were revealed by computational fluid dynamics–discrete element method(CFD-DEM)method.Based on simulation results,both liquid phase flow hydrodynamics and particle motion behavior have been analyzed,which gave the general information of the multiphase flow behavior inside the stirred tank reactor as to graphene production.By calculating the threshold at the beginning of graphite exfoliation process,the shear force from the slip velocity was determined as the active force.These results can support the optimization of the graphene production process.
文摘Inulin is a prebiotic dietary fiber that plays an integral role in producing functional dairy products with improved health benefits. Therefore, the objectives of this study are as follows: extract and purify inulin from chicory roots and globe artichoke roots;evaluate the physicochemical, functional properties and functional groups of the purified inulin;determine the functional properties of chicory roots inulin-maltodextrin and globe artichoke roots inulin-maltodextrin and compare it with that of the commercial inulin;examine the impact of various inulin on physiochemical, microstructural, textural, sensory characteristics and as prebiotic dietary fiber on probiotic bacteria’s viability of stirred bio-yogurt. The characteristics of the microstructure were investigated by scanning electron microscopy and, Fourier transforms infrared spectroscopy to detect the functional group. The resulting inulin exhibited a high yield and purity along with enhanced functional properties. Stirred bio-yogurt fortified with chicory roots inulin or globe artichoke roots inulin showed enhanced physicochemical, microstructural, microbiological, and overall sensorial acceptability followed by chicory roots inulin-maltodextrin or globe artichoke roots inulin-maltodextrin and the commercial inulin as compared to the control. Stirred bio-yogurt samples can offer various health benefits and wide applications as supplement of prebiotic dietary fiber in dairy industry.
基金Projects(50974035,51074047)supported by the National Natural Science Foundation of ChinaProject(2010AA03A405)supported by the High-tech Research and Development Program of China
文摘The improved Intermig impeller has been used in the seed precipitation tank in China, which could enhance the mixing and suspension of Al(OH)3 particles and the power consumption declined largely. The flow field, solids hold-up, cloud height, just off-bottom speed and power consumptions were investigated in solid-liquid mixing system with this new type of impeller by CFD and water experiment methods. Compared with the standard Intermig impeller, the improved one coupled with specially sloped baffles could promote the fluid circulation, create better solids suspension and consume less power. Besides lower impeller off-bottom clearance is good for solid suspension and distribution. The just-off-bottom speed was also determined by a power number criterion. Meanwhile, the predicted results were in good agreement with the experimental data.
基金financially supported by the Science and Technology Development Program of Shouguang(No.2019JH14)the Science and Technology Development Program of Weifang(No.2021GX052)the Natural Science Foundation of Liaoning Province(No.080137)。
文摘By adding different amounts of Ti into the electromagnetic stirred Al-18wt.%Mg_(2)Si alloy,the effect of Ti element on the microstructure and mechanical properties of the alloy was studied.The experimental results show that the microstructure is refined after modification with Ti,which is related to the heterogeneous nucleation of TiAl_(3) particles on theα-Al matrix.With the increase of Ti content and holding time after stirring,the primary Mg_(2)Si phase is refined firstly and then coarsened,and correspondingly,the mechanical properties of the alloy show a trend of increasing at first and then decreasing.When the addition of Ti is 0.5wt.%and the holding time is about 20 min,the refinement effect of primary Mg_(2)Si phase is the most significant and the mechanical properties of the alloy are optimal.
文摘[Objective] In this study, the aim was to study the optimal formula and technique of honey stirred yoghurt. [Method] The optimum formula and production technique of the honey stirred yoghurt were confirmed by studying the effects of the additive amount of honey, the adding time of honey, thermal death point, the ho- mogenization pressure and stability test on the sensory quality of stirred yoghurt. [Result] The experiment showed that the fermentation temperature of the honey stirred yoghurt should not be too high, and it should be close to that of common yoghurt. In addition, the fermentation time should not be too long, because along with the extension of fermentation time, there would be abnormal smell in the yo- gurt. The optimum formula and production technique were as follows: the additive amount of honey, sugarcane and fermentation agent was respectively 3%; two-sec- tion homogeneous pressures of the fresh milk were I : 70 MPa, I1:30 MPa; the thermal death point was 85 ℃ and the time was 10 min; the fermentation occurred at 42℃, and the fermentation of the products was stopped when the ultimate acidity was among 0.70%-0.75%. [Conclusion] The study could provide some refer- ences for the production and processing of honey stirred yoghurt.
基金supported by the Fundamental Research Funds for the Central Universities (No. 2019XKQYMS45)。
文摘Physical upgrading of graphite is typically achieved with many stages of grinding and flotation to produce a concentrate with approximately 95% carbon grade.An innovative grinding and column flotation process has been developed for efficient graphite upgrading to substantially simplify the process flowsheet and reduce operating costs.In this process,a high-pressure grinding roller(HPGR) and a stirred mill were employed as primary comminution techniques and a nanobubble flotation column as a key separation process.The results obtained with a crystalline flake graphite sample with a carbon grade of 11.15% show that the novel process can produce a concentrate with 94.82% carbon grade and 97.89% recovery from an open circuit of one rougher and two cleaner flotation stages.Scanning electron microscope(SEM)microphotographs indicate that HPGR offers the advantage of more effective protection of graphite flakes during crushing.Grinding test results show that stirred mill could not only protect graphite flakes but also promote the efficient liberation of graphite.Compared with the traditional flotation process,nanobubble flotation can effectively recover ultrafine graphite.The new process possesses a number of important advantages over the traditional method,including substantially higher graphite recovery,greatly simplified process flowsheet,better protection of flake size,reduced reagent consumption and process costs,etc.
基金the National Natural Science Foundation of China (No. 29792074) and SINOPEC.
文摘The gas-liquid flow field in a stirred tank with a Rushton diskturbine, including the impeller region, was numerically simulatedusing the improved inner-outer iterative procedure. Thecharacteristic features of the stirred tank, such as gas cavity andaccumulation of gas at the two sides of wall baffles, can be capturedby the simulation. The simulated results agree well with availableexperimental data. Since the improved inner-outer iterative algorithmdemands on empirical formula and experimental data for the impellerregion, and the approach seems generally applicable for simulatinggas-liquid stirred tanks.
基金Supported by the National Natural Science Foundation of China (Nos.20236050, 50134020) and the Special Funds for Major State Basic Research Program of China (973 Program, 2004CB217604).
文摘The effect of mixing on the precipitation of barium sulfate in a continuous stirred tank is simulated numerically with different feeding location, feed concentration, impeller speed and residence time through solving the standard momentum and mass transport equations in combination with the moment equations for crystal population balance. The numerical method was validated with the literature data. The simulation results including the distribution of the local supersaturation ratio distribution in the precipitator, mean crystal size and coefficient of variation under different operating conditions compared well with experimental data in the literature. The effect of the presence of a draft tube on precipitation were also investigated, and it is suggested that the installation of a draft tube increased the mean crystal size, in general agreement with experimental work in the literature.
基金Supported by the State Key Development Program for Basic Research of China (2013CB733600), the National Natural Science Foundation of China (21036003, 20776074) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (20090002110069).
文摘Computational fluid dynamics-discrete element method(CFD-DEM) coupled approach was employed to simulate the solid suspension behavior in a Rushton stirred tank with consideration of transitional and rotational motions of millions of particles with complex interactions with liquid and the rotating impeller. The simulations were satisfactorily validated with experimental data in literature in terms of measured particle velocities in the tank.Influences of operating conditions and physical properties of particles(i.e., particle diameter and density) on the two-phase flow field in the stirred tank involving particle distribution, particle velocity and vortex were studied.The wide distribution of particle angular velocity ranging from 0 to 105r·min 1is revealed. The Magnus force is comparable to the drag force during the particle movement in the tank. The strong particle rotation will generate extra shear force on the particles so that the particle morphology may be affected, especially in the bio-/polymer-product related processes. It can be concluded that the CFD-DEM coupled approach provides a theoretical way to understand the physics of particle movement in micro- to macro-scales in the solid suspension of a stirred tank.
基金Supported by the National Natural Science Foundation of China(51474109,51609090,51679097)the Science Research Project of Huazhong University of Science and Technology(0118140077,2006140115)
文摘To improve the efficiency of the desulfurization process, the drawdown mechanism of light particles in stirred tank is studied in this paper. For both up and down pumping modes, the just drawdown speeds(Njd) of floating particles in transformative Kanbara Reactor(KR) are measured in one and four baffled stirred tanks experimentally. Then numerical simulations with standard k-ε model coupled with volume of fluid model(VOF) and discrete phase model(DPM) are conducted to analyze the flow field at the just drawdown speed Njd. The torques on the impeller obtained from experiments and simulations agree well with each other, which indicates the validity of our numerical simulations. Based on the simulations, three main drawdown mechanisms for floating particles, the axial circulation, turbulent fluctuation and largescale eddies, are analyzed. It's found that the axial circulation dominates the drawdown process at small submergence(S = 1/4 T and 1/3 T) and the large-scale eddies play a major role at large submergence(S = 2/3 T and 3/4 T). Besides, the turbulent fluctuation affects the drawdown process significantly for up pumping mode at small submergence(S = 1/4 T and 1/3 T) and for down pumping mode at large submergence(S = 2/3 T and 3/4 T). This paper helps to provide a more comprehensive understanding of the KR desulphurizer drawdown process in the baffled stirred tank.
文摘Three-dimensional solid-liquid flow is mathematically formulated by means of the 'two-fluid' approach and the two-phase k-ε-AP turbulence model. The turbulent fluctuation correlations appearing in the Reynolds time averaged governing equations are fully incorporated. The solid-liquid flow field and solid concentration distribution in baffled stirred tanks with a standard Rushton impeller are numerically simulated using an improved 'inner-outer'iterative procedure. The flow pattern is identified via the velocity vector plots and a recirculation loop with higher solid concentration is observed in the central vicinity beneath the impeller. Comparison of the simulation with experimental data on the mean velocities and the turbulence quantities of the solid phase is made and quite reasonable agreement is obtained except for the impeller swept volume. The counterpart of liquid phase is presented as well.The predicted solid concentration distribution for three experimental cases with the average solid concentration up to 20% is also found to agree reasonably with the experimental results published in the literature.
基金Supported by the National Natural Science Foundation of China (No.20236050) and the State Key Development Program for Basic Research of China (No.2004CB217604).
文摘In this study, the large eddy simulation technique was applied on the flow in a baffled stirred tank driven by a Rushton turbine at Re=29000. The interaction between the rotating impeller and the static baffles was accounted for by means of the improved inner-outer iterative algorithm. The sub-grid scale model was a conventional Smagorinsky model. The numerical solution of the governing equations was conducted in a cylindrical staggered grid. The momentum and the continuity equations were discretized using the finite difference method, with a third-order QUICK scheme used for convective terms. The phase-resolved predictions were compared with the experimental data of Wu and Patterson and good agreement was observed for both the mean and the turbulence quantities. They were much better than the Reynolds-averaged Navier-Stokes model including the Reynolds Stress Model for simulating the turbulence. The study also suggests the feasibility of LES in combination with the improved inner-outer iterative algorithm for the simulation of turbulent flow in stirred tanks.
文摘Gas holdups in ambient gassed and hot sparged systems with multiple modern impellers and the effect of temperature on gas holdup are reported. The operating temperature has a great impact on gas holdup though the gas dispersion regime in the hot sparged system is similar to the ambient gassed condition. The gas holdup under the elevated temperature and the ambient gassed operation is successfully correlated. With the same total gas flow rate and power input, the gas holdup in the hot sparged system (say near the boiling point) is only about half of that in the ambient system. The results imply that almost all existing hot sparged reactors have been designed on the basis of incorrect estimates of the gas holdup during operation.
文摘In this paper, particle image velocimetry (PIV) was used to measure the mean and root meansquare(RMS) velocity in the stirred tank with six-flat blade Rushton turbine and with no baffles. Two typesof motion patterns were studied. One was that the impeller runs at constant speed, the other was that the impellerruns at time-dependent speed and in a periodic way. The emphasis of the paper was on the comparison of meanand RMS velocity vector maps and profiles between these two types of motion patterns, and especial attention waspaid to the comparison of the mean velocity, time-averaged RMS velocity, phase averaged RMS velocity betweenthe constant 3 RPS (revolution per second) and time-dependent operation. The Reynolds number was between 763and 1527. The study explained the mechanism that time-dependent RPS is more efficient for mixing than that ofconstant RPS.
文摘Ultra fine grinding of the plant tailings of a refractory silver ore was studied using a laboratory type vertical stirred media mill. Preliminary tests confirmed that ultra fine grinding substantially improves the extraction of silver from the tailings in cyanide leaching (i.e. 36% Ag extraction rate from the as-received tailings with d80 of 100 μm, c.f. 84% extraction rate after ultra fine grinding of the tailings with ds0 of 1.2 pro). In the ultra fine grinding tests, the effects of ball diameter (2-4.5 mm), stirring speed (200-800 r/m/n) and ball charge ratio (50%-80%) on the fineness of grind (ds0, ~tm) were investigated through a Box-Behnken design. Increasing stirrer speed and ball charge ratio decreased fineness of grind while larger balls resulted in the coarser products. The tests demonstrated that a fineness of grind less than 5 μm can be achieved under suitable conditions. Analysis of stress intensity indicated an optimum range of stress intensity of (0.8-2)× 10^- 3 μm for all power inputs.
文摘The critical impeller speed, N_(JS), for complete suspension of solidparticles in the agitated solid-liquid two-phase system in baffled stirred tanks with a standardRushton impeller is predicted using the computational procedure proposed in Part Ⅰ. Three differentnumerical criteria are tested for determining the critical solid suspension. The predicted N_(JS)is compared with those obtained from several empirical correlations. It is suggested the mostreasonable criterion for determining the complete suspension of solid particles is the positive signof simulated axial velocity of solid phase at the location where the solid particles are mostdifficult to be suspended.
基金Supported by the National Natural Science Foundation of China (No.20776121) and the Specialized Research Fund for the Doctoral Program of Higher Education (No.20050530001), and the Scientific Research Fund of Hunan Provincial Education Department (No.07C765).
文摘The discrete particle method was used to simulate the distribution of gas holdup in a gas-liquid standard Rushton stirred tank. The gas phase was treated as a large number of bubbles and their trajectories were tracked with the results of motion equations. The two-way approach was performed to couple the interphase momentum exchange. The turbulent dispersion of bubbles with a size distribution was modeled using a stochastic tracking model, and the added mass force was involved to account for the effect of bubble acceleration on the surrounding fluid. The predicted gas holdup distribution showed that this method could give reasonable prediction comparable to the reported experimental data when the effect of turbulence was took into account in modification for drag coefficient.