期刊文献+
共找到25,221篇文章
< 1 2 250 >
每页显示 20 50 100
The Impact of Short Selling Disclosure Regulatory Constraint on the Lending Market and Stock Ownership
1
作者 Geoffrey Ducournau Jinliang Li +2 位作者 Yan Li Zigan Wang Qie Ellie Yin 《Journal of Modern Accounting and Auditing》 2024年第3期99-114,共16页
We examine the impact of the short sell disclosure(SSD)regime on the stock lending market and investor behaviors,employing a staggered difference-indifference(DiD)methodology.Our research reveals that the introduction... We examine the impact of the short sell disclosure(SSD)regime on the stock lending market and investor behaviors,employing a staggered difference-indifference(DiD)methodology.Our research reveals that the introduction of the disclosure regime enhances market transparency,resulting in a diminished appeal of stock ownership in the lending market for active investors.This shift is accompanied by a reduction in information leakage risks and longer loan durations.Specifically,our analysis reveals a significant decrease in the risk of loan recall by 4.87%,accompanied by an average increase of 23.72%in loan duration for short selling activities.Furthermore,the cost associated with short-sell disclosure causes a decline in both lending supply and short demand. 展开更多
关键词 short sell disclosure stock equity lending market stock ownership
下载PDF
Integrating remote sensing and 3-PG model to simulate the biomass and carbon stock of Larix olgensis plantation
2
作者 Yu Bai Yong Pang Dan Kong 《Forest Ecosystems》 SCIE CSCD 2024年第4期543-555,共13页
Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integratin... Accurate estimations of biomass and its temporal dynamics are crucial for monitoring the carbon cycle in forest ecosystems and assessing forest carbon sequestration potentials.Recent studies have shown that integrating process-based models(PBMs)with remote sensing data can enhance simulations from stand to regional scales,significantly improving the ability to simulate forest growth and carbon stock dynamics.However,the utilization of PBMs for large-scale simulation of larch carbon storage distribution is still limited.In this study,we applied the parameterized 3-PG(Physiological Principles Predicting Growth)model across the Mengjiagang Forest Farm(MFF)to make broad-scale predictions of the biomass and carbon stocks of Larix olgensis plantation.The model was used to simulate average diameter at breast height(DBH)and total biomass,which were later validated with a wide range of observation data including sample plot data,forest management inventory data,and airborne laser scanning data.The results showed that the 3-PG model had relatively high accuracy for predicting both DBH and total biomass at stand and regional scale,with determination coefficients ranging from 0.78 to 0.88.Based on the estimation of total biomass,we successfully produced a carbon stock map of the Larix olgensis plantation in MFF with a spatial resolution of 20 m,which helps with relevant management advice.These findings indicate that the integration of 3-PG model and remote sensing data can well predict the biomass and carbon stock at regional and even larger scales.In addition,this integration facilitates the evaluation of forest carbon sequestration capacity and the development of forest management plans. 展开更多
关键词 3-PG model LARCH BIOMASS Carbon stock ALS
下载PDF
Tree mycorrhizal associations determine how biodiversity,large trees,and environmental factors drive aboveground carbon stock in temperate forests
3
作者 Yue Chen Zikun Mao +2 位作者 Jonathan A.Myers Jinghua Yu Xugao Wang 《Forest Ecosystems》 SCIE CSCD 2024年第4期448-456,共9页
Biodiversity,large trees,and environmental conditions such as climate and soil have important effects on forest carbon stocks.However,recent studies in temperate forests suggest that the relative importance of these f... Biodiversity,large trees,and environmental conditions such as climate and soil have important effects on forest carbon stocks.However,recent studies in temperate forests suggest that the relative importance of these factors depends on tree mycorrhizal associations,whereby large-tree effects may be driven by ectomycorrhizal(EM)trees,diversity effects may be driven by arbuscular mycorrhizal(AM)trees,and environment effects may depend on differential climate and soil preferences of AM and EM trees.To test this hypothesis,we used forest-inventory data consisting of over 80,000 trees from 631 temperate-forest plots(30 m×30 m)across Northeast China to examine how biodiversity(species diversity and ecological uniqueness),large trees(top 1%of tree diameters),and environmental factors(climate and soil nutrients)differently regulate aboveground carbon stocks of AM trees,EM trees,and AM and EM trees combined(i.e.total aboveground carbon stock).We found that large trees had a positive effect on both AM and EM tree carbon stocks.However,biodiversity and environmental factors had opposite effects on AM vs.EM tree carbon stocks.Specifically,the two components of biodiversity had positive effects on AM tree carbon stocks,but negative effects on EM tree carbon stocks.Environmental heterogeneity(mean annual temperature and soil nutrients)also exhibited contrasting effects on AM and EM tree carbon stocks.Consequently,for the total carbon stock,the positive large-tree effect far surpasses the diversity and environment effect.This is mainly because when integrating AM and EM tree carbon stock into total carbon stock,the opposite diversity-effect(also environment-effect)on AM vs.EM tree carbon stock counteracts each other while the consistent positive large-tree effect on AM and EM tree carbon stock is amplified.In summary,this study emphasized a mycorrhizal viewpoint to better understand the determinants of overarching aboveground carbon profile across regional forests. 展开更多
关键词 BIODIVERSITY Ecological uniqueness Environment heterogeneity Large trees Mycorrhizal associations Tree carbon stock
下载PDF
Carbon stock estimation in halophytic wooded savannas of Uruguay:An ecosystem approach
4
作者 Andres Baietto Andres Hirigoyen +3 位作者 Carolina Toranza Franco Schinato Maximiliano Gonzalez Rafael Navarro Cerrillo 《Forest Ecosystems》 SCIE CSCD 2024年第4期580-589,共10页
Savannas constitute a mixture of trees and shrub patches with a more continuous herbaceous understory.The contribution of this biome to the soil organic carbon(SOC)and above-ground biomass(AGB)carbon(C)stock globally ... Savannas constitute a mixture of trees and shrub patches with a more continuous herbaceous understory.The contribution of this biome to the soil organic carbon(SOC)and above-ground biomass(AGB)carbon(C)stock globally is significant.However,they are frequently subjected to land use changes,promoting increases in CO_(2) emissions.In Uruguay,subtropical wooded savannas cover around 100,000 ha,of which approximately 28%is circumscribed to sodic soils(i.e.,subtropical halophytic wooded savannas).Nevertheless,there is little background about the contribution of each ecosystem component to the C stock as well as site-specific allometric equations.The study was conducted in 5 ha of subtropical halophytic wooded savannas of the national protected area Esteros y Algarrobales del Rio Uruguay.This work aimed to estimate the contribution of the main ecosystem components(e.g.,soil,trees,shrubs,and herbaceous plants)to the C stock.Site-specific allometric equations for the most frequent tree species and shrub genus were fitted based on basal diameter(BD)and total height(H).The fitted equations accounted for between 77%and 98%of the aerial biomass variance of Netuma affinis and Vachellia caven.For shrubs(Baccharis sp.),the adjusted equation accounted for 86%of total aerial biomass.C stock for the entire system was 116.71±11.07 Mg·ha^(-1),of which 90.7%was allocated in the soil,8.3%in the trees,0.8%in the herbaceous plants,and 0.2%in the shrubs.These results highlight the importance of subtropical halophytic wooded savannas as C sinks and their relevance in the mitigation of global warming under a climate change scenario. 展开更多
关键词 Carbon stock Climate change Biomass modeling Sodic soils
下载PDF
Transcriptional regulation of MdPIN7 by MdARF19 during gravityinduced formation of adventitious root GSA in self-rooted apple stock
5
作者 Zenghui Wang Xuemei Yang +5 位作者 Linyue Hu Wei Liu Lijuan Feng Xiang Shen Yanlei Yin Jialin Li 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第5期1073-1084,共12页
Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the... Self-rooted apple stock is widely used for apple production.However,the shallowness of the adventitious roots in self-rooted apple stock leads to poor performance in the barren orchards of China.This is because of the considerable difference in the development of a gravitropic set-point angle(GSA)between self-rooted apple stock and seedling rootstock.Therefore,it is crucial to study the molecular mechanism of adventitious root GSA in self-rooted apple stock for breeding self-rooted and deep-rooted apple rootstock cultivars.An apple auxin response factor MdARF19 functioned to establish the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals.MdARF19 bound directly to the MdPIN7 promoter,activating its transcriptional expression and thus regulating the formation of the adventitious root GSA in 12-2 self-rooted apple stock.However,MdARF19 influenced the expression of auxin efflux carriers(MdPIN3 and MdPIN10)and the establishment of adventitious root GSA of self-rooted apple stock in response to gravity signals by direct activation of MdFLP.Our findings provide new information on the transcriptional regulation of MdPIN7 by auxin response factor MdARF19 in the regulation of the adventitious root GSA of self-rooted apple stock in response to gravity and auxin signals. 展开更多
关键词 APPLE Self-rooted stock GRAVITY MdARF19 MdPIN7 Gravitropic set-point angle Transcriptional regulation
下载PDF
The changes in soil organic carbon stock and quality across a subalpine forest successional series
6
作者 Fei Li Zhihui Wang +3 位作者 Jianfeng Hou Xuqing Li Dan Wang Wanqin Yang 《Forest Ecosystems》 SCIE CSCD 2024年第4期423-433,共11页
Soil organic carbon(SOC)affects the function of terrestrial ecosystem and plays a vital role in global carbon cycle.Yet,large uncertainty still existed regarding the changes in SOC stock and quality with forest succes... Soil organic carbon(SOC)affects the function of terrestrial ecosystem and plays a vital role in global carbon cycle.Yet,large uncertainty still existed regarding the changes in SOC stock and quality with forest succession.Here,the stock and quality of SOC at 1-m soil profile were investigated across a subalpine forest series,including shrub,deciduous broad-leaved forest,broadleaf-conifer mixed forest,middle-age coniferous forest and mature coniferous forest,which located at southeast of Tibetan Plateau.The results showed that SOC stock ranged from 9.8 to29.9 kg·m^(-2),and exhibited a hump-shaped response pattern across the forest successional series.The highest and lowest SOC stock was observed in the mixed forest and shrub forest,respectively.The SOC stock had no significant relationships with soil temperature and litter stock,but was positively correlated with wood debris stock.Meanwhile,the average percentages of polysaccharides,lignins,aromatics and aliphatics based on FTIR spectroscopy were 79.89%,0.94%,18.87%and 0.29%,respectively.Furthermore,the percentage of polysaccharides exhibited an increasing pattern across the forest successional series except for the sudden decreasing in the mixed forest,while the proportions of lignins,aromatics and aliphatics exhibited a decreasing pattern across the forest successional series except for the sudden increasing in the mixed forest.Consequently,the humification indices(HIs)were highest in the mixed forest compared to the other four successional stages,which means that the SOC quality in mixed forest was worse than other successional stages.In addition,the SOC stock,recalcitrant fractions and HIs decreased with increasing soil depth,while the polysaccharides exhibited an increasing pattern.These findings demonstrate that the mixed forest had higher SOC stock and worse SOC quality than other successional stages.The high proportion of SOC stock(66%at depth of 20-100 cm)and better SOC quality(lower HIs)indicate that deep soil have tremendous potential to store SOC and needs more attention under global chan ge. 展开更多
关键词 Forest successional series Soil organic cubon stock Molecular composition Humification indices Soil organic carbon quality
下载PDF
Structured Multi-Head Attention Stock Index Prediction Method Based Adaptive Public Opinion Sentiment Vector
7
作者 Cheng Zhao Zhe Peng +2 位作者 Xuefeng Lan Yuefeng Cen Zuxin Wang 《Computers, Materials & Continua》 SCIE EI 2024年第1期1503-1523,共21页
The present study examines the impact of short-term public opinion sentiment on the secondary market,with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment ... The present study examines the impact of short-term public opinion sentiment on the secondary market,with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment risk.The quantification of investment sentiment indicators and the persistent analysis of their impact has been a complex and significant area of research.In this paper,a structured multi-head attention stock index prediction method based adaptive public opinion sentiment vector is proposed.The proposedmethod utilizes an innovative approach to transform numerous investor comments on social platforms over time into public opinion sentiment vectors expressing complex sentiments.It then analyzes the continuous impact of these vectors on the market through the use of aggregating techniques and public opinion data via a structured multi-head attention mechanism.The experimental results demonstrate that the public opinion sentiment vector can provide more comprehensive feedback on market sentiment than traditional sentiment polarity analysis.Furthermore,the multi-head attention mechanism is shown to improve prediction accuracy through attention convergence on each type of input information separately.Themean absolute percentage error(MAPE)of the proposedmethod is 0.463%,a reduction of 0.294% compared to the benchmark attention algorithm.Additionally,the market backtesting results indicate that the return was 24.560%,an improvement of 8.202% compared to the benchmark algorithm.These results suggest that themarket trading strategy based on thismethod has the potential to improve trading profits. 展开更多
关键词 Public opinion sentiment structured multi-head attention stock index prediction deep learning
下载PDF
Design Strategies and Practice Paths for Improving Urban Quality in the Stock Era
8
作者 Li Tianfei Zhou Xiaotian +1 位作者 Han Shengsheng Liu Yuxuan 《Journal of Landscape Research》 2024年第2期18-24,共7页
In the middle and later stages of urbanization development,the growth of the real estate industry will stagnate,and urban renewal will become the mainstream.With the advancement of urban renewal,there are still proble... In the middle and later stages of urbanization development,the growth of the real estate industry will stagnate,and urban renewal will become the mainstream.With the advancement of urban renewal,there are still problems in improving the quality of cities in the stock era and their design strategies.This paper analyzed the Linping Old City organic renewal project and the Xishui River ecological governance project in the stock era of urban quality improvement by sorting out the current development status,historical background,planning types,and design strategies of quality improvement in the stock era from the perspective of urban renewal,combining with project overview,main problems,design methods,and design content.Urban renewal is the leading direction for promoting urban development and construction on a global scale,and countries formulate different plans and practices based on their local characteristics.Urban renewal strategies should be diversified,and focus on livable environments,urban characteristics,etc.,while considering human factors,green innovation,etc.,in order to achieve smart community management and enhance the economic and social benefits brought by urban attractiveness.For successful cases such as the Linping Old City and Xishui River ecological governance project,corresponding urban quality improvement strategies and implementation plans should be formulated according to local conditions,with emphasis on social participation and people’s livelihood improvement.This study can help urban planning pay more attention to rational utilization and upgrading of existing urban resources,adapt to the current urban development situation,and promote sustainable urban development. 展开更多
关键词 stock era Organic renewal Ecological governance Linping Old City Xishui River
下载PDF
Growth, Population Parameters and Stock Status of Sarotherodon galilaeus in Samandeni Reservoir, Burkina Faso
9
作者 Nomwine Da Raymond Ouedraogo +1 位作者 Mahamoudou Minoungou Adama Oueda 《Open Journal of Ecology》 2024年第4期257-273,共17页
Mango tilapia, Sarotherodon galilaeus is one of the most caught fish species in the Samandeni multi-species fishing sites of which, few data on its biology and exploitation are available. The study aimed to Assess the... Mango tilapia, Sarotherodon galilaeus is one of the most caught fish species in the Samandeni multi-species fishing sites of which, few data on its biology and exploitation are available. The study aimed to Assess the stock status of S. galilaeus. Sampling was conducted from March, 2021 to February 2022 based on commercial fish catches to analyze growth parameters, first sexual maturity size and harvest status of the stock. A total of 572 specimens including 297 females and 275 males were examined. The stock assessment was performed by using the Length based Bayesian method of Biomass (LBB) and that of growth by the ELEFAN method. The growth parameters showed a seasonality of growth and females appeared to grow faster than males. On the other hand, males had a greater asymptotic length than females. Results on the estimated length of fish at first maturity showed that females firstly reached the maturity compared to males. The relative biomass (B/B<sub>0</sub>) estimated for the stock was higher than the relative biomass that produces maximum sustainable yield (B<sub>MSY</sub>/B<sub>0</sub>) indicating healthy biomass. In addition, the length at first sexual maturity was less than the length at the first catch, indicating the absence of overfishing of growth. In addition, extending the study to the various stocks of the reservoir would be important for the sustainable management of the Samandeni high economic fishing area. 展开更多
关键词 GROWTH stock Status Sarotherodon galilaeus Samandeni Reservoir MATURITY
下载PDF
Exploring the Relationship Between Patent Forward Citation and Stock Return Rate Using Empirical Data of China Stock Market
10
作者 Hong-Wen Tsai Hui-Chung Che 《Management Studies》 2024年第2期67-83,共17页
A novel indicator called price-citation was proposed.Based on the company integrated patent database of China listed companies of common stocks(A-shares)with the stock price and the stock return rate data,more than tw... A novel indicator called price-citation was proposed.Based on the company integrated patent database of China listed companies of common stocks(A-shares)with the stock price and the stock return rate data,more than two thousand of A-shares from 2017 to 2020 were selected.The effect of the traditional patent forward citation and the price-citation for discriminating the stock return rate was thoroughly analyzed via ANOVA.The A-shares of forward citation counts above the average showed higher stock return rate means than the A-shares having patents but receiving no forward citations.The price-citation,combining both the financial and patent attributes,defined as the multiplication of the current stock price and the currently receiving forward citation count,showed its excellence in discriminating the stock return rate.The A-shares of higher price-citation showed significantly higher stock return rate means while the A-shares of lower price-citation showed significantly lowest stock return rate means.The price-citation effect had not been changed by COVID-19 though COVID-19 affected the social and economic environment to a considerable extent in 2020. 展开更多
关键词 China A-share PATENT ANOVA stock return rate forward citation price-citation
下载PDF
Stock Type Prediction Based on Multiple Machine Learning Methods
11
作者 Zhonger Zhu Wansheng Wang 《Journal of Intelligent Learning Systems and Applications》 2024年第3期242-261,共20页
Stocks in the Chinese stock market can be divided into ST stocks and normal stocks, so to prevent investors from buying potential ST stocks, this paper first performs SMOTEENN oversampling data preprocessing for the S... Stocks in the Chinese stock market can be divided into ST stocks and normal stocks, so to prevent investors from buying potential ST stocks, this paper first performs SMOTEENN oversampling data preprocessing for the ST stock category, and selects 139 financial indicators and technical factor as predictive features. Then, it combines the Boruta algorithm and Copula entropy method for feature selection, effectively improving the machine learning model’s performance in ST stock classification, with the AUC values of the two models reaching 98% on the test set. In the model selection and optimization, this paper uses six major models, including logistic regression, XGBoost, AdaBoost, LightGBM, Catboost, and MLP, for modeling and optimizes them using the Optuna framework. Ultimately, XGBoost model is selected as the best model because its AUC value exceeds 95% and its running time is less. Finally, the XGBoost model is explained using the SHAP theory and the interaction between features is discovered, further improving the model’s accuracy and AUC value by about 0.6%, verifying the effectiveness of the model. 展开更多
关键词 stock Classification Boruta Algorithm COPULA Machine Learning INTERACTION
下载PDF
Comparative Analysis of Machine Learning Models for Stock Price Prediction: Leveraging LSTM for Real-Time Forecasting
12
作者 Bijay Gautam Sanif Kandel +1 位作者 Manoj Shrestha Shrawan Thakur 《Journal of Computer and Communications》 2024年第8期52-80,共29页
The research focuses on improving predictive accuracy in the financial sector through the exploration of machine learning algorithms for stock price prediction. The research follows an organized process combining Agil... The research focuses on improving predictive accuracy in the financial sector through the exploration of machine learning algorithms for stock price prediction. The research follows an organized process combining Agile Scrum and the Obtain, Scrub, Explore, Model, and iNterpret (OSEMN) methodology. Six machine learning models, namely Linear Forecast, Naive Forecast, Simple Moving Average with weekly window (SMA 5), Simple Moving Average with monthly window (SMA 20), Autoregressive Integrated Moving Average (ARIMA), and Long Short-Term Memory (LSTM), are compared and evaluated through Mean Absolute Error (MAE), with the LSTM model performing the best, showcasing its potential for practical financial applications. A Django web application “Predict It” is developed to implement the LSTM model. Ethical concerns related to predictive modeling in finance are addressed. Data quality, algorithm choice, feature engineering, and preprocessing techniques are emphasized for better model performance. The research acknowledges limitations and suggests future research directions, aiming to equip investors and financial professionals with reliable predictive models for dynamic markets. 展开更多
关键词 stock Price Prediction Machine Learning LSTM ARIMA Mean Squared Error
下载PDF
Soil Organic Carbon Stock Variation under Different Soil Types and Land Uses in the Sub-Humid Noun Plain, Western Cameroon
13
作者 Frank Abigail Sobze Kenfack Georges Kogge Kome +2 位作者 Achille Bienvenue Ibrahim Viviane Pauline Mandah Dieudonne Bitondo 《Open Journal of Soil Science》 2024年第4期191-209,共19页
This study was conducted to assess the current stock of soil organic carbon under different agricultural land uses, soil types and soil depths in the Noun plain in western Cameroon. Three sites were selected for the s... This study was conducted to assess the current stock of soil organic carbon under different agricultural land uses, soil types and soil depths in the Noun plain in western Cameroon. Three sites were selected for the study, namely Mangoum, Makeka and Fossang, representative of the three dominant soil types of the noun plain (Andosols, Acrisols and Ferralsols). Three land uses were selected per site including natural vegetation, agroforest and crop field. Soil was sampled at three depths;0 - 20 cm, 20 - 40 cm, and 40 - 60 cm. Analysis of variance showed that soil type did not significantly influence carbon storage, but rather land uses and soil depth. SOCS decreased significantly with depth in all the sites, with an average stock of 66.3 ± 15.8 tC/ha at 0 - 20 cm, compared to an average stock of 33.3 ± 7.4 tC/ha at 40 - 60 cm. SOCS was significantly highest in the natural formation with 57.2 ± 19.7 tC/ha, and lowest in cultivated fields, at 37.7 ± 10.6 tC/ha. Andosols, with their high content of coarse fragments, stored less organic carbon than Ferralsols and Acrisols. 展开更多
关键词 Carbon stocks Soil Type Soil Depth Agricultural Land Use Noun Plain
下载PDF
National Soil Organic Carbon Stocks Inventories under Different Mangrove Forest Types in Gabon
14
作者 Rolf Gaël Mabicka Obame Neil-Yohan Musadji +5 位作者 Jean Hervé Mve Beh Lydie-Stella Koutika Jean Aubin Ondo Farrel Nzigou Boucka Michel Mbina Mounguengui Claude Geffroy 《Open Journal of Forestry》 2024年第2期127-140,共14页
Gabonese’s estuary is an important coastal mangrove setting and soil plays a key role in mangrove carbon storage in mangrove forests. However, the spatial variation in soil organic carbon (SOC) storage remain unclear... Gabonese’s estuary is an important coastal mangrove setting and soil plays a key role in mangrove carbon storage in mangrove forests. However, the spatial variation in soil organic carbon (SOC) storage remain unclear. To address this gap, determining the SOC spatial variation in Gabonese’s estuarine is essential for better understanding the global carbon cycle. The present study compared soil organic carbon between northern and southern sites in different mangrove forest, Rhizophora racemosa and Avicennia germinans. The results showed that the mean SOC stocks at 1 m depth were 256.28 ± 127.29 MgC ha<sup>−</sup><sup>1</sup>. Among the different regions, SOC in northern zone was significantly (p p < 0.001). The deeper layers contained higher SOC stocks (254.62 ± 128.09 MgC ha<sup>−</sup><sup>1</sup>) than upper layers (55.42 ± 25.37 MgC ha<sup>−</sup><sup>1</sup>). The study highlights that low deforestation rate have led to less CO<sub>2</sub> (705.3 Mg CO<sub>2</sub>e ha<sup>−</sup><sup>1</sup> - 922.62 Mg CO<sub>2</sub>e ha<sup>−</sup><sup>1</sup>) emissions than most sediment carbon-rich mangroves in the world. These results highlight the influence of soil texture and mangrove forest types on the mangrove SOC stocks. The first national comparison of soil organic carbon stocks between mangroves and upland tropical forests indicated SOC stocks were two times more in mangroves soils (51.21 ± 45.00 MgC ha<sup>−</sup><sup>1</sup>) than primary (20.33 ± 12.7 MgC ha<sup>−</sup><sup>1</sup>), savanna and cropland (21.71 ± 15.10 MgC ha<sup>−</sup><sup>1</sup>). We find that mangroves in this study emit lower dioxide-carbon equivalent emissions. This study highlights the importance of national inventories of soil organic carbon and can be used as a baseline on the role of mangroves in carbon sequestration and climate change mitigation but the variation in SOC stocks indicates the need for further national data. 展开更多
关键词 Mangroves Forest Soil Organic Carbon stocks Rizophora Racemose Avicenia germinans GABON
下载PDF
Research on the Dynamic Volatility Relationship between Chinese and U.S. Stock Markets Based on the DCC-GARCH Model under the Background of the COVID-19 Pandemic
15
作者 Simin Wu Yan Liang Weixun Li 《Journal of Applied Mathematics and Physics》 2024年第9期3066-3080,共15页
This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid t... This study utilizes the Dynamic Conditional Correlation-Generalized Autoregressive Conditional Heteroskedasticity (DCC-GARCH) model to investigate the dynamic relationship between Chinese and U.S. stock markets amid the COVID-19 pandemic. Initially, a univariate GARCH model is developed to derive residual sequences, which are then used to estimate the DCC model parameters. The research reveals a significant rise in the interconnection between the Chinese and U.S. stock markets during the pandemic. The S&P 500 index displayed higher sensitivity and greater volatility in response to the pandemic, whereas the CSI 300 index showed superior resilience and stability. Analysis and model estimation suggest that the market’s dependence on historical data has intensified and its sensitivity to recent shocks has heightened. Predictions from the model indicate increased market volatility during the pandemic. While the model is proficient in capturing market trends, there remains potential for enhancing the accuracy of specific volatility predictions. The study proposes recommendations for policymakers and investors, highlighting the importance of improved cooperation in international financial market regulation and investor education. 展开更多
关键词 DCC-GARCH Model stock Market Linkage COVID-19 Market Volatility Forecasting Analysis
下载PDF
Stock Price Prediction Based on the Bi-GRU-Attention Model
16
作者 Yaojun Zhang Gilbert M. Tumibay 《Journal of Computer and Communications》 2024年第4期72-85,共14页
The stock market, as one of the hotspots in the financial field, forms a data system with a huge volume of data and complex relationships between various factors, making stock price prediction an area of keen interest... The stock market, as one of the hotspots in the financial field, forms a data system with a huge volume of data and complex relationships between various factors, making stock price prediction an area of keen interest for further in-depth mining and research. Mathematical statistics methods struggle to deal with nonlinear relationships in practical applications, making it difficult to explore deep information about stocks. Meanwhile, machine learning methods, particularly neural network models and composite models, which have achieved outstanding results in other fields, are being applied to the stock market with significant results. However, researchers have found that these methods do not grasp the essential information of the data as well as expected. In response to these issues, researchers are exploring better neural network models and combining them with other methods to analyze stock data. Thus, this paper proposes the ABiGRU composite model, which combines the attention mechanism and bidirectional gated recurrent unit (GRU) that can effectively extract data features for stock price prediction research. Models such as LSTM, GRU, and Bi-LSTM are selected for comparative experiments. To ensure the credibility and representativeness of the research data, daily stock price indices of BYD are chosen for closing price prediction studies across different models. The results show that the ABiGRU model has a lower prediction error and better fitting effect on three index-based stock prices, enhancing the learning efficiency of the neural network model and demonstrating good prediction stability. This suggests that the ABiGRU model is highly adaptable for stock price prediction. 展开更多
关键词 Machine Learning Attention Mechanism LSTM Neural Network ABiGRU Model stock Price Prediction
下载PDF
China’s Monetary Policy Impacts on Money and Stock Markets
17
作者 Fang Fang 《Proceedings of Business and Economic Studies》 2024年第2期46-52,共7页
This study investigated the impact of China’s monetary policy on both the money market and stock markets,assuming that non-policy variables would not respond contemporaneously to changes in policy variables.Monetary ... This study investigated the impact of China’s monetary policy on both the money market and stock markets,assuming that non-policy variables would not respond contemporaneously to changes in policy variables.Monetary policy adjustments are swiftly observed in money markets and gradually extend to the stock market.The study examined the effects of monetary policy shocks using three primary instruments:interest rate policy,reserve requirement ratio,and open market operations.Monthly data from 2007 to 2013 were analyzed using vector error correction(VEC)models.The findings suggest a likely presence of long-lasting and stable relationships among monetary policy,the money market,and stock markets.This research holds practical implications for Chinese policymakers,particularly in managing the challenges associated with fluctuation risks linked to high foreign exchange reserves,aiming to achieve autonomy in monetary policy and formulate effective monetary strategies to stimulate economic growth. 展开更多
关键词 Chinese money market Chinese stocks market Monetary policy Shanghai Interbank Offered Rate(SHIBOR) Vector error correction models
下载PDF
Deep Learning-Based Stock Price Prediction Using LSTM Model
18
作者 Jiayi Mao Zhiyong Wang 《Proceedings of Business and Economic Studies》 2024年第5期176-185,共10页
The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the ... The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the inception of financial markets.By examining historical transaction data,latent opportunities for profit can be uncovered,providing valuable insights for both institutional and individual investors to make more informed decisions.This study focuses on analyzing historical transaction data from four banks to predict closing price trends.Various models,including decision trees,random forests,and Long Short-Term Memory(LSTM)networks,are employed to forecast stock price movements.Historical stock transaction data serves as the input for training these models,which are then used to predict upward or downward stock price trends.The study’s empirical results indicate that these methods are effective to a degree in predicting stock price movements.The LSTM-based deep neural network model,in particular,demonstrates a commendable level of predictive accuracy.This conclusion is reached following a thorough evaluation of model performance,highlighting the potential of LSTM models in stock market forecasting.The findings offer significant implications for advancing financial forecasting approaches,thereby improving the decision-making capabilities of investors and financial institutions. 展开更多
关键词 Autoregressive integrated moving average(ARIMA)model Long Short-Term Memory(LSTM)network Forecasting stock market
下载PDF
Holt-Winters Algorithm to Predict the Stock Value Using Recurrent Neural Network
19
作者 M.Mohan P.C.Kishore Raja +1 位作者 P.Velmurugan A.Kulothungan 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期1151-1163,共13页
Prediction of stock market value is highly risky because it is based on the concept of Time Series forecasting system that can be used for investments in a safe environment with minimized chances of loss.The proposed ... Prediction of stock market value is highly risky because it is based on the concept of Time Series forecasting system that can be used for investments in a safe environment with minimized chances of loss.The proposed model uses a real time dataset offifteen Stocks as input into the system and based on the data,predicts or forecast future stock prices of different companies belonging to different sectors.The dataset includes approximatelyfifteen companies from different sectors and forecasts their results based on which the user can decide whether to invest in the particular company or not;the forecasting is done for the next quarter.Our model uses 3 main concepts for forecasting results.Thefirst one is for stocks that show periodic change throughout the season,the‘Holt-Winters Triple Exponential Smoothing’.3 basic things taken into conclusion by this algorithm are Base Level,Trend Level and Seasoning Factor.The value of all these are calculated by us and then decomposition of all these factors is done by the Holt-Winters Algorithm.The second concept is‘Recurrent Neural Network’.The specific model of recurrent neural network that is being used is Long-Short Term Memory and it’s the same as the Normal Neural Network,the only difference is that each intermediate cell is a memory cell and retails its value till the next feedback loop.The third concept is Recommendation System whichfilters and predict the rating based on the different factors. 展开更多
关键词 stock market stock market prediction time series forecasting efficient market hypothesis National stock exchange India smoothing observation trend level seasonal factor
下载PDF
COVID‑19 and tourism sector stock price in Spain:medium‑term relationship through dynamic regression models 被引量:1
20
作者 Isabel Carrillo‑Hidalgo Juan Ignacio Pulido‑Fernández +1 位作者 JoséLuis Durán‑Román Jairo Casado‑Montilla 《Financial Innovation》 2023年第1期257-280,共24页
The global pandemic,coronavirus disease 2019(COVID-19),has significantly affected tourism,especially in Spain,as it was among the first countries to be affected by the pandemic and is among the world’s biggest touris... The global pandemic,coronavirus disease 2019(COVID-19),has significantly affected tourism,especially in Spain,as it was among the first countries to be affected by the pandemic and is among the world’s biggest tourist destinations.Stock market values are responding to the evolution of the pandemic,especially in the case of tourist companies.Therefore,being able to quantify this relationship allows us to predict the effect of the pandemic on shares in the tourism sector,thereby improving the response to the crisis by policymakers and investors.Accordingly,a dynamic regression model was developed to predict the behavior of shares in the Spanish tourism sector according to the evolution of the COVID-19 pandemic in the medium term.It has been confirmed that both the number of deaths and cases are good predictors of abnormal stock prices in the tourism sector. 展开更多
关键词 COVID-19 stock exchange Tourism stock Dynamic regression models Spain
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部