期刊文献+
共找到70篇文章
< 1 2 4 >
每页显示 20 50 100
Long-term variation of Arctic Sudden Stratospheric Warmings(SSW)and potential causes
1
作者 QingRan Li ShaoDong Zhang +4 位作者 KaiMing Huang ChunMing Huang Yun Gong WenTao Tang Zheng Ma 《Earth and Planetary Physics》 EI CAS CSCD 2024年第5期742-752,共11页
Utilizing the European Centre for Medium-Range Weather Forecast(ECMWF)Reanalysis v5(ERA5),for the first time,we have confirmed close links among Sudden Stratospheric Warmings(SSWs)in the Northern Hemisphere(NH),the po... Utilizing the European Centre for Medium-Range Weather Forecast(ECMWF)Reanalysis v5(ERA5),for the first time,we have confirmed close links among Sudden Stratospheric Warmings(SSWs)in the Northern Hemisphere(NH),the polar vortices,and stratospheric Planetary Waves(PWs)by analyzing and comparing their trends.Interestingly,within overall increasing trends,the duration and strength of SSWs exhibit increasing and decreasing trends before and after the winter of 2002,respectively.To reveal possible physical mechanisms driving these trends,we analyzed the long-term trends of the winter(from December to February)polar vortices and of stratospheric PWs with zonal wave number 1.Notably,our results show that in all three time periods(the entire period of 41winters,1980 to 2020,and the two subperiods—1980-2002 and 2002-2020)enhancing SSWs were always accompanied by weakening winter polar vortices and strengthening polar PWs like Stationary Planetary Waves(SPWs)and 16-day waves,and vice versa.This is the first proof,based on ERA5 long-term trend data,that weakening polar vortices and enhancing stratospheric PWs(especially SPWs)could cause an increase in SSWs. 展开更多
关键词 sudden stratospheric warmings stationary planetary waves 16-day waves polar vortrices long-term trend correlation coefficient
下载PDF
Analysis of gravity wave activity during stratospheric sudden warmings in the northern hemisphere 被引量:2
2
作者 XuanYun Zeng Guang Zhong 《Earth and Planetary Physics》 EI CAS CSCD 2024年第2期415-422,共8页
Due to the significant changes they bring to high latitude stratospheric temperature and wind,stratospheric sudden warmings(SSWs)can have an impact on the propagation and energy distribution of gravity waves(GWs).The ... Due to the significant changes they bring to high latitude stratospheric temperature and wind,stratospheric sudden warmings(SSWs)can have an impact on the propagation and energy distribution of gravity waves(GWs).The variation characteristics of GWs during SSWs have always been an important issue.Using temperature data from January to March in 2014−2016,provided by the Constellation Observing System for Meteorology,Ionosphere and Climate(COSMIC)mission,we have analyzed global GW activity at 15−40 km in the Northern Hemisphere during SSW events.During the SSWs that we studied,the stratospheric temperature rose in one or two longitudinal regions in the Northern Hemisphere;the areas affected extended to the east of 90°W.During these SSWs,the potential energy density(E_(p)of GWs expanded and covered a larger range of longitude and altitude,exhibiting an eastward and downward extension.The E_(p)usually increased,while partially filtered by the eastward zonal winds.When zonal winds weakened or turned westward,E_(p)began to strengthen.After SSWs,the E_(p)usually decreased.These observations can serve as a reference for analyzing the interaction mechanism between SSWs and GWs in future work. 展开更多
关键词 stratospheric sudden warming gravity wave wind filter
下载PDF
The Possible Influence of Stratospheric Sudden Warming on East Asian Weather 被引量:11
3
作者 邓淑梅 陈月娟 +2 位作者 罗涛 毕云 周后福 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第5期841-846,共6页
By analyzing the linkage of the Northern Annular Mode (NAM) anomaly to the East Asian jet and the East Asian trough during Stratospheric Sudden Warming (SSW), the influence of SSW on East Asian weather is studied.... By analyzing the linkage of the Northern Annular Mode (NAM) anomaly to the East Asian jet and the East Asian trough during Stratospheric Sudden Warming (SSW), the influence of SSW on East Asian weather is studied. The results show that the East Asian jet is strengthened and the East Asian trough is deepened during SSW. With the downward propagation of SSW, the strengthened East Asian jet and the East Asian trough would move southward, expand westward and gradually influence the area of north and northeastern China. This implies that the winter monsoon tends to be enhanced over East Asia during SSW. 展开更多
关键词 stratospheric sudden warming northern annular mode the East Asian jet the East Asian trough
下载PDF
Sub-seasonal to Seasonal Hindcasts of Stratospheric Sudden Warming by BCC_CSM1.1(m):A Comparison with ECMWF 被引量:3
4
作者 Jian RAO Rongcai REN +3 位作者 Haishan CHEN Xiangwen LIU Yueyue YU Yang YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2019年第5期479-494,共16页
This study focuses on model predictive skill with respect to stratospheric sudden warming(SSW) events by comparing the hindcast results of BCC_CSM1.1(m) with those of the ECMWF's model under the sub-seasonal to se... This study focuses on model predictive skill with respect to stratospheric sudden warming(SSW) events by comparing the hindcast results of BCC_CSM1.1(m) with those of the ECMWF's model under the sub-seasonal to seasonal prediction project of the World Weather Research Program and World Climate Research Program. When the hindcasts are initiated less than two weeks before SSW onset, BCC_CSM and ECMWF show comparable predictive skill in terms of the temporal evolution of the stratospheric circumpolar westerlies and polar temperature up to 30 days after SSW onset. However, with earlier hindcast initialization, the predictive skill of BCC_CSM gradually decreases, and the reproduced maximum circulation anomalies in the hindcasts initiated four weeks before SSW onset replicate only 10% of the circulation anomaly intensities in observations. The earliest successful prediction of the breakdown of the stratospheric polar vortex accompanying SSW onset for BCC_CSM(ECMWF) is the hindcast initiated two(three) weeks earlier. The predictive skills of both models during SSW winters are always higher than that during non-SSW winters, in relation to the successfully captured tropospheric precursors and the associated upward propagation of planetary waves by the model initializations. To narrow the gap in SSW predictive skill between BCC_CSM and ECMWF, ensemble forecasts and error corrections are performed with BCC_CSM. The SSW predictive skill in the ensemble hindcasts and the error corrections are improved compared with the previous control forecasts. 展开更多
关键词 sub-seasonal to seasonal(S2S)hindcast stratospheric sudden warming BCC_CSM ensemble forecast error correction
下载PDF
Influence of Major Stratospheric Sudden Warming on the Unprecedented Cold Wave in East Asia in January 2021 被引量:7
5
作者 Yingxian ZHANG Dong SI +3 位作者 Yihui DING Dabang JIANG Qingquan LI Guofu WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第4期576-590,共15页
An unprecedented cold wave intruded into East Asia in early January 2021 and led to record-breaking or historical extreme low temperatures over vast regions.This study shows that a major stratospheric sudden warming(S... An unprecedented cold wave intruded into East Asia in early January 2021 and led to record-breaking or historical extreme low temperatures over vast regions.This study shows that a major stratospheric sudden warming(SSW)event at the beginning of January 2021 exerted an important influence on this cold wave.The major SSW event occurred on 2 January 2021 and subsequently led to the displacement of the stratospheric polar vortex to the East Asian side.Moreover,the SSW event induced the stratospheric warming signal to propagate downward to the mid-to-lower troposphere,which not only enhanced the blocking in the Urals-Siberia region and the negative phase of the Arctic Oscillation,but also shifted the tropospheric polar vortex off the pole.The displaced tropospheric polar vortex,Ural blocking,and another downstream blocking ridge over western North America formed a distinct inverted omega-shaped circulation pattern(IOCP)in the East Asia-North Pacific sector.This IOCP was the most direct and impactful atmospheric pattern causing the cold wave in East Asia.The IOCP triggered a meridional cell with an upward branch in East Asia and a downward branch in Siberia.The meridional cell intensified the Siberian high and low-level northerly winds,which also favored the invasion of the cold wave into East Asia.Hence,the SSW event and tropospheric circulations such as the IOCP,negative phase of Arctic Oscillation,Ural blocking,enhanced Siberian high,and eastward propagation of Rossby wave eventually induced the outbreak of an unprecedented cold wave in East Asia in early January 2021. 展开更多
关键词 cold wave stratospheric sudden warming polar vortex Ural blocking Siberian high
下载PDF
Northern Hemisphere Sudden Stratospheric Warming and Its Downward Impact in Four Chinese CMIP6 Models 被引量:4
6
作者 Jian RAO Siming LIU Yuanhao CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第2期187-202,共16页
Using the World Meteorological Organization definition and a threshold-based classification technique,simulations of vortex displacement and split sudden stratospheric warmings(SSWs)are evaluated for four Chinese mode... Using the World Meteorological Organization definition and a threshold-based classification technique,simulations of vortex displacement and split sudden stratospheric warmings(SSWs)are evaluated for four Chinese models(BCC-CSM2-MR,FGOALS-f3-L,FGOALS-g3,and NESM3)from phase 6 of the Coupled Model Intercomparison Project(CMIP6)with the Japanese 55-year reanalysis(JRA-55)as a baseline.Compared with six or seven SSWs in a decade in JRA-55,three models underestimate the SSW frequency by~50%,while NESM3 doubles the SSW frequency.SSWs mainly appear in midwinter in JRA-55,but one-month climate drift is simulated in the models.The composite of splits is stronger than displacements in both the reanalysis and most models due to the longer pulse of positive eddy heat flux before onset of split SSWs.A wavenumber-1-like temperature anomaly pattern(cold Eurasia,warm North America)before onset of displacement SSWs is simulated,but cold anomalies are mainly confined to North America after displacement SSWs.Although the lower tropospheric temperature also displays a wavenumber-1-like pattern before split SSWs,most parts of Eurasia and North America are covered by cold anomalies after split SSWs in JRA-55.The models have different degrees of fidelity for the temperature anomaly pattern before split SSWs,but the wavenumber-2-like temperature anomaly pattern is well simulated after split SSWs.The center of the negative height anomalies in the Pacific sector before SSWs is sensitive to the SSW type in both JRA-55 and the models.A negative North Atlantic Oscillation is simulated after both types of SSWs in the models,although it is only observed for split SSWs. 展开更多
关键词 sudden stratospheric warming CMIP6 surface impact model simulation
下载PDF
Comparison of stratospheric evolution during the major sudden stratospheric warming events in 2018 and 2019 被引量:6
7
作者 Zheng Ma Yun Gong +4 位作者 ShaoDong Zhang JiaHui Luo QiHou Zhou ChunMing Huang KaiMing Huang 《Earth and Planetary Physics》 CSCD 2020年第5期493-503,共11页
Using Modern-Era Retrospective analysis for Research and Applications,Version 2(MERRA-2)data in the northern hemisphere at the 10 hPa level,we compared the stratospheric evolution of temperature and geopotential heigh... Using Modern-Era Retrospective analysis for Research and Applications,Version 2(MERRA-2)data in the northern hemisphere at the 10 hPa level,we compared the stratospheric evolution of temperature and geopotential height during two major sudden stratosphere warming events(SSWs)that occurred in the Arctic winter of 2018 and 2019.In the prewarming period,poleward temperature-enhanced regions were mainly located around 120°E with a displaced vortex and around 120°E and 60°W with splitting vortices.The evolution of geopotential height indicated that these temperature-enhanced regions were both on the western side of high-latitude anticyclones.In the postwarming period,the polar vortex turned from splitting to displacement in the 2018 SSW but from displacement to splitting in the 2019 SSW.Both transitions were observed over the Atlantic region,which may have been caused by anticyclones moving through the polar region.Our findings revealed that the evolution of the anticyclone is important during SSWs and is closely related to temperature-enhanced regions in the prewarming periods and to transitions of the polar vortices in postwarming periods. 展开更多
关键词 sudden stratosphere warming transitions of the polar vortex ANTICYCLONE Atlantic region
下载PDF
Transient Characteristics of Residual Meridional Circulation during Stratospheric Sudden Warming 被引量:2
8
作者 邓淑梅 陈月娟 +2 位作者 黄勇 罗涛 毕云 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第3期551-563,共13页
The residual meridional circulation derived from the transformed Eulerian-mean thermodynamic equation and continuity equation can be separated into two parts,the slowly varying diabatic circulation and the transient c... The residual meridional circulation derived from the transformed Eulerian-mean thermodynamic equation and continuity equation can be separated into two parts,the slowly varying diabatic circulation and the transient circulation,as demonstrated by others.We calculated and composite-analyzed the transient and diabatic circulation for 14 stratospheric sudden warming(SSW) events from 1979-2002 by using the daily ECMWF reanalysis data.Specifically,the transient residual meridional circulation was calculated both with and without inclusion of the eddy heat transport term in the transformed Eulerian-mean thermodynamic equation to investigate the importance of the eddy heat transport term.The results showed that calculations of transient residual meridional circulation present rapid variations during SSWs,with or without inclusion of the eddy heat transport term.Although the patterns of transient residual meridional circulation with the eddy heat transport term were similar to that without the eddy heat transport term during SSW,the magnitudes in the upper stratosphere and high-latitude regions differed.As for the diabatic circulation,its daily variations were small during SSW events,and its patterns were in agreement with its monthly average. 展开更多
关键词 stratospheric sudden warming transient residual meridional circulation composite analysis
下载PDF
The Spatial and Temporal Variability of Global Stratospheric GravityWaves and Their Activity during Sudden StratosphericWarming Revealed by COSMIC Measurements 被引量:1
9
作者 Xiaohua XU Daocheng YU Jia LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2018年第12期1533-1546,共14页
This study investigates the spatial and temporal variability of global stratospheric gravity waves(GWs) and the characteristics of GW activity during sudden stratospheric warming(SSW) using the GPS radio occultation m... This study investigates the spatial and temporal variability of global stratospheric gravity waves(GWs) and the characteristics of GW activity during sudden stratospheric warming(SSW) using the GPS radio occultation measurements from the COSMIC mission during September 2006 to May 2013. Corresponding to the COSMIC RO observational window and analysis method,GW potential energy(Ep) with vertical scales no shorter than ~2 km is resolved. It is found that the distributions of GW Ep over 20-30 km and 30-38 km show similar spatial and seasonal variations. The variations of GW Ep with altitude and latitude along the westerly wind are identified in different seasons over 60°-80°W. In the middle and high latitudes,seasonal cycles are distinct in the time-latitude and time-altitude distributions of GW activities,which show larger Ep in winters when westerly wind dominates and smaller Ep in summers when easterly wind dominates. The influence of quasi-biennial oscillation on GW activity is recognized in the tropics. GW Ep enhances closely following the occurrence of minor SSW events; while during major events, GW Ep may not enhance, and sometimes may even weaken,in the regions where reversals of zonal wind occur, probably caused by the filtering impact of the 0 ms^(-1) wind level on the GWs. 展开更多
关键词 stratospheric gravity waves GPS radio OCCULTATION COSMIC potential energy sudden stratospheric warming
下载PDF
Observational Subseasonal Variability of the PM_(2.5) Concentration in the Beijing-Tianjin-Hebei Area during the January 2021 Sudden Stratospheric Warming 被引量:2
10
作者 Qian LU Jian RAO +4 位作者 Chunhua SHI Dong GUO Ji WANG Zhuoqi LIANG Tian WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第10期1623-1636,共14页
It is still not well understood if subseasonal variability of the local PM_(2.5) in the Beijing-Tianjin-Hebei(BTH)region is affected by the stratospheric state.Using PM_(2.5) observations and the ERA5 reanalysis,the e... It is still not well understood if subseasonal variability of the local PM_(2.5) in the Beijing-Tianjin-Hebei(BTH)region is affected by the stratospheric state.Using PM_(2.5) observations and the ERA5 reanalysis,the evolution of the air quality in BTH during the January 2021 sudden stratospheric warming(SSW)is explored.The subseasonal variability of the PM_(2.5) concentration after the SSW onset is evidently enhanced.Stratospheric circumpolar easterly anomalies lasted for 53 days during the January-February 2021 SSW with two evident stratospheric pulses arriving at the ground.During the tropospheric wave weakening period and the intermittent period of dormant stratospheric pulses,the East Asian winter monsoon weakened,anomalous temperature inversion developed in the lower troposphere,anomalous surface southerlies prevailed,atmospheric moisture increased,and the boundary layer top height lowered,all of which favor the accumulation of pollutant particulates,leading to two periods of pollution processes in the BTH region.In the phase of strengthened East Asian winter monsoon around the very beginning of the SSW and another two periods when stratospheric pulses had reached the near surface,opposite-signed circulation patterns and meteorological conditions were observed,which helped to dilute and diffuse air pollutants in the BTH region.As a result,the air quality was excellent during the two periods when the stratospheric pulse had reached the near surface.The increased subseasonal variation of the regional pollutant particulates after the SSW onset highlights the important role of the stratosphere in the regional environment and provides implications for the environmental prediction. 展开更多
关键词 sudden stratospheric warming(ssw) PM_(2.5) Beijing-Tianjin-Hebei(BTH) East Asian winter monsoon boundary layer meteorological conditions
下载PDF
Reponses of middle atmospheric circulation to the 2009 major sudden stratospheric warming 被引量:4
11
作者 ShengYang Gu Xin Hou +2 位作者 JiaHui Qi KeMin TengChen XianKang Dou 《Earth and Planetary Physics》 CSCD 2020年第5期472-478,共7页
In this research, the roles of gravity waves and planetary waves in the change to middle atmospheric residual circulation duringa sudden stratospheric warming period are differentiated and depicted separately by adopt... In this research, the roles of gravity waves and planetary waves in the change to middle atmospheric residual circulation duringa sudden stratospheric warming period are differentiated and depicted separately by adopting the downward control principle. Ouranalysis shows clear anomalous poleward residual circulation patterns from the equator to high latitudes in the lower winterstratosphere. At the same time, upward mean flows are identified at high latitudes of the winter upper stratosphere and mesosphere,which turn equatorward in the mesosphere and reach as far as the tropical region, and consequently the extratropical region in thesummer hemisphere. The downward control principle shows that anomalous mesospheric residual circulation patterns, includinginterhemispheric coupling, are solely caused by the change in gravity wave forcing resulting from the reversal of the winter stratosphericzonal wind. Nevertheless, both planetary waves and gravity waves are important to variations in the winter stratospheric circulation, butwith opposite effects. 展开更多
关键词 sudden stratospheric warming residual circulation gravity and planetary waves
下载PDF
Wintertime Stratospheric Anomalies-Part II: Sudden Warmings 被引量:3
12
作者 Y.L.McHall 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1992年第3期311-322,共12页
The process of stratospheric sudden warmings from development of planetary waves to.the sudden cooling after reversal of mean zonal circulation will be studied with the primitive equations of heat and momentum balance... The process of stratospheric sudden warmings from development of planetary waves to.the sudden cooling after reversal of mean zonal circulation will be studied with the primitive equations of heat and momentum balances. It will be explained that the sudden warmings may occur only in the polar regions of winter stratosphere where zonal mean temperature decreases poleward. The heating rate in the order of major warmings is produced by developed planetary waves in the stratospheric breaking layers. The particular perturbation structure characterized by large amplitude of wave 1 together with minimum of wave 2 discovered by Labitzke (1977) is crucial for initiation of major warmings. The cooling by the same mechanism can be produced in the regions with reversed mean temperature gradient. 展开更多
关键词 Wintertime stratospheric Anomalies-Part II sudden warmings
下载PDF
Verification of Subseasonal-to-Seasonal Forecasts for Major Stratospheric Sudden Warmings in Northern Winter from 1998/99 to 2012/13 被引量:1
13
作者 Masakazu TAGUCHI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2020年第3期250-258,共9页
This study reports verification results of hindcast data of four systems in the subseasonal-to-seasonal(S2S)prediction project for major stratospheric sudden warmings(MSSWs)in northern winter from 1998/99 to 2012/13.T... This study reports verification results of hindcast data of four systems in the subseasonal-to-seasonal(S2S)prediction project for major stratospheric sudden warmings(MSSWs)in northern winter from 1998/99 to 2012/13.This report deals with average features across all MSSWs,and possible differences between two MSSW types(vortex displacement and split types).Results for the average features show that stratospheric forecast verifications,when further averaged among the four systems,are judged to be successful for lead times around 10 d or shorter.All systems are skillful for lead times around 5 d,whereas the results vary among the systems for longer lead times.A comparison between the MSSW types overall suggests larger forecast errors or lower skill for MSSWs of the vortex split type,although the differences do not have strong statistical significance for almost all cases.This limitation is likely to at least partly reflect the small sample size of the MSSWs available. 展开更多
关键词 major stratospheric sudden warmings forecast verification subseasonal-to-seasonal prediction project vortex displacement and split warmings
下载PDF
Analysis of the variations in the strength and position of stratospheric sudden warming in the past three decades 被引量:1
14
作者 ZHANG Ludan CHEN Quanliang 《Atmospheric and Oceanic Science Letters》 CSCD 2019年第3期147-154,共8页
The authors investigate the statistical features of variations in the strength and position of stratospheric sudden warming (SSW) in the Northern Hemisphere based on ERA-Interim data from 1979 to 2016. It is found tha... The authors investigate the statistical features of variations in the strength and position of stratospheric sudden warming (SSW) in the Northern Hemisphere based on ERA-Interim data from 1979 to 2016. It is found that there are 55 SSW events in the past 38 years (average: 1.4 times per year), including 33 major SSW events and 22 minor SSW events. The events mainly occur in February. The variations of the maximum meridional gradient of the zonal mean temperature of the SSW events show increasing trends from 1979 to 1983 and from 1998 to 2011, and decreasing trends from 1984 to 1997 and from 2012 to 2016. However, the linear trend of the variations in the past three decades shows a negative trend. Meanwhile, the strength and duration of major SSW events show similar features. Some SSW events occur at nearly the same time at different levels from 100 hPa to 10 hPa, while others first occur at 10 hPa and then the signal propagates downwards to lower levels. A very interesting phenomenon is that the maximum temperature centers of these 55 SSW events are mainly located over the Eurasian continent between 30°E and 120°E. This may be related to a polar vortex shifting to the Eurasian continent in the past three decades. 展开更多
关键词 stratospheric sudden warming meridional gradient zonal mean temperature maximum temperature center
下载PDF
Kinetic and Available Potential Energy Transport during the Stratospheric Sudden Warming in January 2009
15
作者 左群杰 高守亭 吕达仁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2012年第6期1343-1359,共17页
The local features of transient kinetic energy and available potential energy were investigated using ECMWF (European Centre for Medium-Range Weather Forecasts) Interim Reanalysis data for the stratospheric sudden w... The local features of transient kinetic energy and available potential energy were investigated using ECMWF (European Centre for Medium-Range Weather Forecasts) Interim Reanalysis data for the stratospheric sudden warming (SSW) event of January 2009. The Western Europe high plays important roles in the propagation of the energy from North America to Eurasian. When the Western Europe high appeared and shifted eastward, energy conversions increased and energy propagated from North America to Eurasian as a form of interaction energy flow. The baroclinic conversion between transient-eddy kinetic energy (Ke) and transient-eddy available potential energy (Ae) and the horizontal advection of geopotential height were approximately one order of magnitude less than Ke and Ae generation terms. So, these terms were less important to this SSW event. 展开更多
关键词 energy flow energy conversion kinetic energy APE stratospheric sudden warming
下载PDF
Variation in Brewer–Dobson Circulation During Three Sudden Stratospheric Major Warming Events in the 2000s
16
作者 Mengchu TAO Yi LIU Yuli ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第12期1415-1425,共11页
As the strongest subseasonal atmospheric variability during boreal winter, three remarkable sudden stratospheric major warming(SSW) events in the 2000 s are investigated in terms of the Brewer–Dobson circulation(BDC)... As the strongest subseasonal atmospheric variability during boreal winter, three remarkable sudden stratospheric major warming(SSW) events in the 2000 s are investigated in terms of the Brewer–Dobson circulation(BDC) response. Our study shows that the changes of cross-isentropic velocity during the SSWs are not only confined to the polar region, but also extend to the whole Northern Hemisphere: enhanced descent in the polar region, as well as enhanced ascent in the tropics. When the acceleration of the deep branch of the BDC descends to the middle stratosphere, its strength rapidly decreases over a period of one to two weeks. The acceleration of the deep branch of the BDC is driven by the enhanced planetary wave activity in the mid-to-high-latitude stratosphere. Different from the rapid response of the deep branch of the BDC, tropical upwelling in the lower stratosphere accelerates up to 20%–40% compared with the climatology, 20–30 days after the onset of the SSWs,and the acceleration lasts for one to three months. The enhancement of tropical upwelling is associated with the large-scale wave-breaking in the subtropics interacting with the midlatitude and tropical Quasi-Biennial Oscillation–related mean flow. 展开更多
关键词 sudden stratospheric major warming Brewer–Dobson circulation subtropical wave
下载PDF
Investigating the Apparent Link between Cosmic Ray Muon Flux, Sudden Stratospheric Warming and Dry Season Rainfall over Jamaica
17
作者 Lawrence Patrick Brown John Charlery Mitko Voutchkov 《Atmospheric and Climate Sciences》 2019年第4期662-682,共21页
The Jamaican primary dry season extends from November-April with the driest period being January-March each year. Examination of the rainfall records over several decades reveal months that experienced a sharp increas... The Jamaican primary dry season extends from November-April with the driest period being January-March each year. Examination of the rainfall records over several decades reveal months that experienced a sharp increase in rainfall while sometimes they are drier than normal. During this dry season, some of the weather systems that impact the island significantly are cold fronts, highs pressure systems and troughs that migrate from the mainland USA. Major Sudden Stratospheric Warmings (SSW) occur routinely north of 60&#176;N and severely impact weather over the North American continent. The islands of the Greater Antilles also experience inclement weather during this period as weather systems migrate southwards and impact the Caribbean. Severe winter weather due to the increase frequency and intensity of storms related to SSW events over North America is important to the Jamaican economy as tourists escape harsh winters by travelling to the island. Predicting the variability of rainfall during the primary dry season is therefore important as it has significant implications for event planning, tourism and agriculture. Cosmic-ray Muon flux has been found to be positively correlated with the atmospheric effective temperature used to indicate the occurrence of SSW events. Current research investigates the relationship between cosmic-ray Muon flux, SSW events and primary dry season rainfall. Our findings suggest that a significant change in rainfall occur over Jamaica during the primary dry season on average 29 days after the central date or on average 15 days after the SSW events end. Our study also suggests apparent similarities in the behaviour of cosmic-ray Muon flux over Jamaica to those when major SSW occurs at high latitudes. We therefore argue that the Muon detectors at low latitudes have practical use with respect to identifying SSWs and merits further study. 展开更多
关键词 COSMIC-RAY MUON FLUX sudden stratospheric warming Primary Dry Season RAINFALL Jamaica
下载PDF
Effects of Sudden Stratospheric Warming Events on the Distribution of Total Column Ozone over Polar and Middle Latitude Regions
18
作者 Vazhathottathil Madhu 《Open Journal of Marine Science》 2016年第2期302-316,共15页
In winter the polar stratosphere is extremely cold. During the Sudden Stratospheric Warming events, the polar stratospheric temperature rises concurrently zonal-mean zonal flow weakens over a short period of time. As ... In winter the polar stratosphere is extremely cold. During the Sudden Stratospheric Warming events, the polar stratospheric temperature rises concurrently zonal-mean zonal flow weakens over a short period of time. As the zonal flow weakens, the stratospheric circulation becomes highly asymmetrical and the stratospheric polar vortex is displaced off the pole. The polar stratospheric temperature rises by 50°C and the stratospheric circumpolar flow reverses direction in a span of just few days. Sudden Stratospheric Warming (SSW) leads to significant changes in the rate of several chemical reactions which occur in the polar stratosphere. During such events, the dynamical fields in the polar stratosphere completely altered and columnar ozone changed. This study concentrated on the variability of winter polar vortex, meridional temperature gradient and associated changes in the Total Column Ozone (TCO) over the polar and middle latitude regions. It is found that changes in the amount of column ozone are positively correlated with polar lower stratospheric temperature with colder (warmer) temperature correlating with less (high) amount column ozone. But in the middle latitude region we observed negative correlations between ozone concentration and stratospheric temperature. In almost all cases there is sudden increase of ozone concentration over the pole and after few days the value is reduced when the warming effect is weak. During SSW events there observed an increase of 30 DU in TCO from the average value over the pole and if the SSW is strong TCO is found to rise by 50 DU. But in the middle latitude approximately 10 DU increase is noted. From the above results it may be concluded that variability of column ozone depends on dynamic and stratospheric chemistry over the poles and in middle latitude the variability can be attributed to the dynamical aspects. Anomaly of column ozone is higher during sudden stratospheric warming events over both polar and middle latitude region. The meridional temperature gradient reverses first and after two days polar vortex changes its direction or weakens followed by an increase of column ozone over the polar region. An increase of 30° Kelvin in the average temperature value noted over the polar region during sudden stratospheric warming events. 展开更多
关键词 stratospheric sudden warming Total Column Ozone Polar Vortex
下载PDF
Middle Stratospheric Polar Vortex Ozone Budget during the Warming Arctic Winter, 2002-2003 被引量:1
19
作者 刘毅 刘传熙 +1 位作者 铁学熙 高守亭 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第5期985-996,共12页
The ozone budget inside the middle stratospheric polar vortex (24-36 km) during the 2002-2003 Arctic winter is studied by analyzing Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite data.... The ozone budget inside the middle stratospheric polar vortex (24-36 km) during the 2002-2003 Arctic winter is studied by analyzing Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite data.A comprehensive global chemical transport model (Model for Ozone and Related Chemical Tracers,MOZART-3) is used to analyze the observed variation in polar vortex ozone during the stratospheric sudden warming (SSW) events.Both MIPAS measurement and MOZART-3 calculation show that a pronounced increase (26-28 DU) in the polar vortex ozone due to the SSW events.Due to the weakening of the polar vortex,the exchange of ozone mass across the edge of the polar vortex increases substantially and amounts to about 3.0 × 10 7 kg according to MOZART-3 calculation.The enhanced downward transport offsets about 80% of polar vortex ozone mass increase by horizontal transport.A "passive ozone" experiment shows that only ~55% of the vertical ozone mass flux in February and March can be attributed to the variation in vertical transport.It is also shown that the enhanced downward ozone above ~32 km should be attributed to the springtime photochemical ozone production.Due to the increase of air temperature,the NO x reaction rate increases by 40%-80% during the SSW events.As a result,NO x catalytic cycle causes another 44% decrease in polar vortex ozone compared to the net ozone changes due to dynamical transport.It is also shown that the largest change in polar vortex ozone is due to horizontal advection by planetary waves in January 2003. 展开更多
关键词 stratospheric sudden warming planetary wave MIPAS MOZART-3 model ozone depletion
下载PDF
Northern Hemisphere Stratospheric Polar Vortex Extremes in February under the Control of Downward Wave Flux in the Lower Stratosphere 被引量:1
20
作者 WEI Ke CHEN Wen 《Atmospheric and Oceanic Science Letters》 2012年第3期183-188,共6页
Using ECWMF ERA-40 and Interim reanalysis data, the planetary wave fluxes associated with the February extreme stratospheric polar vortex were studied. Using the three-dimensional Eliassen-Palm (EP) flux as a measure ... Using ECWMF ERA-40 and Interim reanalysis data, the planetary wave fluxes associated with the February extreme stratospheric polar vortex were studied. Using the three-dimensional Eliassen-Palm (EP) flux as a measure of the wave activity propagation, the authors show that the unusual warm years in the Arctic feature an anomalous weak stratosphere-troposphere coupling and weak downward wave flux at the lower stratosphere, especially over the North America and North Atlantic (NANA) region. The extremely cold years are characterized by strong stratosphere-troposphere coupling and strong downward wave flux in this region. The refractive index is used to examine the conception of planetary wave reflection, which shows a large refractive index (low reflection) for the extremely warm years and a small refractive index (high reflection) for the extremely cold years. This study reveals the importance of the downward planetary wave propagation from the stratosphere to the troposphere for explaining the unusual state of the stratospheric polar vortex in February. 展开更多
关键词 stratospheric sudden warming atmospheric dynamics middle atmosphere planetary wave reflection
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部