期刊文献+
共找到276篇文章
< 1 2 14 >
每页显示 20 50 100
Numerical Computation of Stress Intensity Factors for Bolt-hole Corner Crack in Mechanical Joints 被引量:3
1
作者 王立清 盖秉政 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第5期411-416,共6页
The three-dimensional finite element method is used to solve the problem of the quarter-elliptical comer crack of the bolt-hole in mechanical joints being subjected to remote tension. The square-root stress singularit... The three-dimensional finite element method is used to solve the problem of the quarter-elliptical comer crack of the bolt-hole in mechanical joints being subjected to remote tension. The square-root stress singularity around the corner crack front is simulated using the collapsed 20-node quarter point singular elements. The contact interaction between the bolt and the hole boundary is considered in the finite element analysis. The stress intensity factors (SIFs) along the crack front are evaluated by using the displacement correlation technique. The effects of the amount of clearance between the hole and the bolt on the SIFs are investigated. The numerical results indicate that the SIF for mode I decrease with the decreases in clearance, and in the cases of clearance being present, the corner crack is in a mix-mode, even if mode I loading is dominant. 展开更多
关键词 bolt-hole comer crack contact stress intensity factor mechanical joint CLEARANCE finite element method
下载PDF
Evaluation of Stress Intensity Factors for Multiple Cracked Circular Disks Under Crack Surface Tractions with SBFEM 被引量:3
2
作者 刘钧玉 林皋 +1 位作者 李晓川 徐凤琳 《China Ocean Engineering》 SCIE EI CSCD 2013年第3期417-426,共10页
Stress intensity factors (SIFs) for the cracked circular disks under different distributing surface tractions are evaluated with the scaled boundary finite element method (SBFEM). In the SBFEM, the analytical adva... Stress intensity factors (SIFs) for the cracked circular disks under different distributing surface tractions are evaluated with the scaled boundary finite element method (SBFEM). In the SBFEM, the analytical advantage of the solution in the radial direction allows SIFs to be directly determined from its definition, therefore no special crack-tip treatment is necessary. Furthermore anisotropic material behavior can be treated easily. Different distributions of surface tractions are considered for the center and double-edge-cracked disks. The benchmark examples are modeled and an excellent agreement between the results in the present study and those in published literature is found. It shows that SBFEM is effective and possesses high accuracy. The SIFs of the cracked orthotropic material circular disks subjected to different surface tractions are also evaluated. The technique of substructure is applied to handle the multiple cracks problem. 展开更多
关键词 stress intensity factors scaled boundary finite element method circular disk orthotropic material surfacetraction
下载PDF
A fractional differential constitutive model for dynamic stress intensity factors of an anti-plane crack in viscoelastic materials 被引量:2
3
作者 Run-Tao Zhan Zhao-Xia Li Lei Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第3期403-409,共7页
Fractional differential constitutive relationships are introduced to depict the history of dynamic stress inten- sity factors (DSIFs) for a semi-infinite crack in infinite viscoelastic material subjected to anti-pla... Fractional differential constitutive relationships are introduced to depict the history of dynamic stress inten- sity factors (DSIFs) for a semi-infinite crack in infinite viscoelastic material subjected to anti-plane shear impact load. The basic equations which govern the anti-plane deformation behavior are converted to a fractional wave-like equation. By utilizing Laplace and Fourier integral transforms, the fractional wave-like equation is cast into an ordinary differential equation (ODE). The unknown function in the solution of ODE is obtained by applying Fourier transform directly to the boundary conditions of fractional wave-like equation in Laplace domain instead of solving dual integral equations. Analytical solutions of DSIFs in Laplace domain are derived by Wiener-Hopf technique and the numerical solutions of DSIFs in time domain are obtained by Talbot algorithm. The effects of four parameters α, β, b1, b2 of the fractional dif- ferential constitutive model on DSIFs are discussed. The numerical results show that the present fractional differential constitutive model can well describe the behavior of DSIFs of anti-plane fracture in viscoelastic materials, and the model is also compatible with solutions of DSIFs of anti-plane fracture in elastic materials. 展开更多
关键词 Dynamic fracture stress intensity factors Fractional differentiation - Anti-plane fracture Viscoelasticmaterial WIENER-HOPF
下载PDF
STUDY ON DYNAMIC STRESS INTENSITY FACTORS OF DISK WITH A RADIAL EDGE CRACK SUBJECTED TO EXTERNAL IMPULSIVE PRESSURE 被引量:1
4
作者 Chen Aijun 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第1期41-49,共9页
A dynamic weight function method is presented for dynamic stress intensity factors of circular disk with a radial edge crack under external impulsive pressure. The dynamic stresses in a circular disk are solved under ... A dynamic weight function method is presented for dynamic stress intensity factors of circular disk with a radial edge crack under external impulsive pressure. The dynamic stresses in a circular disk are solved under abrupt step external pressure using the eigenfunction method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary conditions. By making use of Fourier- Bessel series expansion, the history and distribution of dynamic stresses in the circular disk are derived. Furthermore, the equation for stress intensity factors under uniform pressure is used as the reference case, the weight function equation for the circular disk containing an edge crack is worked out, and the dynamic stress intensity factor equation for the circular disk containing a radial edge crack can be given. The results indicate that the stress intensity factors under sudden step external pressure vary periodically with time, and the ratio of the maximum value of dynamic stress intensity factors to the corresponding static value is about 2.0. 展开更多
关键词 circular disk cracks dynamic stress intensity factors dynamic weight function Fourier-Bessel series
下载PDF
Analysis of dynamic stress intensity factors of thick-walled cylinder under internal impulsive pressure 被引量:3
5
作者 Aijun Chen Lianfang Liao Dingguo Zhang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第6期803-809,共7页
Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is ... Dynamic stress intensity factors are evaluated for thick-walled cylinder with a radial edge crack under internal impulsive pressure. Firstly, the equation for stress intensity factors under static uniform pressure is used as the reference case, and then the weight function for a thick-walled cylinder containing a radial edge crack can be worked out. Secondly, the dynamic stresses in uncracked thick-walled cylinders are solved under internal impulsive pressure by using mode shape function method. The solution consists of a quasi-static solution satisfying inhomogeneous boundary conditions and a dynamic solution satisfying homogeneous boundary condi- tions, and the history and distribution of dynamic stresses in thick-walled cylinders are derived in terms of Fourier-Bessel series. Finally, the dynamic stress intensity factor equations for thick-walled cylinder containing a radial edge crack sub- jected to internal impulsive pressure are given by dynamic weight function method. The finite element method is utilized to verify the results of numerical examples, showing the validity and feasibility of the proposed method. 展开更多
关键词 Thick-walled cylinder . Cracks .Dynamic stress intensity factors . Weight function methodMode shape function
下载PDF
METHOD TO CALCULATE BENDING CENTER AND STRESS INTENSITY FACTORS OF CRACKED CYLINDER UNDER SAINT-VENANT BENDING
6
作者 TANG Pen-ji(汤任基) +1 位作者 TANG Xin-yan(汤昕燕) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第1期79-88,共10页
Using the single crack solution and the regular solution elf plane harmonic function, the problem of Saint-Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equatio... Using the single crack solution and the regular solution elf plane harmonic function, the problem of Saint-Venant bending of a cracked cylinder by a transverse force was reduced to solving two sets of integral equations and its general solution was then obtained. Based on the obtained solution, a method to calculate the bending center and the stress intensity factors of the cracked cylinger whose cross-section is not thin-walled, but of small torsion rigidity is proposed. Some numerical examples are given. 展开更多
关键词 cracked cylinger Saint-Venant bending bending center stress intensity factors integral equation method
下载PDF
AN INVESTIGATION ON STRESS INTENSITY FACTORS OF INTERFACE CRACK FOR THREE TYPES OF SPECIMENS
7
作者 Shi Junping Liu Xiehui +1 位作者 Mo Xiaoyi Chen Yiheng 《Acta Mechanica Solida Sinica》 SCIE EI 2000年第1期42-49,共8页
The problems of finite bimaterial plates, hearing uniform tension, compact: tension and three point bending, are studied by using the eigenfunction expansion variation method (EEVM). And interfacial stress intensity f... The problems of finite bimaterial plates, hearing uniform tension, compact: tension and three point bending, are studied by using the eigenfunction expansion variation method (EEVM). And interfacial stress intensity factors (SIFs) are determined. The SIFs varying with shear modulus mu and Poisson's ratios nu of both materials are discussed. 展开更多
关键词 BIMATERIAL eigenfunction expansion interface crack stress intensity factors
下载PDF
COMPUTATION OF STRESS INTENSITY FACTORS BY THE SUB-REGION MIXED FINITE ELEMENT METHOD OF LINES
8
作者 Yuan Si Xu Yongjun WILLIAMS F W 《Acta Mechanica Solida Sinica》 SCIE EI 2007年第2期149-162,共14页
Based on the sub-region generalized variationM principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and effic... Based on the sub-region generalized variationM principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method. 展开更多
关键词 stress intensity factors finite element method of lines sub-region generalized variational principle ordinary differential equation solver
下载PDF
Effect of crack face contact on dynamic stress intensity factors for a hole-edge crack
9
作者 盖秉政 王立清 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第2期194-197,共4页
In order to determine the dynamic stress intensity factors(DSIFs)for a single edge crack at the center hole of a finite plate under a compressive step loading parallel to the crack,the finite element method was employ... In order to determine the dynamic stress intensity factors(DSIFs)for a single edge crack at the center hole of a finite plate under a compressive step loading parallel to the crack,the finite element method was employed to solve the cracked plate problem.The square-root stress singularity around the crack tip was simulated by quarter point singular elements collapsed by 8-node two-dimensional isoparametric elements.The DSIFs with and without considering crack face contact situations were evaluated by using the displacement correlation technique,and the influence of contact interaction between crack surfaces on DSIFs was investigated.The numerical results show that if the contact interaction between crack surfaces is ignored,the negative mode I DSIFs may be obtained and a physically impossible interpenetration or overlap of the crack surfaces will occur.Thus the crack face contact has a significant influence on the mode I DSIFs. 展开更多
关键词 CRACK contact interaction dynamic stress intensity factors (DSIFs) finite element method
下载PDF
STRESS INTENSITY FACTORS OF A PLATE WITH TWO CRACKS EMANATING FROM AN ARBITRARY HOLE
10
作者 王元汉 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第8期723-732,共10页
In this paper, Muskhelishvili complex function theory and boundary collocation method are used to calculate the stress intensity factors (SIF) of a plate with two cracks emanating from an arbitrary hole. The calculate... In this paper, Muskhelishvili complex function theory and boundary collocation method are used to calculate the stress intensity factors (SIF) of a plate with two cracks emanating from an arbitrary hole. The calculated examples include a circular, elliptical, rectangular, or rhombic hole in a plate. The principle and procedure by the method is not only rather simple, but also has good accuracy. The SIF values calculated compare very favorably with the existing solutions. A t the same time,the method can be used far different finite plate with two cracks emanating from a hole with more complex geometrical and loading conditions. It is an effective unified approach for this kind of fracture problems. 展开更多
关键词 mode stress intensity factors OF A PLATE WITH TWO CRACKS EMANATING FROM AN ARBITRARY HOLE LENGTH
下载PDF
A CLOSED FORM SOLUTION OF STRESS INTENSITY FACTORS FOR THREE DIMENSIONAL FINITE BODIES WITH ECCENTRIC CRACKS
11
作者 Wang Qizhi, Zhang Xing and Ren BingyiBeijing University of Aeronautics and Astronautics 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1990年第4期246-257,共12页
In this paper, a new analytical-engineering method of closed form solution about stress intensity factors for three dimensional finite bodies with eccentric cracks is derived by means of energy release rate method. Th... In this paper, a new analytical-engineering method of closed form solution about stress intensity factors for three dimensional finite bodies with eccentric cracks is derived by means of energy release rate method. The results of stress intensity factors can be obtained. The results provided ir this method are in nice agreement with those of the famous alternating method by which only special cases can be solved. 展开更多
关键词 FORM A CLOSED FORM SOLUTION OF stress intensity factors FOR THREE DIMENSIONAL FINITE BODIES WITH ECCENTRIC CRACKS
下载PDF
Numerical Comparison Research on the Solution of Stress Intensity Factors of Multiple Crack Problems
12
作者 Guo Zhao 《Advances in Pure Mathematics》 2020年第12期706-727,共22页
A newly developed approach without crack surface discretization for modeling 2D solids with large number of cracks in linear elastic fracture mechanics is proposed with the eigen crack opening displacement (COD) bound... A newly developed approach without crack surface discretization for modeling 2D solids with large number of cracks in linear elastic fracture mechanics is proposed with the eigen crack opening displacement (COD) boundary integral equations in this paper. The eigen COD is defined as a crack in an infinite domain under fictitious traction acting on the crack surface. Respect to the computational accuracies and efficiencies, the multiple crack problems in finite and infinite plates are solved and compared numerically using three different kinds of boundary integral equations (BIEs): 1) the dual BIEs require crack surface discretization;2) the BIEs with numerical Green’s functions (NGF) without crack surface discretization, but have to solve a complementary matrix;3) the eigen crack opening displacement (COD) BIEs in the present paper. With the concept of eigen COD, the multiple crack problems can be solved by using a conventional displacement discontinuity boundary integral equation in an iterative fashion with a small size of system matrix as that in the NGF approach, but without troubles to determine the complementary matrix. Solution of the stress intensity factors of multiple crack problems is solved and compared in some numerical examples using the above three computational algorithms. Numerical results clearly demonstrate the numerical models of eigen COD BIEs have much higher efficiency, providing a newly numerical technique for multiple crack problems. Not only the accuracy and efficiency of computation can be guaranteed, but also the overall properties and local details can be obtained. In conclusion, the numerical models of eigen COD BIEs realize the simulations for multiple crack problems with large quantity of cracks. 展开更多
关键词 Multiple Crack Problems Boundary Integral Equations Eigen Crack Opening Displacements Eshelby Matrix stress intensity factors
下载PDF
DETERMINATION OF THE DYNAMIC STRESS INTENSITY FACTORS,K_Ⅰ~d AND K_Ⅱ~d,FOR A MIXED-MODE PROPAGATING CRACK 被引量:4
13
作者 Liu Cheng (Department of Mechanics,Peking University) 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1989年第3期244-252,共9页
In this paper,the dynamic propagation problem of a mixed-mode crack was studied by means of the experimental method of caustics.The initial curve and caustic equations were derived un- der the mixed-mode dynamic condi... In this paper,the dynamic propagation problem of a mixed-mode crack was studied by means of the experimental method of caustics.The initial curve and caustic equations were derived un- der the mixed-mode dynamic condition.A multi-point measurement method for determining the dy- namic stress intensity factors,K_Ⅰ~d and K_Ⅱ~d,and the position of the crack tip was developed.Several other methods were adopted to check this method,and showed that it has a good precision.Finally, the dynamic propagating process of a mixed-mode crack in a three-point bending beam specimen was investigated with our method. 展开更多
关键词 caustic method stress intensity factor dynamic fracture
下载PDF
Evaluation of stress intensity factors for bi-material interface cracks using displacement jump methods 被引量:3
14
作者 K. C. Nehar B. E. Hachi +1 位作者 F. Cazes M. Haboussi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第6期1051-1064,共14页
The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to an... The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to analyze brittle and bi-material interfacial fatigue crack growth by computing the mixed mode stress intensity factors(SIF). Three different approaches are introduced to compute the SIFs. In the first one, mixed mode SIF is deduced from the computation of the contour integral as per the classical J-integral method,whereas a displacement method is used to evaluate the SIF by using either one or two displacement jumps located along the crack path in the second and third approaches. The displacement jump method is rather classical for mono-materials,but has to our knowledge not been used up to now for a bimaterial. Hence, use of displacement jump for characterizing bi-material cracks constitutes the main contribution of the present study. Several benchmark tests including parametric studies are performed to show the effectiveness of these computational methodologies for SIF considering static and fatigue problems of bi-material structures. It is found that results based on the displacement jump methods are in a very good agreement with those of exact solutions, such as for the J-integral method, but with a larger domain of applicability and a better numerical efficiency(less time consuming and less spurious boundary effect). 展开更多
关键词 Bi-material interface crack Mixed mode stress intensity factor Displacement jump X-FEM Fatigue crack growth
下载PDF
Finite element simulation of stress intensity factors in elastic-plastic crack growth 被引量:3
15
作者 ALSHOAIBI Abdulnaser M ARIFFIN Ahmad Kamal 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第8期1336-1342,共7页
A finite element program developed elastic-plastic crack propagation simulation using Fortran language. At each propagation step, the adaptive mesh is automatically refined based on a posteriori h-type refinement usin... A finite element program developed elastic-plastic crack propagation simulation using Fortran language. At each propagation step, the adaptive mesh is automatically refined based on a posteriori h-type refinement using norm stress error estimator. A rosette of quarter-point elements is then constructed around the crack tip to facilitate the prediction of crack growth based on the maximum normal stress criterion and to calculate stress intensity factors under plane stress and plane strain conditions. Crack was modelled to propagate through the inter-element in the mesh. Some examples are presented to show the results of the implementation. 展开更多
关键词 Crack propagation Nodal displacement stress intensity factor Adaptive mesh Finite element method (FEM)
下载PDF
Evaluation of Stress Intensity Factors Subjected to Arbitrarily Distributed Tractions on Crack Surfaces 被引量:3
16
作者 刘钧玉 林皋 《China Ocean Engineering》 SCIE EI 2007年第2期293-303,共11页
The stress intensity factors (SIF) considering arbitrarily distributed surface tractions are evaluated based on the sealed boundary finite element method (SBFEM). The semi-analytical solving process for the stress... The stress intensity factors (SIF) considering arbitrarily distributed surface tractions are evaluated based on the sealed boundary finite element method (SBFEM). The semi-analytical solving process for the stress intensity factors including the effects of surface tractions is presented. Provided are the numerical examples for the evaluation of mode I and Ⅱ stress intensity factors with linear and non-linear distributing forces loaded on the crack surfaces. The crack problems of anisotropy and bimaterial interface are also studied and the stress intensity factors of single-edge-cracked orthotropic material and bi-material interface problems with surface tractions are calculated. Comparisons with the analytical solutions show that the proposed approach is effective and possesses high accuracy. 展开更多
关键词 stress intensity factor scaled boundary finite element method surface tractions anisotropic materials bimaterial interface
下载PDF
THE EVALUATION OF STRESS INTENSITY FACTORS OF PLANE CRACK FOR ORTHOTROPIC PLATE WITH EQUAL PARAMETER BY F2LFEM 被引量:3
17
作者 Fan Jie Zhang Xiaochun +1 位作者 A.Y.T. LEUNG Zhong Weifang 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第2期128-134,共7页
In this paper, the evaluation of stress intensity factor of plane crack problems for orthotropic plate of equal-parameter is investigated using a fractal two-level finite element method (F2LFEM). The general solutio... In this paper, the evaluation of stress intensity factor of plane crack problems for orthotropic plate of equal-parameter is investigated using a fractal two-level finite element method (F2LFEM). The general solution of an orthotropic crack problem is obtained by assimilating the problem with isotropic crack problem, and is employed as the global interpolation function in F2LFEM. In the neighborhood of crack tip of the crack plate, the fractal geometry concept is introduced to achieve the similar meshes having similarity ratio less than one and generate an infinitesimal mesh so that the relationship between the stiffness matrices of two adjacent layers is equal. A large number of degrees of freedom around the crack tip are transformed to a small set of generalized coordinates. Numerical examples show that this method is efficient and accurate in evaluating the stress intensity factor (SIF). 展开更多
关键词 plane crack orthotropic plate fractal finite element stress intensity factor
下载PDF
STRESS INTENSITY FACTORS FOR A FINITE PLATE WITH AN INCLINED CRACK BY BOUNDARY COLLOCATION 被引量:3
18
作者 Xing Li Xuemei You 《Analysis in Theory and Applications》 2005年第3期258-265,共8页
In this paper, we combine the Muskhelishvili's complex variable method and boundary collocation method, and choose a set of new stress function based on the stress boundary condition of crack surface, the higher prec... In this paper, we combine the Muskhelishvili's complex variable method and boundary collocation method, and choose a set of new stress function based on the stress boundary condition of crack surface, the higher precision and less computation are reached. This method is applied to calculating the stress intensity factor for a finite plate with an inclined crack. The influence of θ (the obliquity of crack) on the stress intensity factors, as well as the number of summation terms on the stress intensity factor are studied and graphically represented. 展开更多
关键词 boundary collocation method stress intensity factor CRACK numerical solution
下载PDF
Evaluation of mixed-mode stress intensity factors by extended finite element method 被引量:3
19
作者 茹忠亮 赵洪波 尹顺德 《Journal of Central South University》 SCIE EI CAS 2013年第5期1420-1425,共6页
Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function... Extended finite element method (XFEM) implementation of the interaction integral methodology for evaluating the stress intensity factors (SIF) of the mixed-mode crack problem is presented. A discontinuous function and the near-tip asymptotic function are added to the classic finite element approximation to model the crack behavior. Two-state integral by the superposition of actual and auxiliary fields is derived to calculate the SIFs. Applications of the proposed technique to the inclined centre crack plate with inclined angle from 0° to 90° and slant edge crack plate with slant angle 45°, 67.5° and 90° are presented, and comparisons are made with closed form solutions. The results show that the proposed method is convenient, accurate and computationallv efficient. 展开更多
关键词 stress intensity factor (SIF) interaction integral method extended finite element method (XFEM)
下载PDF
Simulation Research on Stress Intensity Factors of Different Crack Aspect Ratios on Hollow Axles 被引量:2
20
作者 ZHOU Suxia XIE Jilong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期766-771,共6页
Because of the wicked service environment of the high speed train, it is possible that the hollow axle of the train may encounter the foreign object damage and form a sharp notch. Under the fatigue loading a crack can... Because of the wicked service environment of the high speed train, it is possible that the hollow axle of the train may encounter the foreign object damage and form a sharp notch. Under the fatigue loading a crack can initiate from the notch and propagate to failure. It is noted that the stress intensity factor is the control parameter of the crack propagating, for the purpose of getting the more exact propagation characteristics, the stress intensity factor is studied mainly. The service loads of hollow axles are defined, and the stress distribution of hollow axles is obtained according to the load spectrum. The semi-ellipse crack configuration is defined with three parameters: the aspect ratio, the relative depth and the relative location along the crack front. Quarter point 20-node isoparametric degenerate singular elements are used for the region near the crack tip. The finite element model of crack extension of hollow axle is created, and the crack front is dispersed which can realize orthogonal extension. Based on this the stress intensity factors of crack front were calculated, and the distribution rules of the stress intensity factors of different initial crack shapes are obtained. The conclusions are compared with that of the analytic method and they agree with each other very well, and the calculating results show that there is a close relationship between the stress intensity factor and the initial crack shape. For a round crack the stress intensity factor at the surface point increases faster than the one at the center point with the crock propagation. However, for a narrow crack, the results are in contrast with that of a round one. So, all the cracks with different shapes propagate toward to a similar shape, and they grow at this shape to end. The study may contribute to the crack propagate characteristics research. 展开更多
关键词 hollow axle surface crack propagation stress intensity factor finite element
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部