期刊文献+
共找到74篇文章
< 1 2 4 >
每页显示 20 50 100
Ferroelectric engineering:Enhanced thermoelectric performance by local structural heterogeneity
1
作者 Xiangyu Meng Shuo Chen +9 位作者 Haoyang Peng Hui Bai Shujun Zhang Xianli Su Gangjian Tan Gustaaf Van Tendeloo Zhigang Sun Qingjie Zhang Xinfeng Tang Jinsong Wu 《Science China Materials》 SCIE EI CAS CSCD 2022年第6期1615-1622,共8页
Although traditional ferroelectric materials are usually dielectric and nonconductive,GeTe is a typical ferroelectric semiconductor,possessing both ferroelectric and semiconducting properties.GeTe is also a widely stu... Although traditional ferroelectric materials are usually dielectric and nonconductive,GeTe is a typical ferroelectric semiconductor,possessing both ferroelectric and semiconducting properties.GeTe is also a widely studied thermoelectric material,whose performance has been optimized by doping with various elements.However,the impact of the ferroelectric domains on the thermoelectric properties remains unclear due to the difficulty to directly observe the ferroelectric domains and their evolutions under actual working conditions where the material is exposed to high temperatures and electric currents.Herein,based on in-situ investigations of the ferroelectric domains and domain walls in both pure and Sb-doped GeTe crystals,we have been able to analyze the dynamic evolution of the ferroelectric domains and domain walls,exposed to an electric field and temperature.Local structural heterogeneities and nano-sized ferroelectric domains are generated due to the interplay of the Sb^(3+)dopant and the Ge-vacancies,leading to the increased number of charged domain walls and a much improved thermoelectric performance.This work reveals the fundamental mechanism of ferroelectric thermoelectrics and provides insights into the decoupling of previously interdependent properties such as thermo-power and electrical conductivity. 展开更多
关键词 charged domain walls bound charge local structural heterogeneity high-performance thermoelectric
原文传递
Probing the formation of ultrastable metallic glass from structural heterogeneity
2
作者 Qijing Sun DavidM Miskovic Michael Ferry 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第9期214-223,共10页
Ultrastable metallic glasses(SMGs)exhibit enhanced stability comparable to those of conventional glasses aged for thousands of years.The ability to understand why certain alloy compositions and processing conditions g... Ultrastable metallic glasses(SMGs)exhibit enhanced stability comparable to those of conventional glasses aged for thousands of years.The ability to understand why certain alloy compositions and processing conditions generate an SMG is an emerging challenge.Herein,amplitude-modulation dynamic atomic force microscopy was utilized for tracking the structure of Zr_(50)Cu_(50),Zr_(50)Cu_(44.5)Al_(5.5)and Zr_(50)Cu_(41.5)Al_(5.5)Mo_(3) thin film metallic glasses(TFMGs)that were produced by direct current magnetron sputtering at room temperature with the rate of deposition being the only variable.The transition in stability from bulkto SMG-like behavior resides in the change of relaxation mechanism as the deposition rate is decreased.The formation of SMGs is directly linked with the degree of structural heterogeneity,whereby MGs with greater heterogeneity have a higher potential to form SMGs with more significant enhancement in stability.Slower deposition rates,however,are required to yield the more homogenous structure and lower energy state underlying the ultrastability.Ultrastability is closely linked with the geometric shape and distribution of loosely packed phases,whereby SMGs containing more slender loosely packed phases with a more skewed distribution achieve more significant improvements in stability.This work not only provides direct evidence of the structure of SMGs,but also opens new horizons for the design of SMGs. 展开更多
关键词 Ultrastable metallic glass structural heterogeneity Relaxation dynamics Amplitude-modulation dynamic atomic force microscopy
原文传递
Structural heterogeneity and deformation rheology in metallic glasses 被引量:2
3
作者 KE HaiBo LIU ChainTsuan YANG Yong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第1期47-55,共9页
The atomic structure and associated deformation behavior of metallic glasses(MGs)have been long standing issues.Although recent computational/experimental results indicate that the structure of MGs is heterogeneous at... The atomic structure and associated deformation behavior of metallic glasses(MGs)have been long standing issues.Although recent computational/experimental results indicate that the structure of MGs is heterogeneous at the nano scale,the fundamental knowledge of the atomic basis for such structural heterogeneity and its impact on the overall properties of MGs is still lacking.We reviewed recent research on unraveling the structure heterogeneity in MGs,with emphases on the use of dynamic atomic force microscopy,the characterization of glass anelasticity by nanoindentation,and the establishment of numerous correlations with structural heterogeneity. 展开更多
关键词 bulk metallic glasses RHEOLOGY ANELASTICITY structure heterogeneity amorphous structure
原文传递
Optimal Insurance with Background Risk under the Ambiguity and Belief Heterogeneity Structure
4
作者 Xiaohan Wang 《Journal of Applied Mathematics and Physics》 2024年第6期2160-2171,共12页
In this paper, we discuss the optimal insurance in the presence of background risk while the insured is ambiguity averse and there exists belief heterogeneity between the insured and the insurer. We give the optimal i... In this paper, we discuss the optimal insurance in the presence of background risk while the insured is ambiguity averse and there exists belief heterogeneity between the insured and the insurer. We give the optimal insurance contract when maxing the insured’s expected utility of his/her remaining wealth under the smooth ambiguity model and the heterogeneous belief form satisfying the MHR condition. We calculate the insurance premium by using generalized Wang’s premium and also introduce a series of stochastic orders proposed by [1] to describe the relationships among the insurable risk, background risk and ambiguity parameter. We obtain the deductible insurance is the optimal insurance while they meet specific dependence structures. 展开更多
关键词 Optimal Insurance Monotone Hazard Ratio Order Smooth Ambiguity Model Background Risk Belief heterogeneity Structure
下载PDF
Secondary relaxation and dynamic heterogeneity in metallic glasses:A brief review 被引量:3
5
作者 J C Qiao Q Wang +2 位作者 D Crespo Y Yang J M Pelletier 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第1期32-41,共10页
Understanding mechanical relaxation, such as primary(α) and secondary(β) relaxation, is key to unravel the intertwined relation between the atomic dynamics and non-equilibrium thermodynamics in metallic glasses.... Understanding mechanical relaxation, such as primary(α) and secondary(β) relaxation, is key to unravel the intertwined relation between the atomic dynamics and non-equilibrium thermodynamics in metallic glasses. At a fundamental level, relaxation, plastic deformation, glass transition, and crystallization of metallic glasses are intimately linked to each other, which can be related to atomic packing, inter-atomic diffusion, and cooperative atom movement. Conceptually, βrelaxation is usually associated with structural heterogeneities intrinsic to metallic glasses. However, the details of such structural heterogeneities, being masked by the meta-stable disordered long-range structure, are yet to be understood. In this paper, we briefly review the recent experimental and simulation results that were attempted to elucidate structural heterogeneities in metallic glasses within the framework of β relaxation. In particular, we will discuss the correlation amongβ relaxation, structural heterogeneity, and mechanical properties of metallic glasses. 展开更多
关键词 metallic glass structural heterogeneity mechanical property secondary relaxation
下载PDF
Effects of amygdale heterogeneity and sample size on the mechanical properties of basalt 被引量:1
6
作者 Zhenjiang Liu Chunsheng Zhang +3 位作者 Chuanqing Zhang Huabin Wang Hui Zhou Bo Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第1期93-107,共15页
Due to the complex diagenesis process,basalt usually contains defects in the form of amygdales formed by diagenetic bubbles,which affect its mechanical properties.In this study,a synthetic rock mass method(SRM)based o... Due to the complex diagenesis process,basalt usually contains defects in the form of amygdales formed by diagenetic bubbles,which affect its mechanical properties.In this study,a synthetic rock mass method(SRM)based on the combination of discrete fracture network(DFN)and finite-discrete element method(FDEM)is applied to characterizing the amygdaloidal basalt,and to systematically exploring the effects of the development characteristics of amygdales and sample sizes on the mechanical properties of basalt.The results show that with increasing amygdale content,the elastic modulus(E)increases linearly,while the uniaxial compressive strength(UCS)shows an exponential or logarithmic decay.When the orientation of amygdales is between 0°and 90°,basalt shows a relatively pronounced strength and stiffness anisotropy.Based on the analysis of the geometric and mechanical properties,the representative element volume(REV)size of amygdaloidal basalt blocks is determined to be 200 mm,and the mechanical properties obtained on this scale can be regarded as the properties of the equivalent continuum.The results of this research are of value to the understanding of the mechanical properties of amygdaloidal basalt,so as to guide the formulation of engineering design schemes more accurately. 展开更多
关键词 Amygdaloidal basalt Hard brittle rock structural heterogeneity DFN-FDEM Mechanical properties Size-dependent effect
下载PDF
Research progress of heterogeneous structure magnesium alloys:A review
7
作者 Xiang Chen Junlei Zhang +7 位作者 Min Wang Weizhang Wang Di Zhao Haiming Huang Qi Zhao Xiaofei Xu Hongxia Zhang Guangsheng Huang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2147-2181,共35页
In recent years,a new class of metallic materials featuring heterogeneous structures has emerged.These materials consist of distinct soft and hard domains with significant differences in mechanical properties,allowing... In recent years,a new class of metallic materials featuring heterogeneous structures has emerged.These materials consist of distinct soft and hard domains with significant differences in mechanical properties,allowing them to maintain high strength while offering superior ductility.Magnesium(Mg)alloys,renowned for their low density,high specific strength,exceptional vibration damping,and electromagnetic shielding properties,exhibit tremendous potential as lightweight and functional materials.Despite their advantageous properties,high-strength Mg alloys often suffer from limited ductility.However,the emergence of heterogeneous materials provides a fresh perspective for the development of Mg alloys with both high strength and ductility.This article provided a fundamental overview of heterostructured materials and systematically reviewed the recent research progress in the design of Mg alloys with strength-ductility balance based on heterostructure principles.The review encompassed various aspects,including preparation methods,formation mechanisms of diverse heterostructures,and mechanical properties,both within domestic and international contexts.On this basis,the article discussed the challenges encountered in the design and fabrication of heterostructured Mg alloys,as well as the urgent issues that require attention and resolution in the future. 展开更多
关键词 Mg alloys Heterogeneous structure Processing techniques Strength and ductility Hetero-deformation induced stress Strain gradient
下载PDF
Improving the ductility and toughness of nano-TiC/AZ61 composite by optimizing bimodal grain microstructure via extrusion speed
8
作者 Lingling Fan Mingyang Zhou +5 位作者 Wulve Lao Yuwenxi Zhang Hajo Dieringa Ying Zeng Yuanding Huang Gaofeng Quan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3264-3280,共17页
In this study,the nano-TiC/AZ61 composites with different heterogeneous bimodal grain(HBG)structures and uniform structure are obtained by regulating the extrusion speed.The effect of HBG structure on the mechanical p... In this study,the nano-TiC/AZ61 composites with different heterogeneous bimodal grain(HBG)structures and uniform structure are obtained by regulating the extrusion speed.The effect of HBG structure on the mechanical properties of the composites is investigated.The increasing ductility and toughening mechanism of HBG magnesium matrix composites are carefully discussed.When the extrusion speed increases from 0.75 mm/s to 2.5 mm/s or 3.5 mm/s,the microstructure transforms from uniform to HBG structure.Compared with Uniform-0.75 mm/s composite,Heterogeneous-3.5 mm/s composite achieves a 116.7%increase in ductility in the plastic deformation stage and almost no reduction in ultimate tensile strength.This is mainly because the lower plastic deformation inhomogeneity and higher strain hardening due to hetero-deformation induced(HDI)hardening.Moreover,Heterogeneous-3.5 mm/s composite achieves a 108.3%increase in toughness compared with the Uniform-0.75 mm/s composite.It is mainly because coarse grain(CG)bands can capture and blunt cracks,thereby increasing the energy dissipation for crack propagation and improving toughness.In addition,the CG band of the Heterogeneous-3.5 mm/s composite with larger grain size and lower dislocation density is more conducive to obtaining higher strain hardening and superior blunting crack capability.Thus,the increased ductility and toughness of the Heterogeneous-3.5 mm/s composite is more significant than that Heterogeneous-2.5 mm/s composite. 展开更多
关键词 Nano-TiC/AZ61 composite Extrusion speed Heterogeneous bimodal grain structure Increasing ductility mechanism Toughening mechanism
下载PDF
ADSORPTION ISOTHERMS AND POTENTIAL DISTRIBUTIONS OF NITROGEN ON VARIOUS ACTIVATED CARBONS 被引量:3
9
作者 LI Xiang LI Zhong LUO lingai 《Chinese Journal of Reactive Polymers》 2005年第1期8-13,共6页
The adsorption isotherms of four activated carbons (Norit Rill, Chemviron BPL, Monolit, and Ambersorb-572) have been examined by nitrogen adsorption at 77.5 K. A method for adsorption potential distribution calculat... The adsorption isotherms of four activated carbons (Norit Rill, Chemviron BPL, Monolit, and Ambersorb-572) have been examined by nitrogen adsorption at 77.5 K. A method for adsorption potential distribution calculation has been proposed based on the adsorption isotherms. This distribution provides information about possible changes in the Gibbs free energy caused by the energetic and geometrical heterogeneities of an activated carbon as well as by the adsorbate-related entropic effects. The general character of the adsorption potential distribution is clearly visible by its simple relation to the micropore and mesopore distribution, 展开更多
关键词 Adsorption isotherms Adsorption potential distributions MICROPORE STRUCTURE structural heterogeneity.
下载PDF
Effects of water on the structure and transport properties of room temperature ionic liquids and concentrated electrolyte solutions
10
作者 Jinbing Zhang Qiang Wang Zexian Cao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第8期24-32,共9页
Transport properties and the associated structural heterogeneity of room temperature aqueous ionic liquids and especially of super-concentrated electrolyte aqueous solutions have received increasing attention,due to t... Transport properties and the associated structural heterogeneity of room temperature aqueous ionic liquids and especially of super-concentrated electrolyte aqueous solutions have received increasing attention,due to their potential application in ionic battery.This paper briefly reviews the results reported mainly since 2010 about the liquid-liquid separation,aggregation of polar and apolar domains in neat RTILs,and solvent clusters and 3D networks chiefly constructed by anions in super-concentrated electrolyte solutions.At the same time,the dominating effect of desolvation process of metal ions at electrode/electrolyte interface upon the transport of metal ions is stressed.This paper also presents the current understanding of how water affects the anion-cation interaction,structural heterogeneities,the structure of primary coordination sheath of metal ions and consequently their transport properties in free water-poor electrolytes. 展开更多
关键词 super-concentrated electrolyte solutions room temperature ionic liquids water effect structural heterogeneity transport property
下载PDF
Yielding and fracture behaviors of coarse-grain/ultrafine-grain heterogeneous-structured copper with transitional interface 被引量:7
11
作者 Yan-fei WANG Ming-sai WANG +3 位作者 Kun YIN Ai-hui HUANG Yu-sheng LI Chong-xiang HUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第3期588-594,共7页
Heterogeneous-structured Cu samples composed of coarse-grained(CG) and ultrafine-grained(UFG) domains with a transitional interface were fabricated by friction stir processing, in order to investigate the effect of in... Heterogeneous-structured Cu samples composed of coarse-grained(CG) and ultrafine-grained(UFG) domains with a transitional interface were fabricated by friction stir processing, in order to investigate the effect of interface constraint on the yielding and fracture behaviors. Tensile test revealed that the synergetic strengthening induced by elastic/plastic interaction between incompatible domains increases with increasing the area of constraint interface. The strain distribution near interface and the fracture morphology were characterized using digital image correlation technique and scanning electron microscopy, respectively. Fracture dimples preferentially formed at the interface, possibly due to extremely high triaxial stress and strain accumulation near the interface. Surprisingly, the CG domain was fractured by pure shear instead of the expected voids growth caused by tensile stress. 展开更多
关键词 heterogeneous structure INTERFACE constraint synergetic strengthening fracture
下载PDF
Design of p-n homojunctions in metal-free carbon nitride photocatalyst for overall water splitting 被引量:7
12
作者 Gang Zhao Shuhua Hao +3 位作者 Jinghua Guo Yupeng Xing Lei Zhang Xijin Xu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第3期501-509,共9页
Two-dimensional(2D)carbon nitride(CN)photocatalysts are attracting extensive attention owing to their excellent photocatalytic properties.In this study,we successfully prepared CN materials with heterogeneous structur... Two-dimensional(2D)carbon nitride(CN)photocatalysts are attracting extensive attention owing to their excellent photocatalytic properties.In this study,we successfully prepared CN materials with heterogeneous structures via hydrothermal treatment,high-temperature roasting,ball milling,sintering,and other processes.Benefitting from interface interactions in hybrid architectures,the CN photocatalysts exhibited high photocatalytic activity.The rate of hydrogen production using these CN photocatalysts reached 17028.82μmol h^(−1)g^(−1),and the apparent quantum efficiency was 11.2%at 420 nm.The ns-level time-resolved photoluminescence(PL)spectra provided information about the time-averaged lifetime of fluorescence charge carriers;the lifetime of the charge carriers causing the fluorescence of CN reached 9.99 ns.Significantly,the CN photocatalysts displayed satisfactory results in overall water splitting without the addition of sacrificial agents.The average hydrogen and oxygen production rates were 270.95μmol h^(−1)g^(−1)and 115.21μmol h^(−1)g^(−1)in 7 h,respectively,which were promising results for the applications of the catalysts in overall water splitting processes.We investigated the high efficiency of the prepared CN photocatalysts via a series of tests(UV-vis diffuse reflectance spectroscopy,photocurrent response measurements,PL emission spectroscopy,time-resolved PL spectroscopy,and Brunauer-Emmett-Teller analysis).Furthermore,the Mott-Schottky plot and current-voltage curve were acquired via electrochemical tests.The fabricated CN photocatalyst had a small p-n junction in its heterogeneous structure,which further enhanced its photocatalytic efficiency.Therefore,this work can promote the development of CN photocatalysts. 展开更多
关键词 2D Metal-free photocatalyst Carbon nitride Overall water splitting Time-resolved photoluminescence SPECTRA Density-functional theory Heterogeneous structure
下载PDF
Simultaneous multi-material embedded printing for 3D heterogeneous structures 被引量:4
13
作者 Ziqi Gao Jun Yin +4 位作者 Peng Liu Qi Li Runan Zhang Huayong Yang Hongzhao Zhou 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期485-498,共14页
In order to mimic the natural heterogeneity of native tissue and provide a better microenvironment for cell culturing,multi-material bioprinting has become a common solution to construct tissue models in vitro.With th... In order to mimic the natural heterogeneity of native tissue and provide a better microenvironment for cell culturing,multi-material bioprinting has become a common solution to construct tissue models in vitro.With the embedded printing method,complex 3D structure can be printed using soft biomaterials with reasonable shape fidelity.However,the current sequential multi-material embedded printing method faces a major challenge,which is the inevitable trade-off between the printed structural integrity and printing precision.Here,we propose a simultaneous multi-material embedded printing method.With this method,we can easily print firmly attached and high-precision multilayer structures.With multiple individually controlled nozzles,different biomaterials can be precisely deposited into a single crevasse,minimizing uncontrolled squeezing and guarantees no contamination of embedding medium within the structure.We analyse the dynamics of the extruded bioink in the embedding medium both analytically and experimentally,and quantitatively evaluate the effects of printing parameters including printing speed and rheology of embedding medium,on the 3D morphology of the printed filament.We demonstrate the printing of double-layer thin-walled structures,each layer less than 200μm,as well as intestine and liver models with 5%gelatin methacryloyl that are crosslinked and extracted from the embedding medium without significant impairment or delamination.The peeling test further proves that the proposed method offers better structural integrity than conventional sequential printing methods.The proposed simultaneous multi-material embedded printing method can serve as a powerful tool to support the complex heterogeneous structure fabrication and open unique prospects for personalized medicine. 展开更多
关键词 embedded printing multi-material printing PRINTABILITY soft materials heterogeneous structures
下载PDF
Preparation of high-mechanical-property medium-entropy CrCoNi alloy by asymmetric cryorolling 被引量:3
14
作者 Yu-ze WU Zhao-yang ZHANG +5 位作者 Juan LIU Charlie KONG Yu WANG Puneet TANDON Alexander PESIN Hai-liang YU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第5期1559-1574,共16页
In order to obtain good strength−plasticity synergy for a medium entropy alloy(MEA)CrCoNi,cold rolling,asymmetric rolling,cryorolling and asymmetric-cryorolling with subsequent annealing at different temperatures were... In order to obtain good strength−plasticity synergy for a medium entropy alloy(MEA)CrCoNi,cold rolling,asymmetric rolling,cryorolling and asymmetric-cryorolling with subsequent annealing at different temperatures were conducted.The results showed that the asymmetric-cryorolled alloy achieved a high strength of over 1.6 GPa.After annealing at 1073 K,it retained a high strength of~1 GPa while the elongation reached nearly 60%.After annealing,the heterogeneous characteristics were formed in asymmetric-cryorolled samples,which were found to be more distinct than those of the samples subjected to asymmetric rolling.This resulted in the generation of high strength and ductility. 展开更多
关键词 medium entropy alloy heterogeneous structure ANNEALING mechanical properties asymmetric cryorolling
下载PDF
An Al–Al interpenetrating-phase composite by 3D printing and hot extrusion 被引量:2
15
作者 Yulin Lin Di Wang +2 位作者 Chao Yang Weiwen Zhang Zhi Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期678-688,共11页
We report a process route to fabricate an Al–Al interpenetrating-phase composite by combining the Al–Mg–Mn–Sc–Zr lattice structure and Al_(84)Ni_(7)Gd_(6)Co_(3)nanostructured structure. The lattice structure was ... We report a process route to fabricate an Al–Al interpenetrating-phase composite by combining the Al–Mg–Mn–Sc–Zr lattice structure and Al_(84)Ni_(7)Gd_(6)Co_(3)nanostructured structure. The lattice structure was produced by the selective laser melting and subsequently filled with the Al_(84)Ni_(7)Gd_(6)Co_(3)amorphous powder, and finally the mixture was used for hot extrusion to produce bulk samples. The results show that the composites achieve a high densification and good interface bonding due to the element diffusion and plastic deformation during hot extrusion.The bulk samples show a heterogeneous structure with a combination of honeycomb lattice structure with an average grain size of less than1 μm and nanostructured area with a high volume fraction of nanometric intermetallics and nanograin α-Al. The heterogeneous structure leads to a bimodal mechanical zone with hard area and soft area giving rise to high strength and acceptable plasticity, where the compressive yield strength and the compressive plasticity can reach ~745 MPa and ~30%, respectively. The high strength can be explained by the rule of mixture,the grain boundary strengthening, and the back stress, while the acceptable plasticity is mainly owing to the confinement effect of the nanostructured area retarding the brittle fracture behavior. 展开更多
关键词 Al-based composites heterogeneous structure additive manufacturing mechanical properties
下载PDF
The heterodimeric structure of heterogeneous nuclear ribonucleoprotein C1/C2 dictates 1,25-dihydroxyvitamin D-directed transcriptional events in osteoblasts 被引量:2
16
作者 Thomas S Lisse Kanagasabai Vadivel +4 位作者 S Paul Bajaj Rui Zhou Rene F Chun Martin Hewison John S Adams 《Bone Research》 SCIE CAS 2014年第2期110-120,共11页
Heterogeneous nuclear ribonucleoprotein (hnRNP) C plays a key role in RNA processing but also exerts a dominant negative effect on responses to 1,25-dihydroxyvitamin D (1,25(OH)2D) by functioning as a vitamin D ... Heterogeneous nuclear ribonucleoprotein (hnRNP) C plays a key role in RNA processing but also exerts a dominant negative effect on responses to 1,25-dihydroxyvitamin D (1,25(OH)2D) by functioning as a vitamin D response element-binding protein (VDRE-BP). hnRNPC acts a tetramer of hnRNPC1 (huC1) and hnRNPC2 (huC2), and organization of these subunits is critical to in vivo nucleic acid-binding. Overexpression of either huC1 or huC2 in human osteoblasts is sufficient to confer VDRE-BP suppression of 1,25(OH)2D-mediated transcription. However, huC1 or huC2 alone did not suppress 1,25(OH)2D-induced transcription in mouse osteoblastic cells. By contrast, overexpression of huC1 and huC2 in combination or transfection with a bone-specific polycistronic vector using a "self-cleaving" 2A peptide to co-express huC1/C2 suppressed 1,25D-mediated induction of osteoblast target gene expression. Structural diversity of hnRNPC between human/NWPs and mouse/rat/rabbit/dog was investigated by analysis of sequence variations within the hnRNP CLZ domain. The predicted loss of distal helical function in hnRNPC from lower species provides an explanation for the altered interaction between huC1/C2 and their mouse counterparts. These data provide new evidence of a role for hnRNPC1/C2 in 1,25(OH)2D-driven gene expression, and further suggest that species-specific tetramerization is a crucial determinant of its actions as a regulator of VDR-directed transactivation. 展开更多
关键词 gene The heterodimeric structure of heterogeneous nuclear ribonucleoprotein C1/C2 dictates 1 25-dihydroxyvitamin D-directed transcriptional events in osteoblasts Figure EcoRI
下载PDF
Instant formation of excellent oxygen evolution catalyst film via controlled spray pyrolysis for electrocatalytic and photoelectrochemical water splitting 被引量:1
17
作者 Na An Hengzheng Tian +7 位作者 Yang Zhou Yalong Zou Hao Xiu Yufeng Cao Ying Wang Jianming Li Deyu Liu Yongbo Kuang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期657-665,I0018,共10页
The retarded kinetics of oxygen evolution on electrodes is a bottleneck for electrochemical energy conversion and storage systems.NiFe-based electrocatalysts provide a cost-effective choice to confront this challenge.... The retarded kinetics of oxygen evolution on electrodes is a bottleneck for electrochemical energy conversion and storage systems.NiFe-based electrocatalysts provide a cost-effective choice to confront this challenge.However,there is a lack of facile techniques for depositing compact catalytic films of high coverage and possessing a state-of-the-art performance,which is especially desired in photoelectrochemical(PEC)systems.Herein,we demonstrate a spray pyrolysis(SP)route to address this issue,featuring the kinetic selective preparation towards the desired catalytic-active material.Differing from reported SP protocols which only produce inactive oxides,this approach directly generates a unique composite film consisting of NiFe layered oxyhydroxides and amorphous oxides,exhibiting an overpotential as small as 255 mV(10 mA cm^(−2))and a turnover frequency of∼0.4 s^(−1)per metal atom.By using such a facile protocol,the surface rate-limiting issue of BiVO_(4)photoanodes can be effectively resolved,resulting in a charge injection efficiency of over 90%.Considering this deposition directly start from simple nitrates but only takes several seconds to complete,we believe it can be developed as a widely applicable and welcomed functionalization technique for diverse electrochemical devices. 展开更多
关键词 Spray pyrolysis Oxygen evolution catalysts Layered oxyhydroxide Heterogeneous structure Thin film
下载PDF
Effects of extrusion temperature on microstructure evolution and mechanical properties of heterogeneous Mg−Gd alloy laminates via accumulated extrusion bonding 被引量:1
18
作者 Shuai-shuai LIU Han LIU +5 位作者 Bao-xuan ZHANG Guang-sheng HUANG Xiang CHEN Ai-tao TANG Bin JIANG Fu-sheng PAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第7期2190-2204,共15页
The influence of extrusion temperature on microstructure and mechanical properties of heterogeneous Mg−1Gd/Mg−13Gd laminate prepared by accumulated extrusion bonding was investigated.The results reveal that the Mg−1Gd... The influence of extrusion temperature on microstructure and mechanical properties of heterogeneous Mg−1Gd/Mg−13Gd laminate prepared by accumulated extrusion bonding was investigated.The results reveal that the Mg−1Gd/Mg−13Gd laminate forms a significant difference in grain size between the successive layers when extruded at 330℃,and this difference gradually disappears as the extrusion temperature increases from 380 to 430℃.Besides,the growth rate of recrystallized grains in fine-grained layers is faster than that in coarse-grained layers.Moreover,the diffusion ability of Gd element increases with elevating extrusion temperatures,promoting the increase and coarsening of precipitates in fine-grained layers.Tensile tests indicate that the sample extruded at 380℃ has a superior combination of strength and ductility.This is mainly attributed to the synergy of the heterogeneous texture between coarse and fine-grained layers,hetero-deformation induced strengthening and hardening.The fine-grained layers facilitate the activation of prismaticáañslips,while coarse-grained layers make it easier to active basaláañand pyramidalác+añslips,especially for the sample extruded at 380℃.The activation of pyramidalác+añslips contributes to coordinating further plastic deformation. 展开更多
关键词 Mg−Gd alloys heterogeneous structure TEXTURE mechanical properties slip modes
下载PDF
Deformation and failure behavior of heterogeneous Mg/SiC nanocomposite under compression 被引量:1
19
作者 Xi Luo Jinling Liu +3 位作者 Leigang Zhang Xu He Ke Zhao Linan An 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第12期3433-3446,共14页
The heterogeneous magnesium(Mg) matrix nanocomposite with dispersed soft phase exhibits high strength and toughness. Herein, the deformation behavior and failure process were investigated to reveal the unique mechanic... The heterogeneous magnesium(Mg) matrix nanocomposite with dispersed soft phase exhibits high strength and toughness. Herein, the deformation behavior and failure process were investigated to reveal the unique mechanical behavior of the heterogeneous microstructure under compression. The extensive plastic deformation is accompanied by the flattening and tilting of the soft phase, inhibiting strain localization and leading to strain hardening. Moreover, a stable crack multiplication process is activated, which endows high damage tolerance to the heterogeneous Mg matrix nanocomposites. The final failure of the composite is caused by crack coalescence in the shear plane along a tortuous path. The presence of dispersed soft phases within the hard matrix induces a noticeable change in mechanical response. Especially,the malleability of the heterogeneous Mg matrix nanocomposite is two and ten times higher than that of pure Mg and the homogeneous Mg matrix nanocomposite, respectively. The current study provides a novel strategy to break the trade-off between strength and toughness in metal matrix nanocomposites. 展开更多
关键词 Magnesium matrix nanocomposites Heterogeneous structure MALLEABILITY Microstructural evolution
下载PDF
Research on Cyberspace Mimic Defense Based on Dynamic Heterogeneous Redundancy Mechanism 被引量:1
20
作者 Junjie Xu 《Journal of Computer and Communications》 2021年第7期1-7,共7页
With the rapid growth of network technology, the methods and types of cyber-attacks are increasing rapidly. Traditional static passive defense technologies focus on external security and known threats to the target sy... With the rapid growth of network technology, the methods and types of cyber-attacks are increasing rapidly. Traditional static passive defense technologies focus on external security and known threats to the target system and cannot resist advanced persistent threats. To solve the situation that cyberspace security is easy to attack and difficult to defend, Chinese experts on cyberspace security proposed an innovative theory called mimic defense, it is an active defense technology that employs “Dynamic, Heterogeneous, Redundant” architecture to defense attacks. This article first briefly describes the classic network defense technology and Moving Target Defense (MTD). Next, it mainly explains in detail the principles of the mimic defense based on the DHR architecture and analyzes the attack surface of DHR architecture. This article also includes applications of mimic defense technology, such as mimic routers, and mimic web defense systems. Finally, it briefly summarizes the existing research on mimic defense, expounds the problems that need to be solved in mimic defense, and looks forward to the future development of mimic defense. 展开更多
关键词 Cyberspace Mimic Defense Dynamic Heterogeneous Redundancy Structure Defense Technology Network Security
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部