期刊文献+
共找到31,937篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of graphene oxide with different oxidation degrees on mechanical properties of styrene-butadiene rubber: Experiment and molecular simulation
1
作者 XU Ying-shu WANG Jing +4 位作者 WEN Yan-wei Amel MOHAMED CHEN Meng-han YANG Zi-fan JIA Hong-bing 《合成橡胶工业》 CAS 2024年第5期437-437,共1页
Graphene oxide(GO)has proven to be an effective reinfor-cing filler for rubber[1].GO has superior mechanical properties,barrier properties,large specific surface area and abundant oxygen-containing functional groups[2... Graphene oxide(GO)has proven to be an effective reinfor-cing filler for rubber[1].GO has superior mechanical properties,barrier properties,large specific surface area and abundant oxygen-containing functional groups[2].However,the change in the oxidation degree of GO has a great effect on its chemical properties,the interaction between GO and the matrix,and the dispersion uniformity in the rubber matrix,which has a great effect on the reinforcement of rubber[3]. 展开更多
关键词 rubber properties OXIDE
下载PDF
Reinforcement of Styrene-Butadiene Rubber with Silica Modified by Silane Coupling Agents: Experimental and Theoretical Chemistry Study 被引量:14
2
作者 任慧 屈一新 赵素合 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第1期93-98,共6页
The properties of styrene-butadiene rubber (SBR) reinforced by modified silica was investigated according to national standards. Silica was modified by silane coupling agents KH-570, KH-590, and KH-792. The optimized ... The properties of styrene-butadiene rubber (SBR) reinforced by modified silica was investigated according to national standards. Silica was modified by silane coupling agents KH-570, KH-590, and KH-792. The optimized geome-tries of molecular modified silica reinforced SBR were obtained by using B3LYP calculation of density functional theory with the 6-31+G basis sets. The natural bond orbital analyses were carried out. The Si—O bond length of silica modified by KH-792 was the shortest and the electronegative of O was the highest. It indicated that the connection between silica and KH-792 was the tightest. Higher tensile strength and elongation of reinforced SBR was obtained by silica modified with the KH-792. It was caused by large delocalization of lone pair electrons of the two N atoms in KH-792. The S—C bond length in silica modified by KH-590 was longer than the ordinary S—C bond length. Then the sulfur free radical (·S·) was produced more easily in vulcanization. The degree of crosslink was increased by the cross-linkage of the rubber molecule and the sulfur free radical. That was why the highest stress and tear strength of reinforced SBR was produced when silane coupling agent KH-590 was used. The calculation results was in accord with experimental data. 展开更多
关键词 silane coupling agent SILICA styrene-butadiene rubber
下载PDF
Pyrolysis of vulcanized styrene-butadiene rubber via ReaxFF molecular dynamics simulation 被引量:1
3
作者 Yinbin Wang Senjun Yao +6 位作者 Wei Wang Chenglong Qiu Jing Zhang Shengwei Deng Hong Dong Chuan Wu Jianguo Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第3期94-102,共9页
Styrene-butadiene rubber(SBR)is widely used in tires in the automotive segment and vulcanization using sulfur is a common process to enhance its mechanical properties.However,the addition of sulfur as the cross-linkin... Styrene-butadiene rubber(SBR)is widely used in tires in the automotive segment and vulcanization using sulfur is a common process to enhance its mechanical properties.However,the addition of sulfur as the cross-linking agent usually results in impurities in pyrolysis products during rubber recycling,and thus the desulfurization during tire pyrolysis attracts much attention.In this work,the pyrolysis of vulcanized SBR is studied in detail with the help of Reax FF molecular dynamics simulation.A series of crosslinked SBR models were built with different sulfur contents and densities.The following Reax FF MD simulations were performed to show products distributions at different pyrolysis conditions.The simulation results show that sulfur products distribution is mainly controlled by sulfur contents and temperatures.The reaction mechanism is proposed based on the analysis of sulfur products conversion pathway,where most sulfur atoms are bonded with hydrocarbon radicals and the rest transfer to H_(2)S.High sulfur contents tend to the formation of elemental sulfur intermediate,and temperature increase facilitates the release of H_(2)S. 展开更多
关键词 PYROLYSIS REAXFF Molecular simulation Vulcanized styrene-butadiene rubber Sulfur products
下载PDF
MORPHOLOGY,INTERFACIAL INTERACTION AND PROPERTIES OF STYRENE-BUTADIENE RUBBER/MODIFIED HALLOYSITE NANOTUBE NANOCOMPOSITES 被引量:1
4
作者 贾德民 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2009年第6期857-864,共8页
A natural nanotubular material,halloysite nanotubes(HNTs),was introduced to prepare styrene-butadiene rubber/modified halloysite nanotube(SBR/m-HNT) nanocomposites.Complex of resorcinol and hexamethylenetetramine (RH)... A natural nanotubular material,halloysite nanotubes(HNTs),was introduced to prepare styrene-butadiene rubber/modified halloysite nanotube(SBR/m-HNT) nanocomposites.Complex of resorcinol and hexamethylenetetramine (RH) was used as the interfacial modifier.The structure,morphology and mechanical properties of SBR/m-HNT nanocomposites,especially the interfacial interactions,were investigated.SEM and TEM observations showed that RH can not only facilitate the dispersion and orientation of HNTs in SBR matrix at ... 展开更多
关键词 styrene-butadiene rubber Halloysite nanotubes Complex of resorcinol and hexamethylenetetramine NANOCOMPOSITES Hydrogen bond
下载PDF
Morphology and Properties of Miktoarm Star Styrene-Butadiene Rubber
5
作者 张海燕 可勇 +1 位作者 俞科静 张兴英 《Transactions of Tianjin University》 EI CAS 2011年第3期203-207,共5页
In order to obtain the optimized structure rubber, a novel miktoarm star styrene-butadiene rubber (MS- SBR) was initiated by a multifunctional macromolecular initiator with polydiene arm and Sn-C bond. The propertie... In order to obtain the optimized structure rubber, a novel miktoarm star styrene-butadiene rubber (MS- SBR) was initiated by a multifunctional macromolecular initiator with polydiene arm and Sn-C bond. The properties of MS-SBR were investigated with respect to the morphology, mechanical properties, and dynamic viscoelasticity in comparison with those of the blends, natural rubber (NR)/star styrene-butadiene random rubber (S-SBR) blend rubber and cis-l,4-polybutadiene rubber (cis-BR)/S-SBR blend rubber. The samples were analyzed using transmission elec- tron microscopy (TEM), dynamic mechanical thermal analyzer (DMTA), and mechanical properties test. The analy- sis results show that MS-SBR possesses the desired combination of low rolling resistance and high antiskid resistance, and is promising for application in high performance tire tread. 展开更多
关键词 rubber morphological structure mechanical property miktoarm star copolymer
下载PDF
Strengthening and toughening styrene-butadiene rubber by mechanically interlocked cross-links 被引量:1
6
作者 Yuanhao Wang Li Yang +7 位作者 Lin Cheng Jun Zhao Ruixue Bai Wenbin Wang Shaolei Qu Zhaoming Zhang Wei Yu Xuzhou Yan 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第10期3414-3422,共9页
Styrene-butadiene rubber(SBR)is an indispensable material in modern society,and the necessity for enhanced mechanical properties in SBR persists,particularly to withstand the rigors of challenging environmental condit... Styrene-butadiene rubber(SBR)is an indispensable material in modern society,and the necessity for enhanced mechanical properties in SBR persists,particularly to withstand the rigors of challenging environmental conditions.To surmount the limitations of conventional cross-linking modes,mechanical bonds stabilized by host-guest recognition are incorporated as the cross-linking points of SBR to form mechanically interlocked networks(MINs).Compared with covalently cross-linked network,the representative MIN exhibits superior mechanical performance in terms of elongation(1392%)and breaking strength(4.6 MPa),whose toughness has surged by 17 times.Dissociation of host-guest recognition and subsequent sliding motion provide an effective energy dissipation mechanism,and the release of hidden length is also beneficial to enhance toughness.Furthermore,the introduction of the rotaxane cross-links made the network more pliable and possess damping and elastic properties,which can return to initial state with one minute rest interval.We aspire that this direct introduction method can serve as a blueprint,offering valuable insights for the enhancement of mechanical properties in conventional commercial polymer materials. 展开更多
关键词 mechanically interlocked molecules host-guest chemistry styrene-butadiene rubber mechanical properties dynamic materials
原文传递
Improving Thermal-oxidative Aging Resistance of Styrene-butadiene Rubber by Antioxidant Loaded Silica Aerogel
7
作者 Xue-Fei Ping Yu Wang +5 位作者 Lu Liu Fu-Yong Liu Hong-Wei He Pi Wang Wen-Wen Yu Qiang Zheng 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第8期1198-1209,共12页
The antioxidant N-isopropyl-N'-phenyl-p-phenylenediamine(4010NA)was dissolved in ethanol and impregnated into silica aerogel(SAG)via vacuum-pressure cycles,yielding composite particles(A-N)with enhanced sustained-... The antioxidant N-isopropyl-N'-phenyl-p-phenylenediamine(4010NA)was dissolved in ethanol and impregnated into silica aerogel(SAG)via vacuum-pressure cycles,yielding composite particles(A-N)with enhanced sustained-release and reinforcing capabilities.The effect of A-N on the mechanical properties and thermal-oxidative aging resistance of styrene-butadiene rubber(SBR)vulcanizates was investigated.TGA and BET assessments indicated that the loading efficiency of 4010NA in SAG reached 14.26%within ethanol's solu bility limit.Incorporating A-N into SBR vulcanizates significantly elevated tensile strength by 17.5%and elongation at break by 41.9%over those with fumed silica and free4010NA.Furthermore,A-N notably enhanced the thermal-oxidative aging resistance of SBR.After aging for 96 h at 100℃,the tensile strength and elongation at break of SBR with A-N sustained 70.09%and 58.61%of their initial values,respectively,with the retention rate of elongation at break being 62.8%higher than that of SBR with fumed silica and free antioxidant.The study revealed that A-N composite particles significantly inhibited the crosslinking in SBR's molecular chains,reducing hardening and embrittlement during later thermal-oxidative aging stages. 展开更多
关键词 styrene-butadiene rubber Silica aerogel Loading modification Thermal-oxidative aging
原文传递
New Fabrication and Mechanical Properties of Styrene-Butadiene Rubber/Carbon Nanotubes Nanocomposite 被引量:4
8
作者 Xiangwen Zhou Yuefeng Zhu +1 位作者 Ji Liang Suyuan Yu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2010年第12期1127-1132,共6页
A novel technology to prepare styrene-butadiene rubber (SBR)/carbon nanotubes (CNTs) composites was developed by combining a spray drying method and a subsequent mechanical mixing process. The cross-linking degree... A novel technology to prepare styrene-butadiene rubber (SBR)/carbon nanotubes (CNTs) composites was developed by combining a spray drying method and a subsequent mechanical mixing process. The cross-linking degrees of the vulcanized composites increased gradually with the additive CNTs contents. By comparing with those of the pure SBR composites, the mechanical properties such as tensile strength, tear strength and hardness of the composites filled with CNTs at certain contents were dramatically improved almost by 600%, 250% and 70%, respectively. The fabrication of the CNTs filled with SBR composites by combination of the spray drying method and subsequent mechanical mixing process was effective for enhancing the reinforcement effects of CNTs in rubbers. The novel technology can also open a new route for the modification and reinforcement on the nanocomposites with large amount of CNTs. 展开更多
关键词 Carbon nanotubes styrene-butadiene rubber Spray drying Mechanical mixing NANOCOMPOSITE Mechanical property
原文传递
Insights into the Payne Effect of Carbon Black Filled Styrene-butadiene Rubber Compounds 被引量:6
9
作者 An Zhao Xuan-Yu Shi +4 位作者 Shi-Hao Sun Hai-Mo Zhang Min Zuo Yi-Hu Song Qiang Zheng 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第1期81-90,I0007,共11页
As a widely used reinforcing filler of rubber, carbon black(CB) often enhances the nonlinear Payne effect and its mechanism still remains controversial. We adopt simultaneous measurement of rheological and electrical ... As a widely used reinforcing filler of rubber, carbon black(CB) often enhances the nonlinear Payne effect and its mechanism still remains controversial. We adopt simultaneous measurement of rheological and electrical behaviors for styrene-butadiene rubber(SBR)/CB compounds and CB gel(CBG) during large deformation/recovery to investigate the contribution of conductive CB network evolution to the Payne effect of the compounds. In the highly filled compounds, the frequency dependence of their strain softening behavior is much more remarkable than that of their CB network breakdown during loading, while during unloading the unrecoverable filler network hardly affects the complete recovery of modulus, both revealing that their Payne effect should be dominated by the disentanglement of SBR matrix. Furthermore,the bound rubber adjacent to CB particles can accelerate the reconstruction of continuous CB network and improve the reversibility of Payne effect. This may provide new insights into the effect of filler network, bound rubber, and free rubber on the Payne effect of CB filled SBR compounds. 展开更多
关键词 Payne effect styrene-butadiene rubber Filler network
原文传递
Low-temperature characteristicsof rubbers and performance testsof type 120 emergencyvalve diaphragms 被引量:1
10
作者 Ming Gao Anhui Pan +5 位作者 Yi Huang Jiaqi Wang Yan Zhang Xiao Xie Huanre Han Yinghua Jia 《Railway Sciences》 2024年第1期47-58,共12页
Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resista... Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms. 展开更多
关键词 Natural rubber Chloroprene rubber Low-temperature characteristic 120 emergency valve DIAPHRAGM
下载PDF
Visualization Analysis of the Impact of Rubber Agroforestry Ecosystem on Soil Microbial Community
11
作者 Jianan Liu Dongling Qi +5 位作者 Chuan Yang Zhixiang Wu Yingying Zhang Qingmao Fu Xianlei Jiang Ruxin Lin 《Advances in Bioscience and Biotechnology》 CAS 2024年第8期486-502,共17页
Rubber agroforestry systems positively impact soil microbial communities. This study employed a bibliometric approach to explore the research status, hotspots, and development trends related to these effects. Using Ci... Rubber agroforestry systems positively impact soil microbial communities. This study employed a bibliometric approach to explore the research status, hotspots, and development trends related to these effects. Using CiteSpace software, we visually analyzed research literature from the Web of Science (WOS) core database, spanning 2004 to 2024. The focus was on the impact of rubber agroforestry ecosystems on soil microbial communities. The results indicate significant attention from Chinese researchers, who have published numerous influential papers in this field. Authors Liu Wenjie have contributed the most papers, although no stable core author group exists. The Chinese Academy of Sciences is the leading research institution in terms of publication volume. While there is close collaboration between different institutions and countries, the intensity of researcher cooperation is low. The most cited literature emphasizes soil nutrients and structure in rubber agroforestry, laying a foundation for soil microorganism studies. Most cited journals are from countries like Netherlands and the United Kingdom. Key research areas include the effects of rubber intercropping on soil microbial communities, agroforestry management, and soil health. Research development can be divided into three stages: the initial stage (2010-2015), the development stage (2015-2020), and the mature stage (2020-2024). Current studies show that rubber intercropping and rubber-based agroforestry systems enhance soil microbial communities, positively impacting soil health. This paper provides a theoretical basis for the sustainable development of rubber agroforestry systems and improved management plans. Future research could explore the effects of species composition on soil microbiological characteristics and develop methods for species interactions. An in-depth study of the soil microbial community’s structure and function, and its relationship with rubber trees, is crucial. Developing effective, rationally designed rubber agroforestry systems and underground soil microbiome technology will promote sustainability and improve plantation productivity. 展开更多
关键词 rubber (Hevea brasiliensis) Agroforestry Ecosystem MICROBE CiteSpace BIBLIOMETRICS rubber Intercropping
下载PDF
Physical and Chemical Characterizations of Rubber Latex Cup Bottom Oil
12
作者 Kouassi Konan Edmond Abolle Abollé +3 位作者 Aketchi Tanoé Lucien Konan Affoué Tindo Sylvie Boa David Yao Kouassi Benjamin 《Advances in Bioscience and Biotechnology》 CAS 2024年第9期511-521,共11页
Rubber latex is an important economic resource. However, the residues from its harvesting are thrown away, even though they contain lipids that can be recycled. This recovery of the residues from the bottom of the cup... Rubber latex is an important economic resource. However, the residues from its harvesting are thrown away, even though they contain lipids that can be recycled. This recovery of the residues from the bottom of the cup requires first and foremost their characterization. The aim of this study is therefore to determine the main physical and chemical characteristics of rubber latex cup bottom oil. Oil’s physical parameters determination shows that it has a density of 951 kg∙m−3, a kinematic viscosity of 48.57 cSt and a water content of 0.0845%. Chemical parameters, meanwhile, indicate that this cup bottom residue has a fat content of 95.96%, an acid number of 2.805 mg KOH/g and an iodine number of 92.42 g I2/100g. Therefore, rubber latex cup bottom oil can be used in the formulation of biofuels, biolubricants, paints, varnishes, alkyd resins, polishing oils, soaps, and insecticides. 展开更多
关键词 rubber Latex Cup Bottoms Oil Density Viscosity CHARACTERIZATIONS
下载PDF
Transient NOE driven signal enhancement of INADEQUATE solid-state NMR spectroscopy for the structural analysis of rubbers
13
作者 Zhiwei Yan Yue-Qi Ye Rongchun Zhang 《Magnetic Resonance Letters》 2024年第3期35-41,共7页
INADEQUATE(Incredible Natural Abundance DoublE QUAntum Transfer Experiment)is one of the most important techniques in revealing the carbon skeleton of organic solids in solid-state NMR spectroscopy.Nevertheless,its us... INADEQUATE(Incredible Natural Abundance DoublE QUAntum Transfer Experiment)is one of the most important techniques in revealing the carbon skeleton of organic solids in solid-state NMR spectroscopy.Nevertheless,its use for structural analysis is quite limited due to the low natural abundance of^(13)C-^(13)C connectivity(~0.01%)and thus low sensitivity.Particularly,in semi-solids like rubbers,the sensitivity will be further significantly reduced by the inefficient cross polarization from 1H to^(13)C due to molecular motions induced averaging of^(1)H-^(13)C dipolar couplings.Herein,in this study,we demonstrate that transient nuclear Overhauser effect(NOE)can be used to efficiently enhance^(13)C signals,and thus enable rapid acquisition of two-dimensional(2D)^(13)C INADEQUATE spectra of rubbers.Using chlorobutyl rubber as the model system,it is found that an overall signalto-noise ratio(SNR)enhancement about 22%can be achieved,leading to significant timesaving by about 33%as compared to the direct polarization-based INADEQUATE experiment.Further experimental results on natural rubber and ethylene propylene diene monomer(EPDM)rubber are also shown to demonstrate the robust performance of transient NOE enhanced INADEQUATE experiment. 展开更多
关键词 Transient NOE INADEQUATE Carbon skeleton rubberS
下载PDF
Seismic evaluation of frequency influence and resonant behavior for lead rubber bearing isolated rigid rectangular liquid tanks
14
作者 Jyoti Ranjan Barik Kishore Chandra Biswal 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期973-994,共22页
The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded... The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded quadrilateral elements.The competency of the model is verified with the available results.Parametric studies are conducted for the dynamic parameters of the base-isolated tank,using a lead rubber bearing to evaluate the optimum damping and time period of the isolator.The application of base isolation has reduced the total and impulsive hydrodynamic components of pressure by 80 to 90 percent,and base shear by 15 to 95 percent,depending upon the frequency content and duration of the considered earthquakes.The sloshing amplitude of the base-isolated tank is reduced by 18 to 94 percent for most of the short-duration earthquakes,while it is increased by 17 to 60 percent for the majority of the long-duration earthquakes.Furthermore,resonance studies are carried out through a long-duration harmonic excitation to obtain the dynamic behavior of non-isolated and isolated tanks,using a nonlinear sloshing model.The seismic responses of the base-isolated tank are obtained as higher when the excitation frequency matches the fundamental sloshing frequency rather than the isolator frequency. 展开更多
关键词 lead rubber bearing frequency domain resonant inputs long-duration excitation
下载PDF
Mechanical behavior of nanorubber reinforced epoxy over a wide strain rate loading
15
作者 Yinggang Miao Jianping Yin +1 位作者 Wenxuan Du Lianyang Chen 《Nano Materials Science》 EI CAS CSCD 2024年第1期106-114,共9页
Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rat... Nanorubber/epoxy composites containing 0,2,6 and 10 wt%nanorubber are subjected to uniaxial compression over a wide range of strain rate from 8×10^(-4) s^(-1) to~2×10^(4) s^(-1).Unexpectedly,their strain rate sensitivity and strain hardening index increase with increasing nanorubber content.Potential mechanisms are proposed based on numerical simulations using a unit cell model.An increase in the strain rate sensitivity with increasing nanorubber content results from the fact that the nanorubber becomes less incompressible at high strain,generating a higher hydro-static pressure.Adiabatic shear localization starts to occur in the epoxy under a strain rate of 22,000 s^(-1) when the strain exceeds 0.35.The presence of nanorubber in the epoxy reduces adiabatic shear localization by preventing it from propagating. 展开更多
关键词 Strain rate Strain hardening Nano rubber EPOXY Adiabatic shearing localization
下载PDF
Discussion on“Dispersion characteristics of clayey soils containing waste rubber particles”[J Rock Mech Geotech Eng 15(2023)3050-3058]
16
作者 Prithvendra Singh Devendra Narain Singh Pintu Kumar Saw 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3864-3865,共2页
We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey s... We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey soils containing different percentages of waste rubber particles(WRPs)by performing several tests(viz.consistency limit,linear shrinkage limit,double hydrometer,crumb test and pinhole test)and scanning electron microscopy(SEM)analysis on five clayey(viz.Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin and Afyon clay)samples containing 0%,5%,10%and 15%WRPs.It should be noted that Erenson(2023)has presented some interesting observations,but there are some serious issues that we want to share through this discussion and request the author of the original paper to address them to avoid their persistence in the scientific literature. 展开更多
关键词 Waste rubber particles Dispersion characteristics CLAY BENTONITE Scientific literature DISCUSSION
下载PDF
Hand Cooling Enhances the Proprioceptive Drift during Rubber Hand Illusion
17
作者 Masanori Sakamoto Yuta Akaike +1 位作者 Kazuya Tatsumi Hirotoshi Ifuku 《Journal of Behavioral and Brain Science》 2024年第7期210-226,共17页
Background: The neural representation of the body is easily altered by integrating multiple sensory signals in the brain. The “Rubber Hand Illusion” (RHI) is one of the most popular experimental paradigms to investi... Background: The neural representation of the body is easily altered by integrating multiple sensory signals in the brain. The “Rubber Hand Illusion” (RHI) is one of the most popular experimental paradigms to investigate this phenomenon. During this illusion, ownership of a rubber hand is temporarily induced. It was shown that external and continuous cooling of the palm enhanced the RHI, suggesting an association between altered the autonomic nervous system regulation and altered the sense of ownership of a specific limb. Purpose: To investigate whether artificially cooling the entire hand for a short period affects the magnitude of the illusion. Methods: Participants immersed their entire hand in cool, cold, or warm water for 1 min before the RHI procedure. Results: We found that cooling the entire hand enhanced the proprioceptive drift during the RHI but not the subjective feeling of ownership. In contrast, warming and intense cooling of the entire hand did not affect the RHI strength. Conclusion: Our results suggest that transient and moderate cooling of the entire hand was sufficient in enhancing the illusory disembodiment of one’s own hand. 展开更多
关键词 Hand Temperature COOLING rubber Hand Illusion OWNERSHIP Proprioceptive Drift
下载PDF
Natural rubber latex as a potential additive for water-based drilling fluids
18
作者 Jun Yang Guan-Cheng Jiang +4 位作者 Jing-Tian Yi Yin-Bo He Li-Li Yang Teng-Fei Dong Guo-Shuai Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2677-2687,共11页
The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and ... The environmental hazards and"carbon footprint"of oil and gas drilling can be significantly reduced by replacing traditional petroleum-based chemical additives with natural materials derived from plants and animals.This paper explored for the first time the interaction mechanism between natural rubber latex(NRL)and bentonite suspensions(BTs)through a series of characterization experiments,as well as the potential applications in water-based drilling fluids(WBDF).The gel viscoelasticity experiments showed that NRL could decrease the consistency coefficient(k)and flow index(n)of BTs,and enhance the shear thinning performance of BTs as pseudo-plastic fluids.In addition,0.5 w/v%NRL not only increased the critical yield stress and strengthened the structural strength between the bentonite particles,but also facilitated the compatibility of pressure loss and flow efficiency.The evaluation of colloidal stability and WBDF performance indicated that NRL particles could promote the hydration and charge stability on the surface of BTs particles,and optimize the particle size distribution and flow resistance of WBDF under the"intercalation-exfoliation-encapsulation"synergistic interaction.Moreover,NRL can improve the rheological properties of WBDF at high temperatures(<150.C),and form a dense blocking layer by bridging and sealing the pores and cracks of the filter cake,which ultimately reduces the permeability of the cake and the filtration loss of WBDF. 展开更多
关键词 Natural materials Water-based drilling fluids Natural rubber latex Bentonite suspensions Filtration loss
下载PDF
Comparison of nonlinear modeling methods for the composite rubber clamp
19
作者 Yiming CAO Hui MA +4 位作者 Xumin GUO Bingfeng ZHAO Hui LI Xin WANG Bing WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期763-778,共16页
The cubic stiffness force model(CSFM)and Bouc-Wen model(BWM)are introduced and compared innovatively.The unknown coefficients of the nonlinear models are identified by the genetic algorithm combined with experiments.B... The cubic stiffness force model(CSFM)and Bouc-Wen model(BWM)are introduced and compared innovatively.The unknown coefficients of the nonlinear models are identified by the genetic algorithm combined with experiments.By fitting the identified nonlinear coefficients under different excitation amplitudes,the nonlinear vibration responses of the system are predicted.The results show that the accuracy of the BWM is higher than that of the CSFM,especially in the non-resonant region.However,the optimization time of the BWM is longer than that of the CSFM. 展开更多
关键词 pipeline system nonlinear clamp model composite rubber clamp amplitude-dependent characteristic vibration response experiment
下载PDF
Pervaporation Recovery of n-butanol from Its Dilute Solution with Natural Rubber/Styrene-butadiene-styrene Blend Membrane
20
作者 SUN Li YU Bo +3 位作者 YU Wei TANG Xiaolin HU Mingjie HUANG Chi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第4期746-752,共7页
Natural rubber/styrene-butadiene-styrene(NR/SBS)membrane was prepared by solution blend,and then used for recovery of butanol from its dilute solution by pervaporation(PV).The thermodynamic and mechanical properties o... Natural rubber/styrene-butadiene-styrene(NR/SBS)membrane was prepared by solution blend,and then used for recovery of butanol from its dilute solution by pervaporation(PV).The thermodynamic and mechanical properties of NR/SBS blend membrane were characterized by TGA and tensile test,respectively.A layer of relatively dense blend membrane with the thickness of about 37μm was closely cast on a layer of porous polyvinylidene difluoride(PVDF)support.And there was no obvious phase separation observed between the interface of two layers.Both flux and separation factor increased with increasing feed temperature.Butanol flux increased as feed concentration increased consistently.The blend membrane which got the best performance obtained membrane separation factor of 28.8 with total flux of 2695.2 g/m^(2)h at 70℃ when feed concentration was 4.00wt%. 展开更多
关键词 natural rubber styrene-butadiene-styrene BUTANOL PERVAPORATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部