In this study, P(St-MAA) seed latex particles were first prepared via soap-free emulsion polymerization of styrene (St) and methacrylic acid (MAA), then the seed particles were allowed to swell with St at room t...In this study, P(St-MAA) seed latex particles were first prepared via soap-free emulsion polymerization of styrene (St) and methacrylic acid (MAA), then the seed particles were allowed to swell with St at room temperature, and the P(St-MAA)/P(St- NaSS) core/shell latex particles were then synthesized via seeded emulsion copolymerization of St and sodium styrene sulphonate (NaSS) using AIBN as initiator in the presence of N,N^-methylenebisacrylamide (BAA, water-soluble crosslinker). Results showed that the polymerization could be carried out smoothly when the ratio of BAA to total monomers was less than 3 mol%, the narrow dispersed P(St-MAA) seed particles with the diameter of 150 nm and the P(St-MAA)/P(St-NaSS) core/shell latexes with the particle size of about 200 nm were synthesized. When the 25/75 mole ratio of NaSS/(St + MAA) and 2 tool% of BAA were used in the seeded emulsion polymerization, the resulted P(St-MAA)/P(St-NaSS) latex product showed a low weight loss after water extraction, and the NaSS unit content in the whole particle and in the shell reached 11.7 mol% and 34.6 mol%, resoectivelv.展开更多
Submicron-sized P(St-NaSS) latexes were prepared via a semi-continuous emulsion copolymerization of styrene (St) and sodium styrene sulphonate (NaSS) in the presence of anionic surfactant, in which NaSS aqueous ...Submicron-sized P(St-NaSS) latexes were prepared via a semi-continuous emulsion copolymerization of styrene (St) and sodium styrene sulphonate (NaSS) in the presence of anionic surfactant, in which NaSS aqueous solution and St were separately dropwise charged into the polymerization system at the same time. The hydrodynamic diameter of the latex particles was measured by dynamic light scattering (DSL) method, and the NaSS unit content of the purified copolymer by water extraction was calculated based on the elementary analysis. Results showed that the copolymerization could be performed smoothly with the monomer conversion more than 96% in the absence of crosslinker, and PNaSS homopolymer could be removed from the latex product by water extraction for 28 h. The weight loss in the water extraction tended to decrease and the NaSS unit content of the purified copolymer tended to increase with the increase of monomer feeding time, and both of them increased with the increase of NaSS/St mole ratio in the charge. The introduction of divinyl benzene (DVB) could decrease the weight loss in the water extraction and increase the NaSS unit content of the purified copolymer. When 25/75 mole ratio of NaSS/St and 11 mol% DVB of total NaSS and St were used in the recipe, and the monomer feeding time was 3 h in copolymerization, the NaSS unit content of the purified copolymer reached 7.31 mol%.展开更多
Crosslinked x-P(St-MAA) seed latex was first prepared via soap-free emulsion copolymerization of styrene (St) and methyl methacrylic acid (MAA) with divinyl benzene as crosslinker and ammonium persulfate as init...Crosslinked x-P(St-MAA) seed latex was first prepared via soap-free emulsion copolymerization of styrene (St) and methyl methacrylic acid (MAA) with divinyl benzene as crosslinker and ammonium persulfate as initiator, and x-P(St-MAA)/x-P(St-NaSS) core/shell latex particles were then synthesized through a novel seeded emulsion copolymerization of St and sodium styrene sulphonate (NaSS) in the presence of water-soluble crosslinker N,N'-methylene bisacrylamide (BAA) using oil-soluble 2,2-azobis isobutyronitrile as initiator. TEM observation indicated that narrow dispersed core/shell latex particles were obtained, and element analysis showed that NaSS unit content in the whole particle and in the shell reached 22.8 wt% and 51.2 wt%, respectively.展开更多
文摘In this study, P(St-MAA) seed latex particles were first prepared via soap-free emulsion polymerization of styrene (St) and methacrylic acid (MAA), then the seed particles were allowed to swell with St at room temperature, and the P(St-MAA)/P(St- NaSS) core/shell latex particles were then synthesized via seeded emulsion copolymerization of St and sodium styrene sulphonate (NaSS) using AIBN as initiator in the presence of N,N^-methylenebisacrylamide (BAA, water-soluble crosslinker). Results showed that the polymerization could be carried out smoothly when the ratio of BAA to total monomers was less than 3 mol%, the narrow dispersed P(St-MAA) seed particles with the diameter of 150 nm and the P(St-MAA)/P(St-NaSS) core/shell latexes with the particle size of about 200 nm were synthesized. When the 25/75 mole ratio of NaSS/(St + MAA) and 2 tool% of BAA were used in the seeded emulsion polymerization, the resulted P(St-MAA)/P(St-NaSS) latex product showed a low weight loss after water extraction, and the NaSS unit content in the whole particle and in the shell reached 11.7 mol% and 34.6 mol%, resoectivelv.
文摘Submicron-sized P(St-NaSS) latexes were prepared via a semi-continuous emulsion copolymerization of styrene (St) and sodium styrene sulphonate (NaSS) in the presence of anionic surfactant, in which NaSS aqueous solution and St were separately dropwise charged into the polymerization system at the same time. The hydrodynamic diameter of the latex particles was measured by dynamic light scattering (DSL) method, and the NaSS unit content of the purified copolymer by water extraction was calculated based on the elementary analysis. Results showed that the copolymerization could be performed smoothly with the monomer conversion more than 96% in the absence of crosslinker, and PNaSS homopolymer could be removed from the latex product by water extraction for 28 h. The weight loss in the water extraction tended to decrease and the NaSS unit content of the purified copolymer tended to increase with the increase of monomer feeding time, and both of them increased with the increase of NaSS/St mole ratio in the charge. The introduction of divinyl benzene (DVB) could decrease the weight loss in the water extraction and increase the NaSS unit content of the purified copolymer. When 25/75 mole ratio of NaSS/St and 11 mol% DVB of total NaSS and St were used in the recipe, and the monomer feeding time was 3 h in copolymerization, the NaSS unit content of the purified copolymer reached 7.31 mol%.
基金financially supported by the National Basic Research Program of China(No.2014CB932202)
文摘Crosslinked x-P(St-MAA) seed latex was first prepared via soap-free emulsion copolymerization of styrene (St) and methyl methacrylic acid (MAA) with divinyl benzene as crosslinker and ammonium persulfate as initiator, and x-P(St-MAA)/x-P(St-NaSS) core/shell latex particles were then synthesized through a novel seeded emulsion copolymerization of St and sodium styrene sulphonate (NaSS) in the presence of water-soluble crosslinker N,N'-methylene bisacrylamide (BAA) using oil-soluble 2,2-azobis isobutyronitrile as initiator. TEM observation indicated that narrow dispersed core/shell latex particles were obtained, and element analysis showed that NaSS unit content in the whole particle and in the shell reached 22.8 wt% and 51.2 wt%, respectively.