期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
Enhanced superelasticity and reversible elastocaloric effect in nano-grained NiTi alloys with low stress hysteresis
1
作者 周敏 王维 +2 位作者 苏浩健 胡忠军 李来风 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期557-562,共6页
Solid-state cooling technologies have been considered as potential alternatives for vapor compression cooling systems.The search for refrigeration materials displaying a unique combination of pronounced caloric effect... Solid-state cooling technologies have been considered as potential alternatives for vapor compression cooling systems.The search for refrigeration materials displaying a unique combination of pronounced caloric effect,low hysteresis,and high reversibility on phase transformation was very active in recent years.Here,we achieved increase in the elastocaloric reversibility and decrease in the friction dissipation of martensite transformations in the superelastic nano-grained NiTi alloys obtained by cold rolling and annealing treatment,with very low stress hysteresis(6.3 MPa)under a large applied strain(5%).Large adiabatic temperature changes(△T_(max)=16.3 K atε=5%)and moderate COP_(mater)values(maximum COP_(mater)=11.8 atε=2%)were achieved.The present nano-grained NiTi alloys exhibited great potential for applications as a highly efficient elastocaloric material. 展开更多
关键词 elastocaloric effect stress hysteresis superelasticITY NiTi alloy
下载PDF
Superelastic Radiative Cooling Metafabric for Comfortable Epidermal Electrophysiological Monitoring 被引量:3
2
作者 Jiancheng Dong Yidong Peng +6 位作者 Yiting Zhang Yujia Chai Jiayan Long Yuxi Zhang Yan Zhao Yunpeng Huang Tianxi Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期449-462,共14页
Epidermal electronics with superb passive-cooling capabilities are of great value for both daytime outdoor dressing comfort and low-carbon economy. Herein, a multifunctional and skinattachable electronic is rationally... Epidermal electronics with superb passive-cooling capabilities are of great value for both daytime outdoor dressing comfort and low-carbon economy. Herein, a multifunctional and skinattachable electronic is rationally developed on a porous all-elastomer metafabric for efficient passive daytime radiative cooling(PDRC) and human electrophysiological monitoring. The cooling characteristics are realized through the homogeneous impregnation of polytetrafluoroethylene microparticles in the styrene–ethylene–butylene–styrene fibers, and the rational regulation of microporosity in SEBS/PTFE metafabrics, thus synergistically backscatter ultraviolet–visible–near-infrared light(maximum reflectance over 98.0%) to minimize heat absorption while efficiently emit human-body midinfrared radiation to the sky. As a result, the developed PDRC metafabric achieves approximately 17℃ cooling effects in an outdoor daytime environment and completely retains its passive cooling performance even under 50% stretching. Further, high-fidelity electrophysiological monitoring capability is also implemented in the breathable and skin-conformal metafabric through liquid metal printing, enabling the accurate acquisition of human electrocardiograph, surface electromyogram, and electroencephalograph signals for comfortable and lengthy health regulation. Hence, the fabricated superelastic PDRC metafabric opens a new avenue for the development of body-comfortable electronics and low-carbon wearing technologies. 展开更多
关键词 Passive radiative cooling Human electrophysiological monitoring superelastic metafabrics Spectrally selective reflecting microfibers Liquid metals
下载PDF
Superelastic properties of nanocrystalline NiTi shape memory alloy produced by thermomechanical processing 被引量:3
3
作者 E.MOHAMMAD SHARIFI A.KERMANPUR 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第3期515-523,共9页
Effects of thermomechanical treatment of cold rolling followed by annealing on microstructure and superelastic behavior of the Ni50Ti50 shape memory alloy were studied.Several specimens were produced by copper boat va... Effects of thermomechanical treatment of cold rolling followed by annealing on microstructure and superelastic behavior of the Ni50Ti50 shape memory alloy were studied.Several specimens were produced by copper boat vacuum induction melting.The homogenized specimens were hot rolled and annealed at 900°C.Thereafter,annealed specimens were subjected to cold rolling with different thickness reductions up to 70%.Transmission electron microscopy revealed that the severe cold rolling led to the formation of a mixed microstructure consisting of nanocrystalline and amorphous phases in Ni50Ti50 alloy.After annealing at 400°C for 1 h,the amorphous phase formed in the cold-rolled specimens was crystallized and a nanocrystalline structure formed.Results showed that with increasing thickness reduction during cold rolling,the recoverable strain of Ni50Ti50 alloy was increased during superelastic experiments such that the 70%cold rolled-annealed specimen exhibited about 12%of recoverable strain.Moreover,with increasing thickness reduction,the critical stress for stress-induced martensitic transformation was increased.It is noteworthy that in the 70%cold rolled-annealed specimen,the damping capacity was measured to be 28 J/cm3 that is significantly higher than that of commercial NiTi alloys. 展开更多
关键词 nanocrystalline material shape memory alloy superelasticITY thermomechanical processing
下载PDF
Microstructure and superelastic properties of free forged Ti-Ni shape-memory alloy 被引量:3
4
作者 Abdollah BAHADOR Esah HAMZAH +5 位作者 Katsuyoshi KONDOH Tuty ASMA ABUBAKAR Farazila YUSOF Junko UMEDA Safaa N.SAUD Mustafa K.IBRAHIM 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第3期502-514,共13页
Elemental titanium(Ti)and nickel(Ni)powders were consolidated by spark plasma sintering(SPS)to fabricate Ti-51%Ni(mole fraction)shape-memory alloys(SMAs).The objective of this study is to enhance the superelasticity o... Elemental titanium(Ti)and nickel(Ni)powders were consolidated by spark plasma sintering(SPS)to fabricate Ti-51%Ni(mole fraction)shape-memory alloys(SMAs).The objective of this study is to enhance the superelasticity of SPS produced Ti-Ni alloy using free forging as a secondary process.Products from two processes(with and without free forging)were compared in terms of microstructure,transformation temperature and superelasticity.The results showed that,free forging effectively improved the tensile and shape-memory properties.Ductility increased from 6.8%to 9.2%after forging.The maximum strain during superelasticity increased from 5%to 7.5%and the strain recovery rate increased from 72%to 92%.The microstructure of produced Ti-51%Ni SMA consists of the cubic austenite(B2)matrix,monoclinic martensite(B19′),secondary phases(Ti3Ni4,Ti2Ni and TiNi3)and oxides(Ti4Ni2O and Ti3O5).There was a shift towards higher temperatures in the martensitic transformation of free forged specimen(aged at 500°C)due to the decrease in Ni content of B2 matrix.This is related to the presence of Ti3Ni4 precipitates,which were observed using transmission electron microscope(TEM).In conclusion,free forging could improve superelasticity and mechanical properties of Ti-51%Ni SMA. 展开更多
关键词 shape-memory alloy superelasticITY spark-plasma sintering free forging
下载PDF
Superelastic behavior of nanostructured Ti_(50)Ni_(48)Co_2 shape memory alloy with cold rolling processing 被引量:3
5
作者 E.MOHAMMAD SHARIFI A.KERMANPUR 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第7期1351-1359,共9页
Effects of cold rolling followed by annealing on microstructural evolution and superelastic properties of the Ti50Ni48Co2 shape memory alloy were investigated. Results showed that during cold rolling, the alloy micros... Effects of cold rolling followed by annealing on microstructural evolution and superelastic properties of the Ti50Ni48Co2 shape memory alloy were investigated. Results showed that during cold rolling, the alloy microstructure evolved through six basic stages including stress-induced martensite transformation and plastic deformation of martensite, deformation twinning, accumulation of dislocations along twin and variant boundaries in martensite, nanocrystallization, amorphization and reverse transformation of martensite to austenite. After annealing at 400 ℃ for 1 h, the amorphous phase formed in the cold-rolled specimens was completely crystallized and an entirely nanocrystalline structure was achieved. The value of stress level of the upper plateau in this nanocrystalline alloy was measured as high as 730 MPa which was significantly higher than that of the coarse-grained Ni50Ti50 and Ti50Ni48Co2 alloys. Moreover, the nanocrystalline Ti50Ni48Co2 alloy had a high damping capacity and considerable efficiency for energy storage. 展开更多
关键词 shape memory alloy superelasticITY nanocrystalline material thermomechanical processing
下载PDF
Influence of Isothermal Treatment on Superelastic Behavior of Cu-13.8Al-4.0Ni(mass fraction) Single Crystals 被引量:1
6
作者 Qingfu CHEN and Liancheng ZHAO Harbin Institute of Technology, Harbin 150001, China R.Stalmans and J. Van Humbeeck MTM, K.U.Leuven, de Croylaan 2, Heverlee, Belgium, 3001 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第1期49-50,共2页
The superelastic behaviors of different isothermal treated Cu-13.SAl-4.ONi (mass fraction) single crystals were studied by applying tensile stress along <001> of the d phase. The different isothermal specimens h... The superelastic behaviors of different isothermal treated Cu-13.SAl-4.ONi (mass fraction) single crystals were studied by applying tensile stress along <001> of the d phase. The different isothermal specimens have different superelastic behavior due to the change of the ratio of stress-induced r1 and β1. The superelasticity of r1 phase tends to that of g; phase with cycling. Typical stabilization of stress-induced martensite above Ap results in residual deformation. Due to the reverse transformation of 7I, there is a deviation of pseudo-yield stress from linear relation with temperature at relatively low stress. 展开更多
关键词 CU mass fraction Influence of Isothermal Treatment on superelastic Behavior of Cu-13.8Al-4.0Ni Single Crystals AL
下载PDF
Characteristics of shape memory and superelasticity for TiNi thin films 被引量:1
7
作者 HE Zhi rong(贺志荣) 1, S.Miyazaki 2 1. Department of Mechanical Engineering, Shaanxi Institute of Technology, Hanzhong 723003, P.R.China 2. University of Tsukuba, Japan 《中国有色金属学会会刊:英文版》 CSCD 2000年第3期375-377,共3页
TiNi shape memory alloy thin films were deposited by using a RF magnetron sputtering apparatus. The transformation and shape memory characteristics of the thin films have been investigated by using DSC and tensile tes... TiNi shape memory alloy thin films were deposited by using a RF magnetron sputtering apparatus. The transformation and shape memory characteristics of the thin films have been investigated by using DSC and tensile tests. After aging, perfect shape memory effect and superelasticity were achieved in TiNi thin films. 展开更多
关键词 TINI alloy SHAPE MEMORY effect superelasticITY THIN film
下载PDF
Superelasticity of NiTi Shape Memory Alloy Thin Films 被引量:1
8
作者 Zhenyu YUAN, Dong XU, Zhican YE and Bingchu CAI Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Research Institute of Micro/Nanometer Science and Technology, Shanghai Jiao Tong University, Shanghai 200030, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第3期319-323,共5页
The superelastic properties of NiTi thin films prepared with sputtering were studied. To characterize their superelasticity, tensile and bulging and indentation tests were performed. The measured mechanisms using thes... The superelastic properties of NiTi thin films prepared with sputtering were studied. To characterize their superelasticity, tensile and bulging and indentation tests were performed. The measured mechanisms using these three methods were compared, and the factors that influence superelasticity were described. 展开更多
关键词 Shape memory alloy NiTi thin film superelasticITY
下载PDF
Effects of aging treatment on the microstructure and superelasticity of columnar-grained Cu71Al18Mn11 shape memory alloy 被引量:3
9
作者 Ji-li Liu Hai-you Huang Jian-xin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第10期1157-1166,共10页
The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C ... The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with aging-temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ ·mol1. Finally, a columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with both excellent superelasticity(5%-9%) and high martensitic transformation critical stress(443-677 MPa) is obtained through the application of the appropriate aging treatments. 展开更多
关键词 copper aluminum manganese alloys shape memory effect columnar grains aging bainite superelasticity
下载PDF
Wear Resistance and Indentation Behavior of Equiatomic Superelastic TiNi and 60NiTi 被引量:2
10
作者 Rabin Neupane Zoheir Farhat 《Materials Sciences and Applications》 2015年第7期694-706,共13页
Indentation and reciprocating wear tests are carried out to study dent and wear resistance of superelastic Ti-Ni alloys. The effect of loading rate on the superelastic behavior of TiNi under indentation loading is inv... Indentation and reciprocating wear tests are carried out to study dent and wear resistance of superelastic Ti-Ni alloys. The effect of loading rate on the superelastic behavior of TiNi under indentation loading is investigated and compared to a new generation of shape memory alloys, i.e., 60NiTi. Only limited amount of work has been done to investigate the dependency of superelasticity on loading rate of TiNi under localized compressive loads, but much work is directed towards understanding the effect of strain rate on tensile properties. Understanding the superelastic behavior helps to employ superelastic alloys in applications where high impact loading is expected as in bearings and gears. In the present study, it is found that dent resistance of Ti-Ni alloy is not significantly affected by loading rate (within the employed loading conditions). It has also been found that new-generation 60NiTi alloy exhibits superior wear and dent resistance, as well as higher hardness compared to equiatomic TiNi. 展开更多
关键词 TINI 60NiTi superelasticITY DENT RESISTANCE Wear RESISTANCE
下载PDF
Influence of α Phase on Shape Memory Effect and Superelasticity of CuZnAI Alloy
11
作者 齐民 朱敏 +1 位作者 赵旭 杨大智 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1992年第4期299-304,共6页
The influence of a small amount of α phase in β′ matrix on shape memory effect and superelasticity of CuZnAl shape memory alloy has been studied systematically.It has been found that transformation temperature can ... The influence of a small amount of α phase in β′ matrix on shape memory effect and superelasticity of CuZnAl shape memory alloy has been studied systematically.It has been found that transformation temperature can be adjusted in a large scale by controlling the amount of α phase, meanwhile,shape memory effect and superelasticity do not decrease obviously when there exists a small amount of α phase.Based on the optical and trans- mission electron microscopy observation,the influ- ence of α phase on shape memory effect and superelasticity has been discussed. 展开更多
关键词 αphase shape memory superelasticITY CuZnAl alloy
下载PDF
Effect of chemical ordering annealing on superelasticity of Ni-Mn-Ga-Fe ferromagnetic shape memory alloy microwires
12
作者 Yanfen Liu Xuexi Zhang +5 位作者 Hongxian Shen Jianfei Sun Qinan Li Xiaohua Liu Jianjun Li Weidong Cheng 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第5期414-419,共6页
Ni50Mn25Ga20Fe5 ferromagnetic shape memory alloy microwires with diameters of^30-50μm and grain sizes of^2-5μm were prepared by melt-extraction technique.A step-wise chemical ordering annealing was carried out to im... Ni50Mn25Ga20Fe5 ferromagnetic shape memory alloy microwires with diameters of^30-50μm and grain sizes of^2-5μm were prepared by melt-extraction technique.A step-wise chemical ordering annealing was carried out to improve the superelasticity strain and recovery ratio which were hampered by the internal stress,compositional inhomogeneity,and high-density defects in the as-extracted Ni50Mn25Ga20Fe5 microwires.The annealed microwires exhibited enhanced atomic ordering degree,narrow thermal hysteresis,and high saturation magnetization under a low magnetic field.As a result,the annealed microwire showed decreased superelastic critical stress,improved reversibility,and a high superelastic strain(1.9%)with a large recovery ratio(>96%).This kind of filamentous material with superior superelastic effects may be promising materials for minor-devices. 展开更多
关键词 Ni-Mn-Ga-Fe microwire chemical ordering annealing martensite transformation superelasticITY
下载PDF
Superelasticity of TiPdNi Alloys with and without Rare Earth Ce Addition
13
作者 Qingchao TIAN, Jiansheng WU and Yifeng CHENGKey Laboratory of the Ministry of Education for High Temperature Materials and Tests, School of Materials Science and Engineering, Shanghai Jiao Tong Univ., Shanghai 200030, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第2期179-182,共4页
Ti50.6Pd30Ni19.4 and Ti51Pd28Ni21 (Ce) alloys have been prepared under various temperatures for long time annealing. Differential scanning calorimetery (DSC), X-ray diffraction (XRD) and tensile test were employed to ... Ti50.6Pd30Ni19.4 and Ti51Pd28Ni21 (Ce) alloys have been prepared under various temperatures for long time annealing. Differential scanning calorimetery (DSC), X-ray diffraction (XRD) and tensile test were employed to investigate the phase transformation behavior and superelasticity of the alloys. It has been found that the phase transformation temperature of Ti50.6Pd30Ni19.4 is about 40C higher than that of Ti51Pd28Ni21(Ce), and do not change much with different annealed temperature. Obvious superelasticity is retained in Ti50.6Pd30Ni19.4 alloy annealed at 400C for 18 h, and annealing at higher temperature shows a deterioration of this property. The Ce addition in TisiPd28Ni2i alloy significantly delays recrystallization, increases yied strength and elastic modulus, but the superelasticity is poor. 展开更多
关键词 TiNi-Pd Shape memory alloy superelasticITY
下载PDF
Superelastic behavior and stabilization of stress-induced martensite in Cu-13.4Al-4.0Ni single crystals
14
作者 陈庆福 赵连城 +1 位作者 R.Stalmans J.van Humbeeck 《中国有色金属学会会刊:英文版》 CSCD 2001年第2期161-165,共5页
By applying tensile stress along 〈100〉 of β phase, the superelastic behavior and stabilization of stress induced martensite (SIM) of Cu 13.4Al 4.0Ni(mass fraction, %) single crystals were studied. The results show ... By applying tensile stress along 〈100〉 of β phase, the superelastic behavior and stabilization of stress induced martensite (SIM) of Cu 13.4Al 4.0Ni(mass fraction, %) single crystals were studied. The results show that the pseudo yield stress decreases with the increase of cycling number, and keeping load isothermally has an effect on stabilization of SIM. Previous thermal cycling between ( M s-20 ℃) and ( A f+20 ℃) promotes the superelasticity and the stabilization of SIM as well; the pre thermal cycling also reduces the pseudo yield stress. However, once the stabilization of SIM is produced, it can be destabilized by either the afterwards thermal cooling heating cycling or load and immediately unload cycling in ( A f~ M d). Isothermal treatment in ( A f~ M d) brings restabilization of SIM. The maximum superelastic value from β → β ′ 1(18 R ) is 9% for the studied single crystal. When test temperature is in A f~( A f+50 ℃) and stress is in 0~350 MPa, the superelastic behavior exist. [ 展开更多
关键词 superelasticITY STABILIZATION Stress induced martensite CuAlNi single crystal DESTABILIZATION
下载PDF
Superelasticity of Cu–Ni–Al shape-memory fibers prepared by melt extraction technique
15
作者 Dong-yue Li Shu-ling Zhang +2 位作者 Wei-bing Liao Gui-hong Geng Yong Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第8期928-933,共6页
In the paper, a melt extraction method was used to fabricate Cu–4Ni–14Al(wt%) fiber materials with diameters between 50 and 200 μm. The fibers exhibited superelasticity and temperature-induced martensitic transfo... In the paper, a melt extraction method was used to fabricate Cu–4Ni–14Al(wt%) fiber materials with diameters between 50 and 200 μm. The fibers exhibited superelasticity and temperature-induced martensitic transformation. The microstructures and superelasticity behavior of the fibers were studied via scanning electron microscopy(SEM) and a dynamic mechanical analyzer(DMA), respectively. Appropriate heat treatment further improves the plasticity of Cu-based alloys. The serration behavior observed during the loading process is due to the multiple martensite phase transformation. 展开更多
关键词 copper nickel aluminum alloys shape memory effect melt extraction method superelasticity
下载PDF
Gyroid Triply Periodic Minimal Surface Lattice Structure Enables Improved Superelasticity of CuAlMn Shape Memory Alloy
16
作者 Mengwei Wu Chunmei Ma +1 位作者 Ruiping Liu Huadong Fu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第6期1047-1065,共19页
Improving the shape memory effect and superelasticity of Cu-based shape memory alloys(SMAs)has always been a research hotspot in many countries.This work systematically investigates the effects of Gyroid triply period... Improving the shape memory effect and superelasticity of Cu-based shape memory alloys(SMAs)has always been a research hotspot in many countries.This work systematically investigates the effects of Gyroid triply periodic minimal surface(TPMS)lattice structures with different unit sizes and volume fractions on the manufacturing viability,compressive mechanical response,superelasticity and heating recovery properties of CuAlMn SMAs.The results show that the increased specific surface area of the lattice structure leads to increased powder adhesion,making the manufacturability proportional to the unit size and volume fraction.The compressive response of the CuAlMn SMAs Gyroid TPMS lattice structure is negatively correlated with the unit size and positively correlated with the volume fraction.The superelastic recovery of all CuAlMn SMAs with Gyroid TPMS lattice structures is within 5%when the cyclic cumulative strain is set to be 10%.The lattice structure shows the maximum superelasticity when the unit size is 3.00 mm and the volume fraction is 12%,and after heating recovery,the total recovery strain increases as the volume fraction increases.This study introduces a new strategy to enhance the superelastic properties and expand the applications of CuAlMn SMAs in soft robotics,medical equipment,aerospace and other fields. 展开更多
关键词 Shape memory alloys superelasticITY Gyroid triply periodic minimal surface(TPMS)lattice structure Selective laser melting(SLM)
原文传递
Martensitic transformation,shape memory effect and superelasticity of Ti-xZr-(30-x)Nb-4Ta alloys 被引量:8
17
作者 Wen-Tao Qu Hao Gong +2 位作者 Jun Wang Yong-Sheng Nie Yan Li 《Rare Metals》 SCIE EI CAS CSCD 2019年第10期965-970,共6页
Martensitic transformations,mechanical properties,shape memory effect and superelasticity of Ti-xZr-(30-x)Nb-4Ta(x=15,16,17 and 18;at%) alloys were investigated.X-ray diffraction(XRD),optical microscopy(OM) and transm... Martensitic transformations,mechanical properties,shape memory effect and superelasticity of Ti-xZr-(30-x)Nb-4Ta(x=15,16,17 and 18;at%) alloys were investigated.X-ray diffraction(XRD),optical microscopy(OM) and transmission electron microscopy(TEM) results indicated that the Ti-16Zr-14Nb-4Ta,Ti-17Zr-13Nb-4Ta and Ti-18Zr-12Nb4Ta alloys were mainly composed of α″-martensite,while the Ti-15Zr-15Nb-4Ta alloy was characterized by predominant p phase.The reverse martensitic transformation temperatures increased when Nb was replaced by Zr,indicating stronger p-stabilizing effect for the former.The Ti-15Zr-15Nb-4Ta alloy displayed superelasticity during tensile deformation with a recovery strain of 3.51%.For the other three alloys with higher Zr content,the martensitic reorientation occurred during tensile deformation,resulting in shape memory recovery upon subsequent heating.The maximum shape memory effect was 3.46% in the Ti-18Zr-12Nb-4Ta alloy. 展开更多
关键词 Ti-Zr ALLOYS Martensitic TRANSFORMATION Shape MEMORY effect superelasticITY
原文传递
Multifunctional protective aerogel with superelasticity over−196 to 500℃ 被引量:4
18
作者 Bo-Wen Liu Min Cao +2 位作者 Yi-Ying Zhang Yu-Zhong Wang Hai-Bo Zhao 《Nano Research》 SCIE EI CSCD 2022年第9期7797-7805,共9页
Protective materials that possess superelasticity and multifunctionality over a broad temperature range are urgently needed in various advanced applications.However,under harsh work conditions,the performance of curre... Protective materials that possess superelasticity and multifunctionality over a broad temperature range are urgently needed in various advanced applications.However,under harsh work conditions,the performance of current materials may largely deteriorate to lose protective functionality.Herein,we report a bidirectionally oriented multi-walled carbon nanotubes(MWCNTs)-reinforced chitosan carbon aerogel(CS-MWCNT)that possesses superelasticity,high electromagnetic interference shielding,thermal insulation,and infrared stealth at both low temperatures(such as liquid nitrogen)and high temperatures(such as alcohol flames).Highly oriented lamellar arch structures combined with an MWCNTs-reinforced carbon skeleton act as elastic segments to disperse the stress during compression and endow CS-MWCNT with the ability to recover to almost the original size after being compressed at−196-500℃.The lamellar structures make CS-MWCNT thermally insulating and infrared stealth with a low thermal conductivity of~0.03 W/(m·K).Furthermore,a high electromagnetic interference(EMI)shielding effect of 64 dB is realized via an absorption-dominant EMI shielding mechanism derived from the successive inherently conductive carbon lamella,and the EMI shielding performance is largely maintained after treatment under extreme conditions like low temperature,high temperature,as well as cyclic compression.This work provides a new strategy for the development of temperature-invariant multifunctional aerogels for harsh environment applications. 展开更多
关键词 superelasticITY electromagnetic interference shielding heat insulation infrared stealth extreme environment
原文传递
Improved stability of superelasticity and elastocaloric effect in Ti-Ni alloys by suppressing Lüders-like deformation under tensile load 被引量:3
19
作者 Pengfei Dang Jianbo Pang +6 位作者 Yumei Zhou Lei Ding Lei Zhang Xiangdong Ding Turab Lookman Jun Sun Dezhen Xue 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第15期154-167,共14页
Functional stability of superelasticity is crucial for practical applications of shape memory alloys.It is degraded by a Lüders-like deformation with elevated local stress concentration under tensile load.By incr... Functional stability of superelasticity is crucial for practical applications of shape memory alloys.It is degraded by a Lüders-like deformation with elevated local stress concentration under tensile load.By increasing the degree of solute supersaturation and applying appropriate thermomechanical treatments,a Ti-Ni alloy with nanocrystallinity and dispersed nanoprecipitates is obtained.In contrast to conventional Ti-Ni alloys,the superelasticity in the target alloy is accompanied by homogeneous deformation due to the sluggish stress-induced martensitic transformation.The alloy thus shows a fully recoverable strain of 6%under tensile stress over 1 GPa and a large adiabatic temperature decrease of 13.1 K under tensile strain of 4.5%at room temperature.Moreover,both superelasticity and elastocaloric effect exhibit negligible degradation in response to applied strain of 4%during cycling.We attribute the improved functional stability to low dislocation activity resulting from the suppression of localized deformation and the combined strengthening effect of nanocrystalline structure and nanoprecipitates.Thus,the design of such a microstructure enabling homogeneous deformation provides a recipe for stable superelasticity and elastocaloric effect. 展开更多
关键词 Ti-Ni alloys superelasticITY Elastocaloric effect Martensite band Functional stability
原文传递
Microstructure evolution and superelasticity behavior of Ti-Ni-Hf shape memory alloy composite with multi-scale and heterogeneous reinforcements 被引量:3
20
作者 Xiaoyang Yi Bin Sun +4 位作者 Weihong Gao Xianglong Meng Zhiyong Gao Wei Cai Liancheng Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第7期113-121,共9页
In the present study,the in-situ TiB whisker was introduced into the Ti-Ni-Hf shape memory alloy composite by the in-situ reaction of the Ti-Ni-Hf alloy powder and TiB2 powders.The(Ti,Hf)2 Ni phase also precipitated,a... In the present study,the in-situ TiB whisker was introduced into the Ti-Ni-Hf shape memory alloy composite by the in-situ reaction of the Ti-Ni-Hf alloy powder and TiB2 powders.The(Ti,Hf)2 Ni phase also precipitated,accompanied with the formation of TiB phase.Moreover,the residual TiB2 particles can be observed,as the TiB2 content was higher than 0.7 wt%.Thereinto,the larger scale reinforcements constituted the quasi-continuous network structure.The smaller scale reinforcements distributed in the interior of the network structure.The two-scale reinforcements showed the uniform distribution at macroscopic level and inhomogeneous distribution at microscopic level.The single stage B19?B2 martensitic transformation occurred in the Ti-Ni-Hf composites.In addition,the martensitic transformation temperatures continuously decreased with the increased TiB2 content owing to the compositional and mechanical effect.The moderate TiB2 addition not noly enhanced the matrix strength,but also significantly improved the superelasticity.The excellent superelaticity with the completely recoverable strain of 4%can be obtained in the Ti-Ni-Hf composite containing 0.7 wt%TiB2. 展开更多
关键词 Ti-Ni-Hf composite Shape memory alloy Microstructure Martensitic transformation High temperature superelasticity
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部