In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive ...In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79] and a result of Suzuki [T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317]. We prove, also, a fixed point theorem in the setting of G-cone metric spaces.展开更多
The fixed point theory provides a sound basis for studying many problems in pure and applied sciences. In this paper, we use the notions of sequential compactness and completeness to prove Eldeisten-Suzuki-type fixed ...The fixed point theory provides a sound basis for studying many problems in pure and applied sciences. In this paper, we use the notions of sequential compactness and completeness to prove Eldeisten-Suzuki-type fixed point results for self-mappings in various abstract spaces. We apply our results to get a bounded solution of a functional equation arising in dynamic programming.展开更多
基金supported by Università degli Studi di Palermo (Local University Project ex 60%)
文摘In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79] and a result of Suzuki [T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317]. We prove, also, a fixed point theorem in the setting of G-cone metric spaces.
基金supported by Università degli Studi di Palermo,Local University Project R.S.ex 60%supported by MNTRRS-174009
文摘The fixed point theory provides a sound basis for studying many problems in pure and applied sciences. In this paper, we use the notions of sequential compactness and completeness to prove Eldeisten-Suzuki-type fixed point results for self-mappings in various abstract spaces. We apply our results to get a bounded solution of a functional equation arising in dynamic programming.